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Summary

In genetic and biological studies, the F2 population is one of the most popular and commonly used
experimental populations mainly because it can be readily produced and its genome structure
possesses several niceties that allow for productive investigation. These niceties include the
equivalence between the proportion of recombinants and recombination rates, the capability of
providing a complete set of three genotypes for every locus and an analytically attractive first-order
Markovian property. Recently, there has been growing interest in using the progeny populations
from F2 (advanced populations) because their genomes can be managed to meet specific purposes or
can be used to enhance investigative studies. These advanced populations include recombinant
inbred populations, advanced intercrossed populations, intermated recombinant inbred populations
and immortalized F2 populations. Due to an increased number of meiosis cycles, the genomes of
these advanced populations no longer possess the Markovian property and are relatively more
complicated and different from the F2 genomes. Although issues related to quantitative trait locus
(QTL) mapping using advanced populations have been well documented, still these advanced
populations are often investigated in a manner similar to the way F2 populations are studied using
a first-order Markovian assumption. Therefore, more efforts are needed to address the complexities
of these advanced populations in more details. In this article, we attempt to tackle these issues by
first modifying current methods developed under this Markovian assumption to propose an ad hoc
method (the Markovian method) and explore its possible problems. We then consider the specific
genome structures present in the advanced populations without invoking this assumption to propose
a more adequate method (the non-Markovian method) for QTL mapping. Further, some QTL
mapping properties related to the confounding problems that result from ignoring epistasis and to
mapping closely linked QTL are derived and investigated across the different populations.
Simulations show that the non-Markovian method outperforms the Markovian method, especially
in the advanced populations subject to selfing. The results presented here may give some clues to the
use of advanced populations for more powerful and precise QTL mapping.

1. Introduction

Many quantitative trait loci (QTLs) detection exper-
iments and statistical QTL mapping methods are
conducted and developed on the basis of the back-
cross and F2 populations. These two populations are
popular mainly for economic reasons as they can be

readily generated for use in experiments, thus saving
time and money. Further, due to the fact that these
populations undergo just a single cycle of meiosis,
they have several significant features that make them
attractive for general purpose genetic and biological
studies (Lander & Botstein, 1989; Jansen, 1993; Zeng,
1994; Jiang & Zeng, 1997; Kao et al., 1999; Xu, 2007).
For example, the recombination rate between different
loci is equivalent to the proportion of the recombi-
nants and their genomes have a first-order Markovian
property in the two populations. Also, the progeny
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populations after F2 (advanced populations) have
been well devised and implemented in genetic studies.
These advanced populations include recombinant
inbred (RI) populations, advanced intercrossed (AI)
populations, intermated recombinant inbred (IRI)
populations and immortalized F2 populations. For
a review of these advanced populations, see e.g.
Rockman & Kruglyak (2008).

These advanced populations have some very useful
features in that their genomic structures allow inves-
tigators to achieve better performance in their studies.
For example, the RI populations consist of nearly
fixed genomes for multiple phenotyping and contain
a specific genotype to increase the accuracy of as-
sessment in studying quantitative traits (Lander &
Botstein, 1989). Further, the AI populations can har-
bour more recombination events in a short chromo-
some segment for genetic fine mapping (Darvasi,
1998). Also, the IRI and RIX (recombinant inbred
intercrosses) populations can bemanaged to have both
the advantages of RI and AI populations (Liu et al.,
1996; Hua et al., 2002; Winkler et al., 2003; Zou et al.,
2005).

The derivation of the RI populations or AI popu-
lations is obtained by recurrently selfing (inbreeding)
or randomly intermating the F2 individuals for several
generations. The IRI populations are derived by first
producing AI populations, followed by repeated self-
ing. The immortalized F2 populations are obtained by
first producing RI populations, followed by a gener-
ation of random mating. As a generation advances
beyond F2, either by further selfing or intermating, the
advanced populations must undergo multiple cycles
of meiosis, so that the crossovers will accumulate and
the proportions of recombinants will increase in the
populations (Haldane &Waddington, 1931; Liu et al.,
1996; Darvasi, 1998; Winkler et al., 2003). In the
literature, it has been noted that the proportion of
recombinants in RI populations can be twice that
in the F2 populations for closely linked loci, and that
linkage is broken down even more rapidly by random
intercrossing in the AI populations (Haldane &
Wanddington, 1931; Darvasi, 1998). The increased
number of recombinants provided by the advanced
populations facilitates the construction of high-resol-
ution genetic maps and detection of closely linked
QTLs (Liu et al., 1996; Darvasi, 1998). Further, cycles
of inbreeding and/or random mating in a population
will shape differences in the population genomic struc-
tures such as the homozygosity, genotypic frequencies
and variance components (Weir, 1996). As such, dif-
ferent advanced populations produce different geno-
mic structures to be used for different breeding and
study purposes (Liu et al., 1996; Hua et al., 2002;
Winkler et al., 2003; Broman, 2005).

When using these advanced populations for
QTL mapping, it should be noted that their genome

structures no longer have a first-order Markovian
property and have different genomic constitutions
from that of the F2 populations (Jiang & Zeng, 1997).
So far, most of the current QTL mapping methods
and related mapping properties are developed and
investigated for the genomes of backcross and F2

populations with the Markovian property (Lander &
Botstein, 1989; Jansen, 1993; Churchill & Doerge,
1994; Zeng, 1994; Kao et al., 1999; Kao & Zeng,
2002; Kao, 2004; Xu, 2007). Although issues related
to using advanced populations in QTL mapping have
been raised (Jiang & Zeng, 1997; Darvasi, 1998;
Martin & Hospital, 2006), they are still investigated
by invoking thisMarkovian assumption. It is therefore
desirable to consider the specific structures of these
advanced populations for QTL detection, so that their
advantages can be utilized to enhance QTL resol-
ution. In this paper, detailed analyses and discussions
related to these advanced populations will be given.
When samples are drawn from the advanced popu-
lations, statistical methods are developed by consider-
ing and ignoring their specific population genome
structures (without and with a first-order Markovian
assumption) and are compared for use with the
multiple-QTL model for use in QTL mapping studies.
In addition, the QTL mapping properties across dif-
ferent advanced populations are derived and dis-
cussed. Simulation studies are performed for purposes
of evaluation and comparison. The results show that
the proposed methods can improve the resolution of
the genetic architecture of quantitative traits and
serve as a tool for studying QTL mapping in various
advanced populations derived from two inbred lines.

2. The genome structures of advanced populations

We refer an AI (RI) Ft population as an AI (RI)
population from intercrossing (selfing) the F2 indi-
viduals for tx2, t>3, generations. An IRI Fi : j popu-
lation is referred to as a population produced by first
randomly intercrossing the F2 individuals for ix2
generations, followed by j, jo1, cycles of selfing, and
an IF2 population denotes an immortalized F2 popu-
lation.

