Contents

Pr	reface		XV	
1	Introduction			
2	Linear Model Basics			
	2.1	Least squares	15	
	2.2	Estimation of σ^2	17	
	2.3	<i>F</i> -test	18	
	2.4	One-way layout	19	
	2.5	Estimation of a subset of parameters	20	
	2.6	Hypothesis testing for a subset of parameters	22	
	2.7	Adjusted orthogonality	23	
	2.8	Additive two-way layout	24	
	2.9	The case of proportional frequencies	27	
3	Randomization and Blocking			
	3.1	Randomization	31	
	3.2	Assumption of additivity and models for completely randomized		
		designs	32	
	3.3	Randomized block designs	33	
	3.4	Randomized row-column designs	34	
	3.5	Nested row-column designs and blocked split-plot designs	35	
	3.6	Randomization model*	36	
4	Factors		39	
	4.1	Factors as partitions	39	
	4.2	Block structures and Hasse diagrams	40	
	4.3	Some matrices and spaces associated with factors	42	
	4.4	Orthogonal projections, averages, and sums of squares	44	
	4.5	Condition of proportional frequencies	45	
	4.6	Supremums and infimums of factors	46	
	4.7	Orthogonality of factors	47	
5	Ana	lysis of Some Simple Orthogonal Designs	51	
	5.1	A general result	51	
	5.2	Completely randomized designs	55	

	5.3	Null ANOVA for block designs	57
	5.4	Randomized complete block designs	59
	5.5	Randomized Latin square designs	60
	5.6	Decomposition of the treatment sum of squares	62
	5.7	Orthogonal polynomials	63
	5.8	Orthogonal and nonorthogonal designs	65
	5.9	Models with fixed block effects	67
6	Facto	orial Treatment Structure and Complete Factorial Designs	71
	6.1	Factorial effects for two and three two-level factors	71
	6.2	Factorial effects for more than three two-level factors	75
	6.3	The general case	77
	6.4	Analysis of complete factorial designs	81
	6.5	Analysis of unreplicated experiments	83
	6.6	Defining factorial effects via finite geometries	84
	6.7	Defining factorial effects via Abelian groups	87
	6.8	More on factorial treatment structure*	90
7	Block	xed, Split-Plot, and Strip-Plot Complete Factorial Designs	93
	7.1	An example	93
	7.2	Construction of blocked complete factorial designs	95
	7.3	Analysis	98
	7.4	Pseudo factors	99
	7.5	Partial confounding	99
	7.6	Design keys	100
	7.7	A template for design keys	104
	7.8	Construction of blocking schemes via Abelian groups	106
	7.9	Complete factorial experiments in row-column designs	108
	7.10	Split-plot designs	110
	7.11	Strip-plot designs	115
8	Fract	ional Factorial Designs and Orthogonal Arrays	117
	8.1	Treatment models for fractional factorial designs	117
	8.2	Orthogonal arrays	118
	8.3	Examples of orthogonal arrays	122
	8.4	Regular fractional factorial designs	124
	8.5	Designs derived from Hadamard matrices	125
	8.6	Mutually orthogonal Latin squares and orthogonal arrays	128
	8.7	Foldover designs	128
	8.8	Difference matrices	130
	8.9	Enumeration of orthogonal arrays	133
	8.10	Some variants of orthogonal arrays*	134

