
Chapter 1

Introduction

Many of the fundamental ideas and principles of experimental design were devel-
oped by Sir R. A. Fisher at the Rothamsted Experimental Station (Fisher, 1926). This
agricultural background is reflected in some terminology of experimental design that
is still being used today. Agricultural experiments are conducted, e.g., to compare
different varieties of a certain crop or different fertilizers. In general, those that are
under comparison in an experiment are called treatments. Manufacturing processes
in industrial experiments and drugs in pharmaceutical studies are examples of treat-
ments. In an agricultural experiment, the varieties or fertilizers are assigned to plots,
and the yields are compared after harvesting. Each plot is called an experimental unit
(or unit). In general, an experimental unit can be defined as the smallest division of
the experimental material such that different units may receive different treatments
(Cox, 1958, p. 2). At the design stage, a treatment is chosen for each experimental
unit.

One fundamental difficulty in such comparative experiments is inherent variabil-
ity of the experimental units. No two plots have exactly the same soil quality, and
there are other variations beyond the experimenter’s control such as weather condi-
tions. Consequently, effects of the treatments may be biased by uncontrolled vari-
ations. A solution is to assign the treatments randomly to the units. In addition to
guarding against potential systematic biases, randomization also provides a basis for
appropriate statistical analysis.

The simplest kind of randomized experiment is one in which treatments are as-
signed to units completely at random. In a completely randomized experiment, the
precision of a treatment comparison depends on the overall variability of the experi-
mental units. When the experimental units are highly variable, the treatment compar-
isons do not have good precision. In this case, the method of blocking is an effective
way to reduce experimental error. The idea is to divide the experimental units into
more homogeneous groups called blocks. When the treatments are compared on the
units within each block, the precision is improved since it depends on the smaller
within-block variability.

Suppose the experimental units are grouped into b blocks of size k. Even though
efforts are made for the units in the same block to be as alike as possible, they are
still not the same. Given an initial assignment of the treatments to the bk unit labels
based on statistical, practical and/or other considerations, randomization is carried
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out by randomly permuting the unit labels within each block (done independently
from block to block), and also randomly permuting the block labels. The additional
step of randomly permuting block labels is to assure that an observation intended on
a given treatment is equally likely to occur at any of the experimental units.

Under a completely randomized experiment, the experimental units are consid-
ered to be unstructured. The structure of the experimental units under a block design
is an example of nesting. Suppose there are b blocks each consisting of k units; then
each experimental unit can be labeled by a pair (i, j), i = 1, . . . ,b, j = 1, . . . ,k. This
involves two factors with b and k levels, respectively. Here if i 6= i′, unit (i, j) bears
no relation to unit (i′, j); indeed, within-block randomization renders positions of the
units in each block immaterial. We say that the k-level factor is nested in the b-level
factor, and denote this structure by b/k or block/unit if the two factors involved are
named “block” and “unit,” respectively.

Another commonly encountered structure of the experimental units involves two
blocking factors. For example, in agricultural experiments the plots may be laid out
in rows and columns, and we try to eliminate from the treatment comparisons the spa-
tial variations due to row-to-row and column-to-column differences. In experiments
that are carried out on several different days and in several different time slots on
each day, the observed responses might be affected by day-to-day and time-to-time
variations. In this case each experimental run can be represented by a cell of a rect-
angular grid with those corresponding to experimental runs taking place on the same
day (respectively, in the same time slot) falling in the same row (respectively, the
same column). In general, suppose rc experimental units can be arranged in r rows
and c columns such that any two units in the same row have a definite relation, and so
do those in the same column. Then we have an example of crossing. This structure of
experimental units is denoted by r×c or row× column if the two factors involved are
named “row” and “column,” respectively. In such a row-column experiment, given an
initial assignment of the treatments to the rc unit labels, randomization is carried out
by randomly permuting the row labels and, independently, randomly permuting the
column labels. This assures that the structure of the experimental units is preserved:
two treatments originally assigned to the same row (respectively, column) remain in
the same row (respectively, column) after randomization.