(i) Genome structure

In an F2 population, the genotypic frequencies of P1

homozygote, heterozygote and P2 homozygote are
1/4, 1/2 and 1/4, respectively, for one locus, and the
heterozygosity Ht is 0.5. The genotypic distribution
for any two pairwise loci, say A and B, is also well
known and characterized (see, for example, Kao
& Zeng, 1997), and it has a simple relationship with
the recombination rate between them (r). For ex-
ample, the genotypic frequency of genotype AB/AB is
(1x2r)2/4, and the other nine genotypic frequencies
also have similar simple relationships with r (see, for
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example, Table 2 in Kao & Zeng, 1997). Also, the
proportion of recombinants (R) between A and B is
equivalent to the recombination rate, i.e. R=r, and
the linkage parameter between A and B can be found
to be l=1x2r in the population. Besides, a very im-
portant and nice feature for the F2 population is that
the F2 genomes have a first-order Markovian struc-
ture under the Haldane map function. This allows
that the distribution of the multiple genes can be ob-
tained from the distributions of pairwise genes. For
example, the probability distribution of three ordered
genes, A, B and C, can be derived from the probability
distributions of first pairwise genes, A and B, and
the second pairwise genes, B and C, i.e. P(ABC)=
P(AB)rP(BC).

The heterozygosity for one locus in the RI Ft and
IRI Fi : j populations are 1

2tx1 and 1
2j+1, which is de-

creasing with t and j increasing, as selfing will increase
the homozygotes at the expense of heterozygotes,
and it is expected to be Ht=0.5 in the AI Ft and
IF2 population (RIX) populations for any t due
to random mating. Also, during the process of
further meiosis, crossovers will accumulate so that
the proportion of recombinants will be increasing
and becoming larger than the recombination rate
(R>r), and the linkage disequilibrium coefficient
will decrease. To generally formulate these genetic
parameters, we adopt the notations in Haldane &
Waddington (1931) to define C as the frequencies of
AB/AB and ab/ab genotypes, D as the frequencies
of Ab/Ab and aB/aB genotypes, E as the frequencies
of AB/Ab, AB/aB, Ab/ab and aB/ab genotypes, F as
the frequency of AB/ab genotype and G as the fre-
quency of Ab/aB genoytype, respectively, for any
two loci A and B, and they in terms of C, D, E, F, and
G are

H=2E+F+G, R=2D+2E+G and

DAB=(C+E+ 1
2
F)x 1

4
,

respectively, in any advanced population. In the F2

population, the frequencies C, D, E, F, G in terms
of r are C=(1xr)2/4, D=(1x2r)/4, E=r(1xr)/2,
F=(1xr)2/2 and G=r2/2, which have simple relations
with r, and H=1/2, R=r and DAB=(1x2r)/4. In
advanced populations, these values in terms of r be-
come relatively complicated and will vary with dif-
ferent t, i and j, and they can be obtained without
difficulty (Jennings, 1916; Robbins, 1918; Haldane &
Waddington, 1931; Winkler et al., 2003). The more
important and challenging parts in this QTL mapping
context under the framework of interval mapping
procedure are to characterize the genotypic distri-
butions of three loci for various advanced populations,
whose genomes do not have a first-order Markovian
property.

3. Methods

(i) Data structure

Consider a sample of size n from an advanced popu-
lation, such as AI, RI, IRI or IF2 population, derived
from two inbred lines. The n individuals are geno-
typed for markers (Xi, i=1, 2, …, n) and phenotyped
for traits (yi’s, i=1, 2, …, n). When such a sample is
used to detect QTL, two approaches under the frame-
work of the interval mapping procedure are proposed
here. The approach developed under the Markovian
assumption will be hereinafter called the Markovian
method, and the approach developed without the
Markovian assumption will be hereinafter referred to
as the non-Markovian method.

(ii) Genetic model and variance components

Consider that a trait is controlled by m QTLs, Q1,
Q2, …, Qm, and there are 3m possible QTL genotypes.
For any individual i, its QTL genotype belongs to one
of the 3m genotypes, and the corresponding genotypic
values, Gi’s, can be expressed as

Gi=m+ g
m

j=1
ajxij*+ g

m

j=1
djzij*+ g

j<k

(iaa)jk(xij*xik*)

+ g
j<k

(iad)jk(xij*zik*)+ g
j<k

(ida)jk(zij*xik*)

+ g
j<k

(idd)jk(zij*zik*), (1)

where m is the intercept, aj and dj are the additive and
dominance effects of Qj, j=1, 2, …, m, and (iaa)jk,
(iad)jk, (ida)jk and (idd)jk are additiveradditive, ad-
ditiverdominance, dominanceradditive, and domi-
nancerdominance interaction effects between Qj and
Qk. The variables, xij* and Zij*, associated with aj and dj
are coded as (1,x1/2), (0,1/2) and (x1,x1/2) for
genotypes QjQj, Qjqj and qjqj, respectively, according
to Cockerham’s model (Kao &Zeng, 2002). Under the
genetic model (1), the genetic variances of a quanti-
tative trait can be generally decomposed into 2m2 var-
iances and 2m4 – m2 covariances. In practice, the
variance component structure will be simpler in the
advanced populations as some covariances vanish due
to equal frequencies of the two alleles at any locus.
Taking m=2 as an example, the genetic variance
components are

VG=2(C+D+E)(a2
1+a2

2)+
1
4
[1x(1x4Ex2Fx2G)2]

r(d2
1+d2

2)+2[C+Dx2(CxD)2]i2aa+4(CxD)a1a2

+1
2
(C+D+E)(i2ad+i2da)+

1
16
[1x(1x8E)2]i2dd

+1
4
[1x8Ex(1x4Ex2Fx2G)2]d1d2

x(CxD)(4E+2F+2G)(d1iaa+d2iaa)

+(ExCxD)(a1iad+a2ida)x(CxD)(a2iad+a1ida)

+1
2
(CxD)iadidax4E(CxD)iaaidd

xE(1x4Ex2Fx2G)(d1idd+d2idd): (2)
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The component structures allow us to investigate
some QTL mapping properties. For example, the ad-
ditive (dominance) variances are found to increase
(decrease) in the RI or IRI population, showing that
these populations may facilitate (hinder) the esti-
mation of the additive (dominance) effects (Kao,
2006). Also, the possible confounding problems in
QTL estimation may be identified from the covari-
ances between genetic effects (Kao & Zeng, 2002;
Kao, 2006). If the two-locus model is expressed as a
model of 15 parameters to distinguish each allelic ef-
fect, the genetic variance becomes even more compli-
cated (Weir & Cockerham, 1977).

(iii) Markovian and non-Markovian methods

With the genetic model in eqn (1), the statistical model
to relate a quantitative trait value, y, to the genotypic
value, G, contributed from the m QTLs at positions,
p1, p2, …, and pm can be written as

yi=Gi+ei, (3)

where ei is the environmental deviation and assumed
to follow normal distribution with mean zero and
variance s2. In QTL mapping, the QTLs are usually
assumed be located in the intervals and need to be
estimated, so that the 3m genotypes, (xij* and zij*), may
not be observed, and the model becomes a normal
mixture model. For n individuals, the likelihood
function for h can be generally expressed as

L(h jY,X)=
Yn
i=1

g
3m

j=1
pijN(mj, s

2)

" #
, (4)

where the mixing proportions, pij’s, j=1, 2, …, 3m, are
the conditional probabilities of the putative QTL
genotypes given marker genotypes, and mj’s, j=1,
2, …, 3m, correspond to the genotypic values of the 3m

different QTL genotypes. Using the interval mapping
procedure (Lander & Botstein, 1989), the conditional
probabilities can be predetermined by successively
and jointly using the flanking markers of the putative
QTL; hence they need not to be estimated. The
parameters h involved in the statistical estimation of
the normal mixture model are m, s2, ai’s, di’s, iaa’s,
iad’s, ida’s and idd’s. Especially, it should be pointed
out that the derivation of the conditional probabilities
for each putative QTL using its flanking markers is
not straightforward in the advanced populations as
has been done for the F2 and backcross populations
(see below). When m putative QTLs are considered
at a time, the joint conditional probability is ap-
proximated by the product of m individual con-
ditional probabilities. In the following, we propose
two QTL mapping methods for the advanced popu-
lations under eqn (3). The one using the conditional

probabilities derived from a first-order Markovian
assumption as the mixing proportions will be called
the Markovian method hereafter, and the other using
the conditional probabilities obtained without this
assumption (by using the proposed transition
equations) as mixing proportions will be called the
non-Markovian method hereafter.