Х

			xi	
9	Regular Fractional Factorial Designs			
	9.1	Construction and defining relation	139	
	9.2	Aliasing and estimability	142	
	9.3	Analysis	145	
	9.4	Resolution	147	
	9.5	Regular fractional factorial designs are orthogonal arrays	147	
	9.6	Foldovers of regular fractional factorial designs	151	
	9.7	Construction of designs for estimating required effects	155	
	9.8	Grouping and replacement	157	
	9.9	Connection with linear codes	161	
	9.10	Factor representation and labeling	162	
	9.11	Connection with finite projective geometry*	164	
	9.12	Foldover and even designs revisited*	166	
10	Minin	num Aberration and Related Criteria	169	
	10.1	Minimum aberration	169	
	10.2	Clear two-factor interactions	170	
	10.3	Interpreting minimum aberration	171	
	10.4	Estimation capacity	173	
	10.5	Other justifications of minimum aberration	178	
	10.6	Construction and complementary design theory	179	
	10.7	Maximum estimation capacity: a projective geometric approach*	183	
	10.8	Clear two-factor interactions revisited	185	
	10.9	Minimum aberration blocking of complete factorial designs	187	
	10.10	Minimum moment aberration	188	
	10.11	A Bayesian approach	190	
11	1 Structures and Construction of Two-Level Resolution IV Designs			
	11.1	Maximal designs	195	
	11.2	Second-order saturated designs	196	
	11.3	Doubling	199	
	11.4	Maximal designs with $N/4 + 1 \le n \le N/2$	202	
	11.5	Maximal designs with $n = N/4 + 1$	204	
	11.6	Partial foldover	207	
	11.7	More on clear two-factor interactions	209	
	11.8	Applications to minimum aberration designs	211	
	11.9	Minimum aberration even designs	213	
		Complementary design theory for doubling	216	
		Proofs of Theorems 11.28 and 11.29*	220	
	11.12	Coding and projective geometric connections*	221	
12	Ortho	gonal Block Structures and Strata	223	
	12.1	Nesting and crossing operators	223	
	12.2	Simple block structures	228	
	12.3	Statistical models	230	

	12.4	Poset block structures	232
	12.5	Orthogonal block structures	233
	12.6	Models with random effects	234
	12.7	Strata	236
	12.8	Null ANOVA	238
		Nelder's rules	239
	12.10	Determining strata from Hasse diagrams	242
		Proofs of Theorems 12.6 and 12.7	244
	12.12	Models with random effects revisited	245
	12.13	Experiments with multiple processing stages	247
	12.14	Randomization justification of the models for simple block	
		structures*	251
	12.15	Justification of Nelder's rules [*]	253
13	Comp	lete Factorial Designs with Orthogonal Block Structures	257
	13.1	Orthogonal designs	257
	13.2	Blocked complete factorial split-plot designs	259
	13.3	Blocked complete factorial strip-plot designs	263
	13.4	Contrasts in the strata of simple block structures	265
	13.5	Construction of designs with simple block structures	269
		Design keys	271
	13.7	Design key templates for blocked split-plot and strip-plot designs	273
	13.8	Proof of Theorem 13.2	278
	13.9	Treatment structures	279
	13.10	Checking design orthogonality	280
		Experiments with multiple processing stages: the nonoverlapping	
		case	282
	13.12	Experiments with multiple processing stages: the overlapping case	288
14	Multi	-Stratum Fractional Factorial Designs	291
	14.1	A general procedure	291
	14.2	Construction of blocked regular fractional factorial designs	292
	14.3	Fractional factorial split-plot designs	295
	14.4	Blocked fractional factorial split-plot designs	300
	14.5	Fractional factorial strip-plot designs	302
	14.6	Design key construction of blocked strip-plot designs	305
	14.7	Post-fractionated strip-plot designs	306
	14.8	Criteria for selecting blocked fractional factorial designs based on	
		modified wordlength patterns	308
	14.9	Fixed block effects: surrogate for maximum estimation capacity	310
	14.10	Information capacity and its surrogate	312
		Selection of fractional factorial split-plot designs	317
	14.12	A general result on multi-stratum fractional factorial designs	319
		Selection of blocked fractional factorial split-plot designs	321

xii

		xiii		
14.1	4 Selection of blocked fractional factorial strip-plot designs	322		
	5 Geometric formulation*	323		
	regular Designs	329		
15.1		329		
	Partial aliasing	331		
15.3	5 5	332		
15.4		334		
15.5	6	338		
15.6	1	340		
	Connection with coding theory	341		
	Complementary designs	343		
15.9		345		
	0 Proof of Theorem 15.18*	347		
	1 Even designs and foldover designs	348		
15.1	2 Parallel flats designs	349		
15.1	3 Saturated designs for hierarchical models: an application of			
	algebraic geometry	352		
15.1	4 Search designs	354		
15.1	5 Supersaturated designs	356		
Append	Appendix			
A.1	Groups	365		
A.2	Finite fields	365		
A.3	Vector spaces	367		
A.4	Finite Euclidean geometry	368		
A.5	Finite projective geometry	368		
A.6	Orthogonal projections and orthogonal complements	369		
A.7	Expectation of a quadratic form	369		
A.8	Balanced incomplete block designs	369		
References				
Index				