For example, suppose there are four different manufacturing processes compared
in four time slots on each of four days. With the days represented by rows and times
represented by columns, a possible design is

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

where the four numbers 1, 2, 3, and 4 are labels of the treatments assigned to the
units represented by the 16 row-column combinations. We see that each of the four
numbers appears once in each row and once in each column. Under such a design,
called a Latin square, all the treatments can be compared on each of the four days
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as well as in each of the four time slots. If the random permutation is such that the
first, second, third, and fourth rows of the Latin square displayed above are mapped
to the first, fourth, second, and third rows, respectively, and the first, second, third,
and fourth columns are mapped to the fourth, third, first, and second columns, re-
spectively, then it results in the following Latin square to be used in actual experi-
mentation.

3 4 2 1
1 2 4 3
2 1 3 4
4 3 1 2

The structures of experimental units are called block structures. Block and row-
column designs are based on the two simplest block structures involving nesting and
crossing, respectively. Nelder (1965a) defined simple block structures to be those
that can be obtained by iterations of nesting (/) and crossing (×) operators. For ex-
ample, n1/(n2×n3) represents the block structure under a nested row-column design,
where n1n2n3 experimental units are grouped into n1 blocks of size n2n3, and within
each block the n2n3 units are arranged in n2 rows and n3 columns. Randomization
of such an experiment can be done by randomly permuting the block labels and car-
rying out the appropriate randomization for the block structure n2× n3 within each
block, that is, randomly permuting the row labels and column labels separately. In
an experiment with the block structure n1/(n2/n3), n1n2n3 experimental units are
grouped into n1 blocks, and within each block the n2n3 units are further grouped into
n2 smaller blocks (often called whole-plots) of n3 units (often called subplots). To
randomize such a blocked split-plot experiment, we randomly permute the block la-
bels and carry out the appropriate randomization for the block structure n2/n3 within
each block, that is, randomly permute the whole-plot labels within each block, and
randomly permute the subplot labels within each whole-plot. Note that n1/(n2/n3) is
the same as (n1/n2)/n3.

In general, randomization of an experiment with a simple block structure is car-
ried out according to the appropriate randomization for nesting or crossing at each
stage of the block structure formula.

Like experimental units, the treatments may also have a structure. One can com-
pare treatments by examining the pairwise differences of treatment effects. When the
treatments do not have a structure (for example, when they are different varieties of
a crop), one may be equally interested in all the pairwise comparisons of treatment
effects. However, if they do have a certain structure, then some comparisons may be
more important than others. For example, suppose one of the treatments is a control.
Then one may be more interested in the comparisons between the control and new
treatments.

In this book, treatments are to have a factorial structure: each treatment is a com-
bination of multiple factors (variables) called treatment factors. Suppose there are n
treatment factors and the ith factor has si values or settings to be studied. Each of
these values or settings is called a level. The treatments, also called treatment com-
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binations in this context, consist of all s1 · · · sn possible combinations of the factor
levels. The experiment is called an s1× ·· · × sn factorial experiment, and is called
an sn experiment when s1 = · · · = sn = s. For example, a fertilizer may be a combi-
nation of the levels of three factors N (nitrogen), P (phosphate), and K (potash), and
a chemical process might involve temperature, pressure, concentration of a catalyst,
etc. Fisher (1926) introduced factorial design to agricultural experiments, and Yates
(1935, 1937) made significant contributions to its early development.

When the treatments have a factorial structure, typically we are interested in the
effects of individual factors, as well as how the factors interact with one another.
Special functions of the treatment effects, called main effects and interactions, can
be defined to represent such effects of interest. We say that the treatment factors do
not interact if, when the levels of a factor are changed while those of the other factors
are kept constant, the changes in the treatment effects only depend on the levels of the
varying factor. In this case, we can separate the effects of individual factors, and the
effect of each treatment combination can be obtained by summing up these individual
effects. Under such additivity of the treatment factors, for example, to determine the
combination of N, P, and K with the highest average yield, one can simply find the
best level of each of the three factors separately. Otherwise, the factors need to be
considered simultaneously. Roughly speaking, the main effect of a treatment factor
is its effects averaged over the levels of the other factors, and the interaction effects
measure departures from additivity. Precise definitions of these effects, collectively
called factorial effects, will be given in Chapter 6.

A factorial experiment with each treatment combination observed once is called
a complete factorial experiment. We also refer to it as a single-replicate complete
factorial experiment. The analysis of completely randomized experiments in which
each treatment combination is observed the same number of times, to be presented
in Chapter 6, is straightforward. It becomes more involved if the experimental units
have a more complicated block structure and/or if not all the treatment combinations
can be observed.