(iv) Conditional probabilities of the putative
QTL genotypes

The interval mapping approach intends to compute
the conditional probabilities of a putative QTL by
using the information from its two flanking markers.
Set M with alleles M and m, Q with alleles Q and q
and N with alleles N and n, where Q is the putative
QTL, and M and N are the flanking markers, and
assume that r, r1 and r2 are the recombination rates
between M and N, between M and Q and between
Q and N. To derive the conditional probability of the
QTL genotype within the flanking marker genotype,
P(Q | M, N)=P(MQN)/P(MN), for a population,
both the genotypic distributions of two and three
genes under generations of selfing or/and random
mating are needed. The genotypic distribution of two
genes,P(MN), under randommating and self has been
very well known (Jennings, 1916; Robbins, 1918;
Haldane & Waddington, 1931). For the F2 popu-
lation, the derivation of the genotypic distribution
for three genes, P(MQN), is simple and can be ob-
tained by using the probabilities of two adjacent pair-
wise genes, P(MQ) and P(QN), as its genomes have a
first-order Markovian property. That is, P(MQN)=
P(M)P(Q |M)P(N | Q, M)=P(M)P(Q |M)P(N | Q),
as P(N | Q, M)=P(N | Q). However, for advanced
populations, this Markovian property disappears so
that the genotypic distribution of three genes cannot
be obtained directly from the distributions of two
genes, i.e. by simply replacing the recombination rates
(r1, r2 and r) by frequencies of recombinants (R1, R2

and R) as suggested by Jiang & Zeng (1997) and
Lynch &Walsh (1998). For example, it is suggested to
approximate the two conditional gametic frequencies
by Pr(Mqn |Mn)BR1(1xR2)/R and Pr(MQn |Mn)B
(1xR1)R2/R in an advanced population. Such a
replacing implicitly assumes that the genomes of
the advanced populations still have a first-order
Markovian property and, therefore, the obtained fre-
quencies are approximate. Another obvious yet often
unnoticed problem for this replacing is that the sum
of the approximate probabilities may not be equal
to one as the Haldane map function does not hold
for the R (RlR1+R2x2R1R2) in the advanced
populations. Appropriate correction is needed when
using these approximate probabilities. In this article,
correction will be made by dividing the approxi-
mate probabilities by their sum. The derivation of
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the exact genotypic distribution for three genes needs
more delicate considerations as provided below.

The derivation of the genotypic frequencies of three
genes for the advanced populations needs to consider
two different types of mating systems: random mating
and selfing. When mating is random, the frequency
of a zygotic genotype is the product of two gametic
frequencies in the previous population, and the
focus is on deriving the transition equations for the
frequencies of eight different gametic types from
generation to generation. For example, in AI Ft, the
probability of MQN (mqn) gamete, P1,t, can be gen-
erally obtained as

P1, t=[(1xr1)(1xr2)+1]P2
1, tx1+r1r2P

2
2, tx1

+[(1xr1)r2]P
2
3, tx1+[r1(1xr2)]P

2
4, tx1

+[1+(1xr1)(1xr2)+r1r2]P1, tx1P2, tx1

+(2xr1)P1, tx1P3, tx1+(2xr2)P1, tP4, tx1

+r2P2, tx1P3, tx1+r1P2, tP4, tx1

+[r1(1xr2)+r2(1xr1)]P3, tx1P4, tx1, (5)

where P2,t–1 is the frequency of MqN (mQn) gamete,
P3,t–1 is the frequency of MQn (mqN) gamete, and
P4,t–1 is the frequency of mQN (Mqn) gamete in
the previous population. An alternative iteration
equation for P1,t can be derived by using Geiringer’s
formulation (1944). If the population is self-fertilized,
the gametes of an individual are randomly mating
within the individual and are not allowed to seminate
the gametes from different individuals, and the focus
is on deriving the transition equations for the fre-
quencies of 36 different zygotes from generation to
generation. For example, in RI Ft population, the
probability of MQN

MQN
zygote is

Similarly, the other transition equations for the
three gamete frequencies under random mating and
for the 35 zygote frequencies under selfing can be ob-
tained (see Supplementary material). By jointly using
these transition equations, it is sufficient to obtain the

gamete or genotypic frequencies to calculate all con-
ditional probabilities for various fixed and unfixed
advanced populations subject to different cycles of
random mating and/or self. Teuscher & Broman
(2007) developed an alternative technique by solving a
set of linear equations to obtain the unknown tri-
genic haplotype (gametic) probabilities for fixed RIL
populations.

The differences between the conditional prob-
abilities of QTL genotypes given marker genotypes
obtained with and without a first-order Markovian
assumption can be very significant and in turn can
have a substantial impact on QTL mapping (see
below). Numerical investigation of their differences
for QQ, Qq and qq genotypes given the marker
genotypeMN/MN for the case of r1=r2=0.1 in AI Ft,
RI Ft, IRI F10,t and RIX F10,t populations is shown in
Figs 1a–d for illustration. For AI Ft populations, the
differences are generally very minor (the differences
are within y0.01; see Figure 1(a)). All three curves
are below zero, implying that the probabilities of QTL
genotypes are underestimated by the Markovian as-
sumption. The differences between the conditional
probabilities become more significant (between
yx0.06 and 0.07; see Figure 1(b)) in RI Ft popu-
lations as compared with those in the AI Ft popu-
lations. Such differences are increasing at the first few
generations of selfing and become stable on proceed-
ing further. For IRI F10,t populations, the differences
are very significant (between yx0.2 and 0.4) and
increase as the selfing cycle increases. For RIX F10,t

populations, the differences are greatly reduced by
intercrossing. In general, persistent selfing tends to
enlarge their differences, and continuous intercrossing
eventually mitigates their differences. The method

with the Markovian assumption also overestimates
the frequency of Qq and underestimates the other two
frequencies during selfing. The sums of the three con-
ditional probabilities are about 0.962–0.980, 0.977–
0.995, 0.976–0.991 and 0.964–0.980, respectively,

Pt
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in the RI, AI, IRI and RIX populations. Figures 2a–d
show the numerical differences in conditional
probability for QQ, Qq and qq genotypes given the
marker genotype MN/Mn. More significant differ-
ences are observed in the Mn/Mn class, and the
sum of the conditional probabilities may be up to
1.125 (not shown). Therefore, it is important to com-
pute the correct conditional probabilities of the
putative QTL genotypes, as they serve as the mixing
proportions of the normal mixture model in QTL
mapping. The problem of using incorrect (approxi-
mate) conditional probabilities of QTL genotypes
includes the loss of power and precision in QTL de-
tection as mentioned by Martin & Hospital (2006)

and shown in this paper (see the Simulation study
section).

