
Theory of Factorial Design: Single- and Multi-Stratum Experiments

Notes

• Cover art: This figure appears on p.281. It merges two Hasse diagrams

representing the treatment and block structures in a blocked experiment for

two 2-level treatment factors A and B. The circles correspond to the treat-

ment main effects and interactions, and the bullets correspond to the three

unit factors (universal, block, and equality factors) that make up the block

structure of a block design. The merged Hasse diagram shows that the in-

teraction of A and B is confounded with blocks. For details, see Example

13.13.

• P.49, line 17: Instead of “On the other hand, by the orthogonality of F1 and

F2, (4.17) holds”, it is better to say “Suppose F1 and F2 are orthogonal.

Then (4.17) holds”.

• P.78, the last two lines: The words “columns” here refer to the s1 · · · sn × 1

columns consisting of the coefficients in the contrasts defining main effects

of the treatment factors, not the columns of the matrix in (6.20).

• P.114, (7.13): It is not explicitly stated here, but as in (7.9), the first n − q

columns of the design key matrix correspond to the subplot unit factors and

the last q columns correspond to the whole-plot unit factors.

• P.131, the paragraph following Proposition 8.14: By the multiplication ta-

ble, we mean the s× s matrix with the rows and columns corresponding to

the elements of GF(s) such that the (i, j) entry is equal to the product of
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the element corresponding to the ith row and that corresponding to the jth

column.

• P.131, line 2 from the bottom and the rest of Section 8.8: As mentioned,

here ⊕ denotes the Kronecker sum (of matrices), not to be confused with

the direct sum (of vector spaces).

• P.136, lines 20-22: It is more precise to say “Then we have anN -point Latin

hypercube that is space-filling in low dimensional projections in the sense

that in all h-dimensional projections, h ≤ t, each cell of s × · · · × s grids

contains the same number of design points.”

• P.136, lines 2 and 3 from the bottom: It is more precise to say “each cell

of s × s grids contains the same number of design points, but for one con-

structed from an SOA(N, (s3)n, 3), this projection property holds for s2× s

and s× s2 grids as well. ”

• P.147, Theorem 9.3: We caution the readers that, for convenience, this the-

orem is stated for the case where the first n − p factors are basic factors.

However, the theorem merely establishes the existence of a set of basic fac-

tors. In general, the first n− p factors may not form a set of basic factors.

• P.159 and P.160: Throughout these two pages, it is better to replace n with

another letter since elsewhere in the book n is used to denote the number of

treatment factors.

• P.161, lines 14 and 15 from the bottom: Instead of “furthermore let Wi(C)

be the number of codewords x with w(x) = i, then Wi(x) = Wi(C) for all

x ∈ C”, it is better to say “furthermore, Wi(x) does not depend on x, and

2



so we have Wi(x) = Wi(C) for all x ∈ C. In this case, Wi(C) is also the

number of codewords with Hamming weight equal to i”.

• P.181, line 15 from the bottom: More precisely, d may consist of copies of

a linear code.

• P.189, Lemma 10.11. This is a special case (the regular design version)

of Lemma 15.20 on p.347. For the sum over i in Lemma 15.20, if i >

t, then since j ≤ t, we have j − i < 0; it follows that the expression

inside the brackets is zero. Therefore the sum is actually over the range

0 ≤ i ≤min(n, t), as in Lemma 10.11. The same remark applies to (11.27)

on p.220.

• P.191, lines 7-15: That if ααα is stationary, then the covariance matrix of

the factorial effects is diagonal and their variances are the eigenvalues of

cov(ααα) multiplied by a constant can also be proved by using Theorem 12.7.

See Exercise 12.5.

• P.197, lines 13 and 14 from the bottom: Instead of “none of the 2n+1 effects

A1, . . . , An+1, A1An+1, . . . , AnAn+1 is aliased”, it is better to say “no two

of the 2n + 1 effects A1, . . . , An+1, A1An+1, . . . , AnAn+1 are aliased with

each other”.

• P.200, Theorem 11.7: The proof of this theorem is left as an exercise (Exer-

cise 11.2).

• P.204, lines 6 and 12: Although there is only one maximal 213−7 design,

there are two maximal 226−19 designs. Since 26 < 128/4 + 2, Theorem
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11.12 does not apply to the case n = 26 and N = 128. Not every maximal

226−19 design of resolution IV is the double of a maximal 213−7 design.

• P.207, Theorem 11.19: We remind readers that, as mentioned at the begin-

ning of this section, unlike in (8.18), here the foldover plan does not include

an extra factor.

• P.240, line 10: The boldfaced n1n2 is to emphasize that 1+ v1 + n1v2 must

be replaced by n1n2, the algebraic sum of all its terms.

• P.245, line 17: That if G � F does not hold, then WF is orthogonal to

VG can be seen as follows. By (12.29), VG = ⊕
F ′∈B:G�F ′

WF ′ . Since the W

spaces are mutually orthogonal, we have VG ⊥ WH for all H’s such that

G � H does not hold. In particular, VG ⊥ WF .

• P.261, lines 9 and 10 from the bottom: This sentence is not correct and has

been corrected in the Errata. The splitting effects include all the factorial

effects defined by nonzero linear combinations of an1+1, . . . , aq, and their

generalized interactions with the factorial effects of whole-plot treatment

factors. Here only the factorial effects defined by nonzero linear combina-

tions of an1+1, . . . , aq are confounded with blocks.

• Section 13.6: In this section, we only consider designs constructed by the

method presented in Section 13.5. This assumption applies to Theorems 13.

3 and 13.4, though it is not explicitly stated.

• P. 306, lines 3 and 5 from the bottom: It is more precise to say that the

row (column) design would be reduced to a replicated sn1−p1−k (sn2−p2−l)

fraction.
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• P.326, line 3 from the bottom: Instead of “the unblocked 2n−p fractional

factorial design d∗”, it is better to say “the unblocked version of the design

d∗”; that is, the unblocked 2n−p fractional factorial design constructed from

the n points in Td∗”.

• P.340, Equation (15.9): Compared with (15.8), the expression of Bk(d) in

(15.9) has an extra term s1 · · · sn, which is equal to 2n for two-level de-

signs. It is needed here so that, for two-level designs, the expression in

(15.9) is equal to that in (15.8); this is because pz is normalized to have

unit length, whereas the Bk(d) in (15.8) is based on model matrices with

non-normalized columns consisting of 1’s and −1’s.

• P.346, Theorem 15.19: The claimed minimum moment aberration (and gen-

eralized minimum aberration) is over the designs with all the treatment fac-

tor levels appearing bN/sc or bN/sc+1 times. The lower bound in (15.13)

applies only to the designs with all the treatment factor levels appearing

N/s times.

• P.350, line 13: This is the case if the added foldover runs form a regular

fraction.
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