When a factorial experiment is blocked, with each block consisting of one repli-
cate of all the treatment combinations, the analysis is still very simple. As will be
discussed in Chapter 6, in this case all the treatment main effects and interactions
can be estimated in the same way as if there were no blocking, except that the vari-
ances of these estimators depend on the within-block variability instead of the overall
variability of the experimental units. Since the total number of treatment combina-
tions increases rapidly as the number of factors becomes large, a design that accom-
modates all the treatment combinations in each block requires large blocks whose
homogeneity is difficult to control. In order to achieve smaller within-block vari-
ability, we cannot accommodate all the treatment combinations in the same block
and must use incomplete blocks. It may also be impractical to carry out experiments
in large blocks. Then, since not all the treatment combinations appear in the same
block, the estimates of some treatment factorial effects cannot be based on within-
block comparisons alone. This may result in less precision for such estimates. For
example, suppose an experiment on two two-level factors A1 and A2 is to be run on
two different days with the two combinations (0,0) and (1,1) of the levels of A1 and
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A2 observed on one day, and the other two combinations (0,1) and (1,0) observed
on the other day, where 0 and 1 are the two factor levels. Then estimates of the main
effect (comparison of the two levels) of factor A1 and the main effect of A2 are based
on within-block comparisons, but as will be seen in Chapter 7, the interaction of the
two factors would have to be estimated by comparing the observations on the first day
with thoseon the second day, resulting in less precision. We say that this two-factor
interaction is confounded with blocks.

When a factorial experiment must be run in incomplete blocks, we choose a de-
sign in such a way that only those factorial effects that are less important or are
known to be negligible are confounded with blocks. Typically the main effects are
deemed more important, and one would avoid confounding them with blocks. How-
ever, due to practical constraints, sometimes one must confound certain main effects
with blocks. For instance, it may be difficult to change the levels of some factors.
In the aforementioned example, if a factor must be kept at the same level on each
day, then the main effect of that factor can only be estimated by a more variable
between-day comparison.

Often the number of treatment combinations is so large that it is practically pos-
sible to observe only a small subset of the treatment combinations. This is called a
fractional factorial design. Then, since not all the treatment combinations are ob-
served, some factorial effects are mixed up and cannot be distinguished. We say that
they are aliased. For example, when only 16 treatment combinations are to be ob-
served in an experiment involving six two-level factors, there are 63 factorial effects
(6 main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor
interactions, 6 five-factor interactions, and 1 six-factor interaction), but only 15 de-
grees of freedom are available for estimating them. This is possible if many of the
factorial effects are negligible. One design issue is which 16 of the 64 treatment
combinations are to be selected.

An important property of a fractional factorial design, called resolution, pertains
to the extent to which the lower-order effects are mixed up with higher-order effects.
For example, under a design of resolution III, no main effect is aliased with other
main effects, but some main effects are aliased with two-factor interactions; under
a design of resolution IV, no main effect is aliased with other main effects or two-
factor interactions, but some two-factor interactions are aliased with other two-factor
interactions; under a design of resolution V, no main effects and two-factor inter-
actions are aliased with one another. When the experimenter has little knowledge
about the relative importance of the factorial effects, it is common to assume that the
lower-order effects are more important than higher-order effects (the main effects
are more important than interactions, and two-factor interactions are more important
than three-factor interactions, etc.), and effects of the same order are equally impor-
tant. Under such a hierarchical assumption, it is desirable to have a design with high
resolution. A popular criterion of selecting fractional factorial designs and a refine-
ment of maximum resolution, called minimum aberration, is based on the idea of
minimizing the aliasing among the more important lower-order effects.

When the experimental units have a certain block structure, in addition to pick-
ing a fraction of the treatment combinations, we also have to decide how to assign
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the selected treatment combinations to the units. In highly fractionated factorial ex-
periments with complicated block structures, we have complex aliasing of treatment
factorial effects as well as multiple levels of precision for their estimates. The bulk of
this book is about the study of such designs, including their analysis, selection, and
construction. The term “multi-stratum” in the subtitle of the book refers to multiple
sources of errors that arise from complicated block structures, while “single-stratum”
is synonymous with “complete randomization” where there is one single error term.