(v) Maximum likelihood estimation

In parameter estimation, it is straightforward to treat
the normal mixture model in eqn (4) as an incomplete-
data problem by regarding the trait, Y, and markers,
X, as observed data and the putative QTLs, xij*’s
and zij*’s, as missing data, then the EM algorithm
(Dempster et al., 1977) can be readily implemented to
obtain their maximum likelihood estimates (MLEs).
Alternatively, the marker genotypes and the unknown
QTL genotypes can be treated as the observed state
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qq
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–0·1

0·0

0·1

Generation t

(d)

RIX F(10,t ) population

Fig. 1. The differences between the conditional probabilities of QQ, Qq and qq genotypes given the flanking marker
genotype MN/MN obtained by using the Markovian and non-Markovian methods for the case of r1=0.1 and r2=0.1 in
the AI, RI, IRI and RIX populations. The curve below zero implies that the probabilities of QTL genotypes are
underestimated by using the Markovian method. (a) AI populations. (b) RI populations. (c) IRI F10,t populations.
(d) RIX F10,t populations.
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and hidden state in the set-up of the hidden Markov
model (HMM; Koski, 2001) under the Markovian
assumption along the genome. The EM algorithm is
an iterated procedure and, in each iteration, it consists
of an expectation step (E-step), followed by a maxi-
mization step (M-step). When applying the EM al-
gorithm, the general formulae devised by Kao & Zeng
(1997) can be implemented to obtain theMLE applied
here. The E-step is to compute the posterior prob-
abilities of 3m QTL genotypes. In M-step, the coded
variables associated with the m QTLs in all the 3m

possible genotypic values are assigned to the elements
of genetic design matrix. The E- and M-steps are iter-
ated until convergence, and the converged values are
the MLEs.

(vi) QTL mapping properties

To investigate and explore QTL mapping properties
across populations, without loss of generality, assume
that the quantitative trait is affected by the two linked
epistatic QTLs, QA and QB, with complete effects. We
consider the scenarios of using QA only and of using
both QA and QB in the quantitative trait analysis. If
the quantitative trait is regressed on QA only, the re-
gression coefficient for the additive effect of QA is

aA= a1+
CxD

C+D+E
a2+

Ex(C+D)

2(C+D+E)
iad

x
CxD

2(C+D+E)
ida, (7)
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Fig. 2. The differences between the conditional probabilities of QQ, Qq and qq genotypes given the flanking marker
genotype MN/Mn obtained by using the Markovian and non-Markovian methods for the case of r1=0.1 and r2=0.1 in
the AI, RI, IRI and RIX populations. The curve below zero implies that the probabilities of QTL genotypes are
underestimated by using the Markovian method. (a) AI populations. (b) RI populations. (c) IRI F10,t populations. (d) RIX
F10,t populations.
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in an advanced population. Similarly, the regression
coefficient for the dominance effect of QA, dA, and the
partial regression coefficient for the additive (domi-
nance) effect of QA given the additive (dominance)
effect of QB, aA.Ba

(dA.Ba
), can be derived and their

components are shown in Table 1. By analysing the
coefficients, it is possible to decompose the regression
coefficient into components and to trace the changes
of these components for identifying the confounding
problems as the population advances. Taking Eqn (7)
as an example, under selfing, the coefficient associated
with a2 (ida) is positive (negative) and decreasing (in-
creasing) from 1x2r(x(1x2r)/2) to 1x2r

1+2r

�
x 1x2r

2(1+2r)

�
,

and the coefficient associated with iad is negative and
decreasing from x(1x2r)2/2 to x1/2, as generation
proceeds (t increases). For tp‘ under self,
aA=a1+1x2r

1+2r
a2xiad

2
x 1x2r

2(1+2r)
ida. Ifmating is random, the

coefficient can be generally expressed as aA=a1+(1x
2r) (1xr)ta2x1

2
(1x2r)2(1xr)2tiadx1

2
(1x2r) (1xr)ta2.

The coefficients associated with a2, iad and ida ap-
proach to zero as tp‘. Such analyses make it possible
to clearly identify how the different genotypes and
effects play a role in the confounding problem across
populations. In general, the confounding problem gen-
erally becomes less severe as the generation proceeds
under random mating. Under selfing, the confound-
ing of iad becomes more severe and the confounding of
ida becomes less severe in the estimation of additive
effects of QA as generation proceeds. The confound-
ing of the idd becomes more severe, and iaa will be
always confounded in the estimation of the domi-
nance effects as generation proceeds by selfing.

(vii) Power of separating closely linked QTL

To simplify the discussion, we first consider that two
linked QTLs with additive effects, a1 and a2, only are
located at known markers ; then the QTL mapping
model in eqn (3) reduces to a regression model fitting
two correlated variables, xi1* and xi2*. As derived
above, the correlation between xi1* and xi2* is equiv-
alent to the linkage parameter between the two QTLs,
l=(CxD)/(C+D+E), which can be interpreted as a
measure of the difference between the recombinant
(D) and non-recombinant proportions (C) in a popu-
lation. We can expect that the linkage parameters will
decrease for farther genes or in later populations as
there are more recombinants and less non-re-
combinants in either case. In a statistical modelling,
fitting correlated variables into the model will raise the
problems of collinearity, e.g. inflated variances of â1
and â2, in estimation and testing (Marquardt, 1970),
leading to the difficulty in obtaining simultaneously
significant tests for QTL effects (successful separation
of linked QTLs). For example, in the AI Ft population
(under the process of random mating), C+D+E=
1/4 and CxD=(1–2rk)/4, where rk=[1x(1x2r)T
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(1xr)tx2]/2, so that l=1x2rk is decreasing with t,
and the decreasing rate of l is 1xr for each gener-
ation of random mating. Under self, l is also de-
creasing, but with a much lower rate. In RIL, l=
(1x2r)/(1+2r), which is smaller than (1x2r) in the
F2. In general, the linkage parameter is decreasing and
the collinearity problem can be eased in the advanced
population. As a consequence, the separation of
closely linked QTLs can be more powerful by using
the sample from the advanced population, especially
from the population subject to several cycles of ran-
dom mating.