Treatment and block structures are two important components of a randomized
experiment. Nelder (1965a,b) emphasized their distinction and developed a theory
for the analysis of randomized experiments with simple block structures. Simple
block structures cover most, albeit not all the block structures that are commonly
encountered in practice. Speed and Bailey (1982) and Tjur (1984) further developed
the theory to cover the more general orthogonal block structures. This theory, an
account of which can be found in Bailey (2008), provides the basis for the approach
adopted in this book.

We turn to five examples of factorial experiments to motivate some of the topics
to be discussed in the book. The first three examples involve simple block structures.
The block structures in Examples 1.4 and 1.5 are not simple block structures, but the
theory developed by Speed and Bailey (1982) and Tjur (1984) is applicable. We will
return to these examples from time to time in later chapters to illustrate applications
of the theory as it is developed.

Our first example is a replicated complete factorial experiment with a relatively
complicated block structure.

Example 1.1. Loughin (2005) studied the design of an experiment on weed control.
Herbicides can kill the weeds that reduce soybean yields, but they can also kill soy-
beans. On the other hand, soybean varieties can be bred or engineered to be resistant
to certain herbicides. An experiment is to be carried out to study what factors in-
fluence weed control and yield of genetically altered soybean varieties. Four factors
studied in the experiment are soybean variety/herbicide combinations in which the
herbicide is safe for the soybean variety, dates and rates of herbicide application,
and weed species. There are three variety/herbicide combinations, two dates (early
and late), three rates (1/4, 1/2, and 1), and seven weed species, giving a total of 126
treatments with a 3× 2× 3× 7 factorial structure. Soybeans and weeds are planted
together and a herbicide safe for the soybean variety is sprayed at the designated
time and rate. Then weed properties (numbers, density, mass) and soybean yields are
measured. However, there are some practical constraints on how the experiment can
be run. Due to herbicide drift, different varieties cannot be planted too close together
and buffer zones between varieties are needed, but the field size is not large enough to
allow for 126 plots of adequate size with large buffers between each pair of adjacent
plots. Therefore, for efficient use of space, one needs to plant all of a given soybean
variety contiguously so that fewer buffers are needed. Additional drift concerns lead
to a design described as follows. First the field is divided into four blocks to accom-
modate four replications:
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Each block is split into three plots with two buffer zones, and the variety/herbicide
combinations are randomly assigned to the plots within blocks:

Var 1 Var 3 Var 2

Each plot is then split into two subplots, with application times randomly assigned
to subplots within plots:

Late Early Early Late Late Early

Furthermore each subplot is split into three sub-subplots, with application rates ran-
domly assigned to sub-subplots within subplots:

1
2

1
4 1 1 1

4
1
2

1
2 1 1

4 1 1
2

1
4 1 1

2
1
4

1
4 1 1

2

Each block is divided into seven horizontal strips, with the weed species randomly
assigned to the strips within blocks:
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We end up with 504 combinations of sub-subplots and strips:

Each of the 126 treatment combinations appears once in each of the four blocks. To
summarize, we have four replicates of a complete 3×2×3×7 factorial experiment
with the block structure 4/[(3/2/3)×7]. Both subplots in the same plot are assigned
the same variety/herbicide combination, all the sub-subplots in the same subplot are
assigned the same herbicide application time, and all the sub-subplot and strip inter-
sections in the same strip are assigned the same weed species. Various aspects of the
analysis of this design will be discussed in Sections 12.1, 12.9, 12.10, and 13.10.

In Example 1.1, there are 18 sub-subplots in each block. If different soybean
varieties were to be assigned to neighboring sub-subplots, then 17 buffer zones
would be needed in each block. With only two buffer zones per block under the
proposed design, comparisons of soybean varieties are based on between-plot com-
parisons, which are expected to be more variable than those between subplots and
sub-subplots. The precision of the estimates of such effects is sacrificed in order to
satisfy the practical constraints.

Example 1.2. McLeod and Brewster (2004) discussed an experiment for identifying
key factors that would affect the quality of a chrome-plating process. Suppose six
two-level treatment factors are to be considered in the experiment: A, chrome con-
centration; B, chrome to sulfate ratio; C, bath temperature; S, etching current density;
T , plating current density; and U , part geometry. The response variables include, e.g.,
the numbers of pits and cracks. The chrome plating is done in a bath (tank), which
contains several rectifiers, but only two will be used. On any given day the levels of
A, B, and C cannot be changed since they represent characteristics of the bath. On the
other hand, the levels of factors S, T , and U can be changed at the rectifier level. The
experiment is to be run on 16 days, with four days in each of four weeks. Therefore
there are a total of 32 runs with the block structure (4 weeks)/(4 days)/(2 runs), and
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one has to choose 32 out of the 26 = 64 treatment combinations. Weeks, days, and
runs can be considered as blocks, whole-plots, and subplots, respectively. The three
factors A, B, and C must have constant levels on the two experimental runs on the
same day, and are called whole-plot treatment factors. The other three factors S, T ,
and U are not subject to this constraint and are called subplot treatment factors. We
will return to this example in Sections 12.9, 13.2, 13.4, 13.5, 13.7, 14.4, and 14.13.

Example 1.3. Miller (1997) described a laundry experiment for investigating meth-
ods of reducing the wrinkling of clothes. Suppose the experiment is to be run in
two blocks, with four washers and four dryers to be used. After four cloth samples
have been washed in each washer, the 16 samples are divided into four groups with
each group containing one sample from each washer. Each of these groups is then
assigned to one dryer. The extent of wrinkling on each sample is evaluated at the end
of the experiment. This results in 32 experimental runs that can be thought to have
the 2/(4×4) block structure shown in Figure 1.1, where each cell represents a cloth
sample, rows represent sets of samples that are washed together, and columns repre-
sent sets of samples that are dried together. There are ten two-level treatment factors,

Figure 1.1 A 2/(4×4) block structure

six of which (A, B, C, D, E, F) are configurations of washers and four (S, T , U , V )
are configurations of dryers. One has to choose 32 out of the 210 = 1024 treatment
combinations. Furthermore, since the experimental runs on the cloth samples in the
same row are conducted in the same washing cycle, each of A, B, C, D, E, F must
have a constant level in each row. Likewise, each of S, T , U , V must have a constant
level in each column. Thus in each block, four combinations of the levels of A, B, C,
D, E, F are chosen, one for each row, and four combinations of the levels of S, T ,
U , V are chosen, one for each column. The four combinations of washer settings are
then coupled with the four combinations of dryer settings to form 16 treatment com-
binations of the ten treatment factors in the same block. An experiment run in this
way requires only four washer loads and four dryer loads in each block. If one were
to do complete randomization in each block, then four washer loads and four dryer
loads could produce only four observations. The trade-off is that the main effect of
each treatment factor is confounded with either rows or columns. Construction and
analysis of designs for such blocked strip-plot experiments will be discussed in Sec-
tions 12.2, 12.9, 12.10, 13.3, 13.4, 13.5, 13.6, 13.7, 14.5, 14.6, and 14.14.

Federer and King (2006) gave a comprehensive treatment of split-plot and strip-
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plot designs and their many variations. In this book, we present a unifying theory that
can be systematically applied to a very general class of multi-stratum experiments.

Example 1.3 is an experiment with two processing stages: washing and drying.
Many industrial experiments involve a sequence of processing stages, with the levels
of various treatment factors assigned and processed at different stages. At each stage
the experimental units are partitioned into disjoint classes. Those in the same class,
which will be processed together, are assigned the same level of each of the treatment
factors that are to be processed at that stage. We call the treatment factors processed at
the ith stage the ith-stage treatment factors. In Example 1.3, levels of the six washer
factors are set at the first stage and those of the four dryer factors are set at the
second stage. So the washer configurations are first-stage treatment factors and the
dryer configurations are second-stage treatment factors. Such an experiment with
two processing stages can be thought to have experimental units with a row-column
structure.

In Examples 1.1–1.3, the experimental units can be represented by all the level
combinations of some unit factors. In the next two examples, we present experiments
in which the experimental units are a fraction of unit-factor level combinations.