4. Simulation studies

Simulations were conducted to evaluate the perform-
ances of the non-Markovian and Markovian meth-
ods, to validate the derived mapping properties and to
compare relative efficiencies of using different ad-
vanced populations in QTL mapping. A large set of
fixed and unfixed populations, including RI, AI, IRI
and IF2 populations, was simulated as they are very
popular in biological studies (Lee et al., 2002;
Rockman & Kruglyak, 2008). For RI and AI popu-
lations, F3, F4, F5 and F10 populations were simulated.
For IRI and RIX populations, IRI F5 : 1, F5 : 3 and IF2

populations were simulated. For each population,
two linked epistatic QTLs, QA ans QB, with complete
effects a1=2, d1=2, a2=2, d2=2, iaa=2, ida=2 and
idd=2 are considered, and the heritability is assumed
to be 0.05 (defined in the F2 population under the
Cockerham model by Kao & Zeng, 2002). With such
parameter settings, the total genetic variance and en-
vironmental variance are 6.32 and 120.88, respect-
ively, and the genetic variances contributed by the
marginal effects and epistatic effects and genetic co-
variance are 3, 2.227 and x1.865, respectively. The
positions of the two QTLs were assumed to be 30 cM
apart and located at 25 and 55 cM along one 100 cM
chromosome. Two marker maps are considered. The
first map assumes 11 equally spaced markers (the
sparse map hereinafter), and the second map assumes
19 markers placed at 0, 10, 15, 20, 24, 27, 30, 35, 40,
45, 50, 54, 57, 60, 65, 70, 80, 90 and 100 cM (the dense
map hereinafter). The sample size is 1000 and the
number of simulated replicates is 100 for each setting.
The applied mapping models are all two-QTL models
with different fixed numbers of effects. Except for RI
F10 population (RIL), the mapping models applied to
QTL detection include the eight-effect (complete-
effect) model, the five-effect model (with a1, d1, a2, d2

and iaa) and the four-effect model (with a1, d1, a2 and
d2). For RIL, the three-effect model with epistasis
(with a1, a2 and iaa) and the two-effect model without
epistasis (with a1 and a2) are applied to the analysis as
RIL has very few heterozygotes and low power to
detect dominance components. These models are

applied to a two-dimensional grid search on the
chromosome forQTL.At the positionswithmaximum
value of the likelihood function,we test the significance
of the first (second) QTL given the second (first) QTL
by testing its main and epistatic effects jointly. For
example, given the second (first) QTL, the hypothesis
H0 : a1=d1=iaa=iad=ida=idd=0 (H0 : a2=d2=
iaa=iad=ida=idd=0) is tested for the existence of the
first (second) QTL at the positions if the complete-
effect model is used. Similarly, if the five-effect (four-
effect) model is used, the hypothesis H0: a1=d1=iaa=
0 (H0 : a1=d1=0) is tested for the existence of the first
QTL given the second QTL. If both the LRT statistics
are larger than the specified critical values at 5% level,
a successful detection of the two QTLs (separation of
the two linked QTLs) is declared at the tested pos-
itions, and the corresponding estimated effects are
reported as the MLE of the effects. In QTL mapping,
the issue of determining the critical value for declaring
QTL detection has been very complicated, and several
methods have been suggested to determine the critical
value (see for a review, Zou & Zeng, 2008). Here, the
critical values are evaluated using the quick method of
Piepho (2001) as this method can handle a wide var-
iety of experimental designs, such as the AI, RI, IRI
and IF2 populations considered here.

The non-Markovian method obviously performs
better than the Markovian method in the populations
subject to self, such as RI and IRI populations. For
AI and RIX populations, the two methods have simi-
lar powers, but the non-Markovian method provides
more precise and accurate estimates for the positions
and effects. To condense tables, only the results
under the sparse map are tabulated in Tables 2–4,
and those under the dense map are not tabulated, but
expounded in the context. Table 2 shows the QTL
mapping results under the sparse map in the RI
populations. For the case of the sparse (dense) map,
by applying the complete-effect model to QTL detec-
tion, the powers of separation in the RI F3, F4 and F5

populations are 0.39 (0.18), 0.23 (0.05) and 0.10
(0.11), respectively, by the non-Markovian approach,
and they are 0.29 (0.19), 0.16 (0.03) and 0.04 (0.13),
respectively, by the Markovian approach. The com-
plete-effect model becomes less powerful in the later
RI populations due to loss of heterozygotes. When
epistasis is completely ignored by applying the four-
effect model to the analysis, the powers are lower than
those by the complete-effect models. The powers by
the non-Markovian method are 0.09 (0.00), 0.02
(0.03) and 0.04 (0.11) for the three populations, re-
spectively, and they are 0.10 (0.01), 0.03 (0.04) and
0.07 (0.14), respectively, by the Markovian method
under the sparse (dense) map. When applying the five-
effect model by considering iaa to QTL detection, the
powers by the non-Markovian method are 0.55 (0.67),
0.73 (0.84) and 0.68 (0.98), respectively, and they are
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Table 2. Simulation results of using different mapping models of the Markovian and non-Markovian methods under the sparse marker map in the RI populations

Population Method Power P1=25 P2=55 LRT1 LRT2 m=0 a1=2 d1=2 a2=2 d2=2 iaa=2 iad=2 ida=2 idd=2 s2=120.9

RI F3 8ea 39% 18.5 61.5 24.4 25.6 0.176 1.808 1.584 1.835 1.637 1.428 1.472 1.385 1.987 119.9
(4.5) (4.5) (9.1) (9.2) (0.454) (0.537) (1.083) (0.608) (1.160) (0.602) (1.303) (1.481) (2.505) (6.2)

8a 29% 19.7 64.7 23.3 23.8 0.137 1.746 1.503 1.713 1.516 1.344 1.360 1.197 1.838 120.7
(3.6) (3.3) (8.7) (9.0) (0.436) (0.468) (1.004) (0.565) (1.082) (0.592) (1.154) (1.350) (2.385) (6.2)

5e 55% 25.3 54.8 21.3 22.1 x0.064 1.246 1.630 1.245 1.683 2.155 120.3
5a 57% 26.0 55.9 21.3 22.4 x0.111 1.193 1.687 1.291 1.704 2.191 120.5
4e 9% 25.8 55.8 10.2 10.4 0.302 1.154 0.767 1.362 0.765 122.0
4a 10% 25.8 56.5 9.9 10.8 0.259 1.308 0.624 1.195 0.778 122.2

RI F4 8e 23% 15.8 64.1 24.3 23.5 0.2056 1.689 1.499 1.609 1.554 1.461 1.150 1.147 1.301 121.5
(2.8) (2.6) (10.3) (9.1) (0.814) (0.781) (1.834) (0.795) (1.899) (0.564) (1.592) (1.891) (4.322) (6.6)

8a 16% 18.0 67.2 22.9 21.9 x0.037 1.580 1.317 1.497 1.177 1.424 0.987 0.947 1.350 122.8
(2.0) (2.1) (9.3) (9.00) (0.656) (0.644) (1.430) (0.669) (1.538) (0.529) (1.450) (1.633) (3.507) (6.2)

5e 73% 25.4 54.9 26.2 25.6 x0.230 1.118 1.631 1.095 1.591 2.266 120.8
5a 74% 27.1 56.7 26.00 25.8 x0.217 1.098 1.588 1.082 1.508 2.172 121.1
4e 2% 24.6 53.5 9.7 9.9 0.197 1.106 0.795 1.128 0.820 123.3
4a 3% 26.6 53.6 10.4 10.6 0.022 1.145 0.121 1.010 0.937 123.3

RI F5 8e 10% 15.0 64.7 19.5 19.3 0.154 1.483 1.663 1.638 1.200 1.276 0.777 1.217 1.469 121.5
(1.4) (2.2) (8.5) (8.7) (1.245) (1.107) (2.714) (1.015) (2.740) (0.446) (2.342) (2.026) (6.013) (6.4)

8a 4% 17.8 67.7 17.9 18.9 x0.073 1.400 1.360 1.351 1.142 1.146 0.685 0.501 1.647 121.2
(2.0) (2.6) (7.7) (10.9) (0.861) (0.966) (1.756) (0.836) (1.941) (0.454) (2.241) (1.353) (3.619) (7.5)

5e 68% 25.2 54.00 24.8 25.8 x0.168 1.083 1.452 1.107 1.376 2.050 119.7
5a 67% 27.3 56.7 25.1 25.9 0.348 1.039 1.267 1.115 1.355 2.015 120.2
4e 4% 24.6 54.2 9.4 10.3 x0.028 1.005 0.894 1.222 0.317 122.4
4a 7% 27.5 55.4 10.4 11.5 x0.429 1.068 x0.182 1.066 0.288 122.3

RI F10(RIL) 3e 85% 24.6 54.9 26.0 25.6 x1.455 1.055 1.000 1.988 120.0
3a 83% 27.6 57.6 25.9 25.4 x1.469 1.031 0.978 1.922 121.1
2e 3% 25.0 55.3 8.1 7.4 x0.721 0.955 1.148 123.3
2a 2% 25.6 57.1 7.8 7.5 x0.724 1.049 1.024 123.7

A total of 100 replicates, each with sample size 1000, were analysed with two linked epistatic QTLs, QA and QB. The heritability is 0.05 in the F2 population. The critical values are
determined by Piepho’s method. P1 (P2): position of QA (QB). For reducing the text, standard deviations (SD; numbers in parentheses) are only shown for the complete-effect
mode. The reduced models usually show similar or larger SD. SD are smaller in RIL as compared with the RI F3.
a 8e/8a indicates the eight-effect model with the non-Markovian/Markovian method.
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Table 3. Simulation results of using different mapping models of the Markovian and non-Markovian methods under the sparse marker map in the different AI
populations

Population Method Power P1=25 P2=55 LRT1 LRT2 m a1=2 d1=2 a2=2 d2=2 iaa=2 iad=2 ida=2 idd=2 s2=120.9

AI F3 8ea 61% 24.8 56.2 31.3 29.9 0.075 2.088 1.886 1.927 1.829 1.724 1.919 1.999 2.467 119.6
(4.9) (5.3) (10.8) (10.5) (0.458) (0.749) (1.149) (0.806) (1.081) (1.435) (1.889) (1.894) (2.278) (6.4)

8a 59% 26.0 57.9 31.1 29.9 0.085 2.071 1.887 1.919 1.794 1.697 1.881 1.929 2.337 119.9
(5.0) (5.3) (10.8) (10.5) (0.451) (0.742) (1.110) (0.792) (1.010) (1.351) (1.851) (1.871) (2.221) (6.4)

5e 41% 25.3 55.3 20.2 19.4 x0.116 1.654 2.235 1.559 2.379 2.757 121.5
5a 39% 26.6 56.8 20.3 19.4 x0.100 1.656 2.181 1.538 2.313 2.680 121.7
4e 11% 33.9 56.3 13.3 12.3 0.530 1.674 1.240 1.604 1.200 123.0
4a 11% 25.0 57.4 13.1 12.2 0.531 1.651 1.216 1.608 1.191 123.1

AI F4 8e 62% 24.0 56.9 31.4 32.7 x0.089 1.806 2.021 1.922 1.762 2.017 1.806 1.813 2.029 120.4
(3.8) (4.4) (10.1) (9.9) (0.422) (0.565) (1.205) (0.659) (1.063) (0.675) (1.539) (1.605) (2.661) (7.0)

8a 59% 24.7 60.0 30.3 32.1 x0.049 1.769 1.874 1.917 1.651 1.864 1.619 1.692 1.780 121.1
(4.4) (4.7) (10.3) (10.0) (0.423) (0.593) (1.134) (0.672) (0.998) (0.633) (1.434) (1.478) (2.417) (7.0)

5e 63% 24.8 55.8 23.7 24.9 x0.046 1.188 1.864 1.346 1.593 2.145 122.2
5a 37% 27.3 57.0 18.7 21.0 x0.036 1.664 1.843 1.810 1.915 2.049 122.1
4e 9% 24.4 54.5 11.2 12.7 0.216 1.052 1.072 1.453 0.904 124.2
4a 8% 25.1 55.7 10.6 12.8 0.219 1.149 1.010 1.343 0.948 124.4

AI F5 8e 47% 25.8 55.2 27.5 29.1 0.003 1.995 1.794 2.046 1.826 1.742 1.690 2.020 1.863 119.3
8a 46% 28.1 57.3 27.4 29.0 x0.017 1.963 1.712 1.974 1.722 1.702 1.532 1.887 1.632 120.4
5e 40% 24.8 54.8 18.8 21.1 x0.027 1.699 1.950 1.842 2.077 2.174 121.6
5a 41% 27.3 57.0 18.7 21.0 x0.036 1.664 1.841 1.810 1.915 2.049 122.1
4e 25% 24.1 56.0 13.5 14.9 0.259 1.788 1.314 1.845 1.399 123.0
4a 17% 26.3 57.5 13.3 14.9 0.248 1.748 1.247 1.812 1.289 123.4

AI F10 8e 6% 25.2 55.0 18.6 19.5 x0.024 1.505 1.259 1.563 1.051 1.244 0.623 1.013 0.473 115.7
8a 7% 27.0 57.1 18.1 19.1 x0.049 1.354 0.949 1.432 0.778 1.011 0.421 0.570 x0.012 120.4
5e 9% 25.4 55.1 12.8 13.8 0.001 1.431 1.286 1.662 0.959 1.372 120.3
5a 11% 27.0 57.4 12.6 13.6 x0.045 1.392 0.988 1.480 0.764 1.157 122.5
4e 12% 25.3 55.0 10.0 10.7 0.002 1.532 1.259 1.714 0.857 121.2
4a 5% 26.2 56.6 9.8 10.6 x0.025 1.472 1.013 1.533 0.716 123.1

For reducing the text, SD (numbers in parentheses) are only shown for the complete-effect mode in AI F3 and F4 populations. SD for the reduced models are usually similar or
larger. The SDs of AI F5 have similar size in positions and main effects and larger size in epistatic effects as compared with those in AI F3. The estimates in AI F10 have a much
larger SD. A total of 100 replicates, each with sample size 1000, were analysed with two linked epistatic QTLs, QA and QB. The heritability is 0.05 in the F2 population. The critical
values are determined by Piepho’s method.
a 8e/8a indicates the eight-effect model with the non-Markovian/Markovian method.
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Table 4. Simulation results of using different mapping models of the Markovian and non-Markovian methods under the sparse marker map in F2, IF2 and
IRI populations

Population Method Power P1=25 P2=55 LRT1 LRT2 m=0 a1=2 d1=2 a2=2 d2=2 iaa=2 iad=2 ida=2 idd=2 s2=120.9

F2 8ea 42% 20.0 59.8 26.3 26.7 0.273 1.801 1.691 1.974 1.616 1.427 1.842 1.565 2.054 121.4
(4.8) (4.7) (9.8) (10.2) (0.434) (0.935) (0.935) (0.962) (1.025) (1.236) (1.820) (1.788) (2.249) (17.8)