Example 1.4. Mee and Bates (1998) discussed designs of experiments with multiple
processing stages in the fabrication of integrated circuits. Suppose that at the first
stage 16 batches of material are divided into four groups of equal size, with the
same level of each first-stage treatment factor assigned to all the batches in the same
group. At the second stage they are rearranged into another four groups of equal size,
again with the same level of each second-stage treatment factor assigned to all the
batches in the same group. As in Example 1.3, the groupings at the two stages can
be represented by rows and columns. Then each of the first-stage groups and each
of the second-stage groups have exactly one batch in common. This is a desirable
property whose advantage will be explained in Section 12.13. Now suppose there
is a third stage. Then we need a third grouping of the batches. One possibility is to
group according to the numbers in the Latin square shown earlier:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

One can assign the same level of each third-stage treatment factor to all the units
(batches) corresponding to the same number in the Latin square. One advantage is
that each of the third-stage groups has exactly one unit in common with any group at
the first two stages. If a fourth stage is needed, then one may group according to the
following Latin square:



INTRODUCTION 11

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

This and the previous Latin square have the property that when one is superimposed
on the other, each of the 16 pairs of numbers (i, j), 1 ≤ i, j ≤ 4, appears in exactly
one cell. We say that these two Latin squares are orthogonal to each other. If the
fourth-stage grouping is done according to the numbers in the second Latin square,
then each of the fourth-stage groups also has exactly one unit in common with each
group at any of the first three stages. This kind of block structure cannot be obtained
by iterations of nesting and crossing operators. To be a simple block structure, with
four groups at each of three or four stages, one would need 43 = 64 or 44 = 256 units,
respectively. Thus the 16 units can be regarded as a quarter or one-sixteenth fraction
of the combinations of three or four 4-level factors, respectively. The following is
a complete 24 design which can be used for experiments in which the levels of the
four treatment factors are set at four stages, one factor per stage: the first factor has a
constant level in each row, the second factor has a constant level in each column, the
third factor has a constant level in each cell occupied by the same number in the first
Latin square, and the fourth factor has a constant level in each cell occupied by the
same number in the second Latin square.

0000 0011 0101 0110
0010 0001 0111 0100
1001 1010 1100 1111
1011 1000 1110 1101

We will return to this example in Sections 12.5, 12.10, 12.13, and 13.11.

Example 1.5. Bingham, Sitter, Kelly, Moore, and Olivas (2008) discussed experi-
ments with multiple processing stages where more groups are needed at each stage,
which makes it impossible for all the groups at different stages to share common
units. For example, in an experiment with two processing stages, suppose 32 exper-
imental units are to be partitioned into 8 groups of size 4 at each of the two stages.
One possibility is to partition the 32 units as in Figure 1.1. The eight rows of size 4,
four of which from each of the two blocks, together constitute the eight first-stage
groups, and the eight columns in the two blocks together constitute the eight second-
stage groups. As shown in the following figure, the 32 starred experimental units are
a fraction of the 64 units in a completely crossed 8×8 square.
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∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

As in Example 1.4, the 32 units do not have a simple block structure. An important
difference, however, is that in the current setting not all the first-stage groups can
meet with every second-stage group, causing some complications in the design and
analysis (to be discussed in Section 13.12). The figure shows that the 32 units are
divided into two groups of size 16, which we call pseudo blocks since they are not
part of the originally intended block structure. We will revisit this example in Sec-
tions 12.13 and 13.12, and show that it can be treated as an experiment with the block
structure 2/(4×4). A similar problem was studied in Vivacqua and Bisgaard (2009),
to be discussed in Section 14.7.

An overview

Some introductory material is presented in Chapters 2–5. Chapter 2 is a review
of some results on linear models, with emphasis on one-way and two-way layout
models and a geometric characterization of the condition of proportional frequencies
between two factors. Under the assumption of treatment-unit additivity, randomiza-
tion models are developed in Chapter 3 for some designs with simple block struc-
tures, including block designs and row-column designs. In Chapter 4, the condition
of proportional frequencies is extended to a notion of orthogonal factors that plays an
important role in the block structures studied in this book. Some mathematical results
on factors that are needed throughout the book are also gathered there. A condition
that entails simple analysis of a randomized design (Theorem 5.1) is established in
Chapter 5. This result is used to present a unified treatment of the analyses of three
classes of orthogonal designs (completely randomized designs, complete block de-
signs, and Latin square designs) under the randomization models derived in Chapter
3. It is also a key result for developing, in later chapters, a general theory of orthog-
onal designs for experiments with more complicated block structures.