5e 21% 24.6 55.4 27.4 17.9 x0.137 1.478 2.403 1.405 2.289 2.928 122.5
4e 3% 24.0 57.5 10.5 10.9 0.715 1.512 1.248 1.431 0.942 123.7

IF2 8e 6% 23.9 54.9 19.9 19.8 x0.081 1.241 0.766 1.351 0.805 0.969 0.750 0.245 0.602 121.2
(7.9) (7.4) (6.6) (7.1) (0.433) (1.028) (1.381) (0.907) (1.512) (1.897) (2.962) (2.973) (5.381) (6.4)

8a 5% 23.4 54.5 19.6 19.6 x0.066 1.158 0.682 1.294 0.709 0.898 0.725 0.314 0.527 122.5
(7.9) (7.2) (6.7) (6.9) (0.427) (0.987) (1.271) (0.846) (1.314) (1.743) (2.552) (2.733) (4.527) (6.0)

5e 5% 24.2 54.5 12.8 12.4 x0.101 1.356 0.885 1.439 0.932 1.146 124.2
5a 5% 24.1 54.1 12.8 12.3 x0.101 1.283 0.822 1.404 0.868 1.071 124.8
4e 2% 24.4 54.7 10.0 9.3 x0.067 1.377 0.870 1.497 0.862 124.9
4a 3% 23.5 54.2 10.0 9.3 x0.076 1.292 0.813 1.433 0.779 125.4

IRI F5 : 1 8e 13% 17.6 63.0 20.4 21.0 x0.384 1.228 0.003 1.199 0.834 1.490 0.342 1.195 x1.607 119.3
(4.0) (4.0) (8.6) (8.8) (2.069) (1.678) (3.609) (1.530) (3.022) (0.473) (3.590) (3.315) (5.005) (6.8)

8a 1% 15.2 63.2 21.5 21.0 x0.229 2.043 2.073 1.076 1.384 1.317 1.964 x0.453 3.686 121.0
(4.2) (4.2) (13.4) (13.4) (1.097) (0.211) (1.667) (0.970) (0.744) (0.636) (0.610) (2.154) (4.884) (8.9)

5e 77% 24.7 55.3 26.0 26.6 x0.177 0.995 1.468 1.066 1.264 1.965 118.5
5a 76% 23.9 54.8 25.8 26.3 x0.578 0.946 1.165 1.052 0.729 1.824 119.8
4e 1% 23.6 54.3 8.6 9.8 x0.824 0.964 0.593 1.093 x0.820 121.6
4a 5% 52.8 53.4 10.6 10.9 x1.700 0.979 x1.126 0.995 x1.365 121.2

IRI F5 : 3 5e 93% 24.7 55.1 28.6 29.9 x1.670 1.050 x0.152 1.192 0.086 2.482 117.4
5a 92% 24.0 54.4 28.9 29.4 x1.697 0.963 x0.940 1.509 0.774 2.061 119.0
4e 3% 24.0 58.0 8.3 8.3 x1.464 1.035 x0.825 1.232 x0.561 122.5
4a 4% 27.0 51.7 11.6 10.7 x4.500 0.918 x4.273 1.038 x4.085 120.0

For reducing the text, SDs (numbers in parentheses) are only shown for the complete-effect mode. SDs for the reduced models are usually similar or larger. A total of 100 replicates,
each with sample size 1000, were analysed with two linked epistatic QTLs, QA and QB. The heritability is 0.05 in the F2 population. The critical values are determined by Piepho’s
method. P1 (P2): position of QA (QB).
a 8e/8a indicates the eight-effect model with the non-Markovian/Markovian method.
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0.57 (0.66), 0.74 (0.86) and 0.67 (0.99), respectively, by
the Markovian method under the sparse (dense) map.
In parameter estimation, for all models, the estimates
of positions and effects obtained by the non-
Markovian method have a better precision as com-
pared with those by the Markovian method. For
example, in the RI F4 population under the sparse
map, the means of the estimated QA and QB positions
for the five-effect model are 25.36 (SD 5.94) and 54.90
(SD 5.74), respectively, by the non-Markovian meth-
od, and they are 26.08 (SD 5.98) and 56.70 (SD 5.67),
respectively, by the Markovian method. The five-ef-
fect model by taking iaa into account tends to be more
powerful and precise than the other two models, and
this model becomes more powerful in the later RI
populations. For the RI F10 population (RIL), when
using the three-effect model, the powers of the non-
Markovian (Markovian) method are 93% (94%) and
98% (97%) in the two maps. When using the two-
effect model, the powers reduce dramatically to 5%
(5%) and 8% (7%), respectively. This shows that the
power to detect QTL can be greatly enhanced by
taking iaa into account in RIL. Confounding prob-
lems occur in the estimation of the effects if epistatic
effects are not completely taken into account. For
example, the means of the estimated a1, a2 and iaa by
the non-Markovian method are 1.031 (SD 0.388),
1.032 (SD 0.402) and 1.965 (SD 0.375), respectively
(the predicted values by Table 1 are 1, 1 and 2) for
RIL, under the dense map. It is interesting to compare
these results with those in the F2 population. The
powers in the F2 population are 0.42 (0.36), 0.21 (0.43)
and 0.03 (0.05) for the complete-effect, five-effect and
four-effect models, respectively, under the sparse
(dense) map (Table 4). The more powerful perform-
ance of using the RI populations occurs only for the
five-effect model and does not occur for the other two
models.

Table 3 presents the QTL mapping results for AI
populations under the sparse maps. Under the sparse
(dense) map, when the complete-effect model is con-
sidered, the detecting powers by the non-Markovian
method are 0.61 (0.61), 0.62 (0.52), 0.47 (0.79) and
0.06 (0.65), respectively, in the AI F3, F4, F5 and F10

populations, and they are 0.59 (0.65), 0.59 (0.51), 0.46
(0.79) and 0.07 (0.70), respectively, by the Markovian
method. When epistasis is ignored by using the four-
effect model, the powers are reducing to 0.11 (0.11),
0.09 (0.08), 0.25 (0.17) and 0.12 (0.05), respectively, by
the non-Markovian (Markovian) method. If the five-
effect model is considered under sparse map, the
powers by the non-Markovian (Markovian) method
are 0.41 (0.39), 0.63 (0.37), 0.40 (0.41) and 0.09 (0.11),
respectively, in the four populations. An increasing
trend in power can be observed in the case of the
dense map (not shown). However, such an increasing
trend does not occur in the sparse map (Table 3).

Also, by taking epistasis into account, the power can
be much improved and the confounding problem can
be avoided, and the means of the estimated effects are
all very close to the true given parameters. Besides, the
QTL positions are estimated with better precision in
the AI populations as compared with those estimated
in the RI populations. Among all the settings, the
most powerful experimental population for QTL
detection is the AI F3 (AI F5) population under the
sparse (dense) map. The AI F10 population is not the
optimal design under either map, as the powers are
about 0.05–0.12 and about 0.45–0.70, respectively, in
the two maps. It is expected that a much denser map is
required to ensure more powerful QTL detection in
the AI F10 population (see the Discussion section).
When comparing the results of the AI and F2 popu-
lations (Table 4), the AI populations show more
powerful results than the F2 population in all cases
under the dense map.

Table 4 shows the QTL mapping results in the F2,
IF2, IRI F5 : 1 and IRI F5 : 3 populations under the
sparse maps. The QTL mapping results are better
under the dense map in these later advanced popu-
lations as compared with those under the sparse map.
For example, in the IF2 population, the powers under
the dense map are 0.59 (0.58), 0.54 (0.52) and 0.35
(0.35) by the non-Markovian (Markovian) method
for the complete-effect, five-effect and four-effect
models (not shown), respectively. Under the sparse
map, they are 0.06 (0.05), 0.05 (0.05) and 0.02 (0.03),
respectively. The estimated positions and effects
are also found to be more precise in the dense
map. For example, under the complete-effect model,
the estimated effects of a1, d1, a2 and d2 by the non-
Markovian method are 1.919 (SD 0.657), 1.689 (SD
1.010), 1.757 (SD 0.670) and 1.677 (SD 0.912), re-
spectively, in the dense map (not shown), and they are
1.241 (SD 1.028), 0.766 (SD 1.381), 1.351 (SD 0.907)
and 0.850 (SD 1.512), respectively, in the sparse map.
Similar situations were also found in the IRI F5 : 1 and
IRI F5 : 3 populations. Besides, the complete-effect
model is not appropriate for the IRI populations, and
the three-effect and five-effect models are more ap-
propriate for these two populations. For example, the
powers in the IRI F5 : 1 population are 0.13 (0.01) and
0.07 (0.01) by the complete-effect model of the non-
Markovian (Markovian) method in the two different
maps, and the powers become 0.77 (0.76) and 0.92
(0.93) by the five-effect model, respectively. Also,
taking the additive-by-additive effect into account can
greatly benefit the QTL detection. A similar trend can
be observed for the RIL.

5. Discussion

The genome structures of the advanced populations
can be very different from each other and are no
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longer similar to that of the F2 population as men-
tioned before. This paper tries to distinguish between
the genome structures of different populations to deal
with the issues of QTL mapping. When using the ad-
vanced populations for QTL mapping, we propose
the Markovian and non-Markovian methods to
map for QTL. Some important properties and issues
in QTL mapping, such as mapping closely linked
QTLs, confounding problems of ignoring epistasis
and the choice of different mapping models, are also
derived and discussed across different populations.
Theoretically, the non-Markovian method have bet-
ter performances than the Markovian method, as the
more accurate mixing proportions can be used in
statistical modelling as discussed. In fact, analytical
and simulation studies show that the non-Markovian
method does perform better than the Markovian
method in the advanced populations, especially in
populations subject to the selfing process. The ad-
vanced populations can be also designed to be more
powerful than the F2 population in QTL detection.
Besides, the issues considered here are under the as-
sumption of large sample size with no selection. In
practice, selection and drift may play a role between
generations, and it will cause unequal allele fre-
quencies and potential segregation distortion. As
suggested by Teuscher & Broman (2007), the solution
to these problems is the use of a dense marker set
with which the actual recombination breakpoints
can be precisely mapped. The results presented here
can give some clues to the use of advanced population
for better investigation in genetical and biological
studies.

The quality of QTL mapping relies on precisely
deriving the conditional probabilities of putative QTL
genotypes given marker genotypes and on applying
appropriate statistical methods to link the quantitat-
ive traits with the putative QTL. When deriving the
conditional genotypic distribution of a putative QTL,
ideally, we would like to use the information from all
the linked markers (as many linked markers as poss-
ible) to obtain it. This, however, is very challenging as
the characterization of the genotypic distribution of
many genes is not an easy task. The approach of in-
terval mapping avoids this and proposes to use its two
flanking markers instead in derivation, so that its task
reduces to characterizing the genotypic distribution
for three genes. Such an approach is optimal in cap-
turing the QTL information for the genomes with a
first-order Markovian property, but not for the geno-
mes without this property. However, for the latter
case, we believe that the closest marker pair may have
already captured most of the information about
QTLs. When multiple putative QTLs are considered
in the advanced population, the joint conditional
probability distribution used here is approximate and
obtained by using conditional independence property

as we are still not sure currently how to derive the
exact conditional distribution for an arbitrary num-
ber of putative QTLs. In addition, when applying
statistical models to detect QTLs, the specific genome
structures of advanced populations have to be taken
into account in modelling to benefit QTL detection.
For example, in the RI or IRI populations, there
are larger additive genetic variances (smaller domi-
nance variances) and higher homozygosity (lower
heterozygosity), and the applied models should con-
sider that fitting the components involving additive
effects into the model can benefit QTL detection and
that fitting the components involving dominance ef-
fects into the model may deter QTL detection.

One of the most precious features in the advanced
populations is that they can generate more re-
combinants to improve the QTL resolution. From the
viewpoint of statistical modelling, such an improve-
ment is to take advantage of more recombinants in a
population to alleviate the collinearity problem in
modelling-linked putative QTLs (to disassociate the
linkage disequilibrium between linked putative
QTLs), so that QTL mapping can be more powerful
and precise (see the subsection ‘Power of separating
closely linked QTLs’) ; nevertheless, more re-
combinants also reduce the linkage disequilibrium
between markers and QTLs to blur the information
about the unobservable putative QTL. Therefore, to
expect improved QTL mapping results in the ad-
vanced population, a denser marker map around the
linked QTL region is required to ensure that the
linkage disequilibrium is strong enough in the con-
struction. In a marker interval with given width, the
linkage disequilibrium between markers and putative
QTLs is strongest in the F2 population, and it be-
comes gradually weaker as generation advances.
Taking a putative QTL Q in the middle of a 10 cM
marker interval flanked by markers, A and B, as an
example, the trigenic linkage disequilibrium defined
as DAQB=PAQBxPAPQPB (Wright, 1980) is 0.329 in
the F2 population, and it becomes 0.309 (0.300), 0.286
(0.292), 0.260 (0.290) and 0.111 (0.288) in the AI (RI)
F3, F4, F5 and F10 population, respectively. It shows
that the linkage disequilibrium is declining more rap-
idly under random mating. In general, once the de-
signed populations, such as IF2, IRI F5 : 1 and AI F10

populations, have undergone some generations of
random mating, they usually require a much denser
marker map to obtain improved results. Therefore,
the marker density should be considered as a major
factor not only in the comparison between the two
proposed methods, but also in the issue of using ad-
vanced populations to improve QTL mapping results
(see also the ‘Simulation studies’ section). Besides,
the issues of trade-off between generation number
and marker density and of extension to more than
two founders (Mott et al., 2000; Broman, 2005) are
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interesting and worthy of pursuing in the future.
Together with the (Fu/Fv, vou) designs (Fisch et al.,
1996; Kao, 2006) and the strategy of replicated trials
(Hua et al., 2002), it is very much possible for us to
design experimental populations to recover or remove
those undetected or ghost QTLs (Lander & Botstein,
1989) in the F2 population for high-resolution QTL
mapping.

The authors are grateful to two anonymous reviewers for
helpful comments. This work was supported by grant
numbers NSC97-2118-M-001–008 from the National
Science Council, Taiwan, Republic of China.
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