The treatment factorial structure is introduced in Chapter 6. It is shown how cer-
tain special functions of the treatment effects can be defined to represent main effects
and interactions of the treatment factors. Unless all the treatment factors have two
levels, the choices of such functions are not unique. Several methods of construct-
ing them based on orthogonal polynomials, finite Euclidean geometry, and Abelian
groups are presented. The discussion of complete factorial designs is continued in
Chapter 7, for experiments that are conducted in incomplete blocks or row-column
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layouts, including split-plot and strip-plot designs. In this case, there is more than one
error term and some factorial effects are confounded with blocks, rows, or columns.
A construction method based on design keys is presented in addition to a commonly
used method, and is shown to enjoy several advantages.

Fractional factorial designs under complete randomization are treated in Chap-
ters 8–11. In Chapter 8, the important combinatorial structure of orthogonal arrays
is introduced. Some basic properties of orthogonal arrays as fractional factorial de-
signs, including upper bounds on the number of factors that can be accommodated by
orthogonal arrays of a given run size, are derived. We also present several methods
of constructing orthogonal arrays, in particular the foldover method and the con-
struction via difference matrices. The chapter is concluded with a brief discussion
of applications of orthogonal arrays to computer experiments and three variants of
orthogonal arrays recently introduced for this purpose. The emphasis of this book is
mainly on the so-called regular fractional factorial designs, which are easy to con-
struct and analyze, and have nice structures and a rich theory. In Chapter 9 we provide
a treatment of their basics, including design construction, aliasing and estimability of
factorial effects, resolution, a search algorithm for finding designs under which some
required effects can be estimated, and the connection with the linear codes of coding
theory. The criterion of minimum aberration and some related criteria for selecting
regular fractional factorial designs are discussed in Chapter 10. The statistical mean-
ing of minimum aberration is clarified via its implications on the aliasing pattern of
factorial effects. It is shown that this criterion produces designs with good properties
under model uncertainty and good lower-dimensional projections. The connection
to coding theory provides two powerful tools for constructing minimum aberration
designs: the MacWilliams identities can be used to establish a complementary de-
sign theory that is useful for determining minimum aberration designs when there
are many factors; the Pless power moment identities lead to the criterion of mini-
mum moment aberration, which is equivalent to minimum aberration. Besides the
theoretical interest, this equivalence is useful for analytical characterization and al-
gorithmic construction of minimum aberration designs. A Bayesian approach to the
design and analysis of factorial experiments, also applicable to nonregular designs, is
presented at the end of Chapter 10. Regular designs are also closely related to finite
projective geometries. The connection is made in two optional sections in Chapter 9,
and is used to characterize and construct minimum aberration designs in Chapter 10.
The geometric connection culminates in an elegant theory of the construction and
structures of resolution IV designs in Chapter 11. While foldover is a well-known
method of constructing resolution IV designs, many resolution IV designs cannot be
constructed by this method. We translate the geometric results into design language,
and among other topics, present the methods of doubling and partial foldover for
constructing them.

In Chapters 12–14, we turn to factorial designs with more complicated block
structures called multi-stratum designs. Some basic results on Nelder’s simple block
structures and the more general orthogonal block structures are derived in Chapter
12. A general theory for the design and analysis of orthogonal multi-stratum com-
plete factorial designs is developed in Chapter 13. This theory is applied to several
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settings, including blocked split-plot designs, blocked strip-plot designs, and design
of experiments with multiple processing stages. Chapter 14 is devoted to the con-
struction of multi-stratum fractional factorial designs and criteria for their selection
under model uncertainty in the spirit of minimum aberration. The five motivating
examples presented above are revisited.

We survey a few nonregular design topics in Chapter 15. Under nonregular de-
signs, the factorial effects are aliased in a complicated way, but their run sizes are
more flexible than regular designs. At the initial stage of experimentation, often only
a small number of the potential factors are important. Due to their run-size economy,
nonregular designs are suitable for conducting factor screening experiments under
the factor sparsity principle. In this context, it is useful to study the property of the
design when it is projected onto small subsets of factors. We also discuss the rele-
vant topics of search designs and supersaturated designs. The objective of a search
design is to identify and discriminate nonnegligible effects under the assumption that
the number of nonnegligible effects is small. Supersaturated designs have more un-
known parameters than the degrees of freedom available for estimating them and are
useful for screening active factors. In addition to these and other miscellaneous top-
ics, we show how some of the results presented in earlier chapters can be extended
to nonregular designs. For example, coding theory again proves useful for providing
a way to extend minimum aberration to nonregular designs.

Throughout this book, the starred sections can be skipped, at least on the first
reading. Relevant exercises are also marked with stars.


