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Summary

Hu & Xu (2008) developed a statistical method for computing the statistical power for detecting
a quantitative trait locus (QTL) located in a marker interval. Their method is based on the
regression interval mapping method and allows experimenters to effectively investigate the power for
detecting a QTL in a population. This paper continues to work on the power analysis of separating
multiple-linked QTLs. We propose simple formulae to calculate the power of separating closely
linked QTLs located in marker intervals. The proposed formulae are simple functions of
information numbers, variance inflation factors and genetic parameters of a statistical model in a
population. Both regression and maximum likelihood interval mappings suitable for detecting QTL
in the marker intervals are considered. In addition, the issue of separating linked QTLs in the
progeny populations from an F2 subject to further self and/or random mating is also touched upon.
One of the primary keys to our approach is to derive the genotypic distributions of three and four
loci for evaluating the correlation structures between pairwise unobservable QTLs in the model
across populations. The proposed formulae allow us to predict the power of separation when several
factors, such as sample sizes, sizes and directions of QTL effects, distances between QTLs, interval
sizes and relative QTL positions in the intervals, are considered together at a time in different
experimental populations. Numerical justifications and Monte Carlo simulations were provided for
confirmation and illustration.

1. Introduction

The calculation of statistical power of quantitative
trait locus (QTL) detection has been an important
problem in QTL mapping. Soller et al. (1976) and
Lander & Botstein (1989) discussed the power of QTL
detection when a QTL is coincident with a genetic
marker. Hu & Xu (2008) developed a simple method
to calculate the statistical power of QTL in the inter-
val flanked by its two markers in a population. On
the basis of the regression (REG) interval mapping
model (Haley & Knott, 1992), their method can pre-
dict the power of QTL detection given the factors,
such as size and position of QTL, sample size and
interval size, by evaluating a non-central F-distri-

bution function. It has been noticed that closely
linked QTL might be mistakenly estimated as a single
(ghost) QTL with a larger effect at the wrong position
if they have the same direction effects, or they might
be out of detection if their effects are in the opposite
direction (Lander & Botstein, 1989; Kao & Zeng,
1997; Ronin et al., 1999). Therefore, the study of
separating linked QTLs to improve the QTL reso-
lution remains an important issue. Ronin et al. (1999)
derived the asymptotic expected LOD values based on
the non-central chi-squared distribution for the study
of two linked QTLs coincident with markers. Mayer
(2005) compared REG interval mapping and maxi-
mum likelihood (ML) interval mapping in detecting
two linked QTLs using Monte Carlo simulations. So
far, analytical methods for the power analysis of de-
tecting linked QTLs situated in the marker intervals
have not been fully developed. We propose statistical
methods for calculating the power for separating
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closely linked QTLs located in the intervals. The
proposed formulae are based on the information
numbers (the inverse of the variance of the best esti-
mated QTL effects), variance inflation factors (caused
by the correlations between linked QTLs) and genetic
parameters of statistical models in a population. Both
REG and ML interval mapping are considered in
the formulation. Further, the power analyses of the
above-mentioned papers mainly focus on the genome
structures of the backcross (BC) and F2 populations
(Hu & Xu also discussed the power calculation in the
double haploid (DH) and recombinant inbred lines
(RIL)). We also discuss the separation of closely
linked QTLs in other experimental populations, such
as advanced intercross (AI) and recombinant inbred
(RI) populations, subject to more meiosis cycles. One
important key to the proposed method is to derive
the genotypic distributions of three and four loci to
characterize the correlation structures between pair-
wise QTL variables in the model for different popu-
lations. In general, we found that, given a distance
between QTLs, separation can be more powerful for
QTLs of similar size, with opposite direction effects,
located closer to markers and in narrow intervals, and
contributing to a high proportion of trait variation.
More advanced populations may facilitate the sepa-
ration of linked QTLs by providing more recom-
binants and changing genome structures. Numerical
and simulated results are presented for confirmation.

2. Methods

(i) Test statistic for detecting a QTL

Consider an F2 population or its progeny populations
produced by further selfing and/or intercrossing the
F2 individuals for different numbers of generations.
There are three possible genotypes, P1 homozygote,
heterozygote and P2 homozygote for any gene. Let
QjQj, Qjqj and qjqj be the three possible genotypes of a
QTL, say Qj, under consideration in a population.
For an individual i in a random sample with size n, let
xij* represent the coded variable of QTL genotype as

xij*=
1, if Qj is QjQj,

0, if Qj is Qjqj,

x1, if Qj is qjqj,

8<
: (1)

and aj denote its additive effect. Similarly, it is
straightforward to construct the coded variable xik* for
another QTL, say Qk, with additive effect ak for a
model taking multiple QTLs into account. When Qj,
flanked by the left marker Mj and right marker Nj

with alleles (Mj, mj) and (Nj, nj), is considered, the
conditional expectation of xij* given Mj and Nj,
wij=E(xij*|Mj, Nj), is used as the predictor variable in
the REG interval mapping model (Haley & Knott,

1992). For a single QTL model, Hu & Xu (2008) have
shown that the test statistic

l=
g(wijxwij)

2

s2
r â2

j (2)

(s2 is the residual error variance) follows a central
F-distribution under the null hypothesis (H0 : aj=0).
Under the alternative hypothesis (H1 : ajl0), this test
statistic follows a non-central F-distribution with the
non-centrality parameter d=nrvar(wij)raj

2/s2. The
non-centrality parameter is a function of several im-
portant factors, sample size, variance of the predictor
variable, QTL effect and residual error variance. By
analysing these factors, the power for detecting a QTL
can be predicted for different situations. For example,
Hu & Xu (1998) analysed one of the key factors, the
variance of the coded variable, var(wij), by deriving its
different formulations for the BC, F2, RIL and DH.
When n is sufficiently large, g(wijxwij)

2=nrvar(wij),
and the variance of the estimated effect is var(âj)=
s2/[nrvar(wij)]. When var(wij) is small, var(âj) is
large and d is small, leading to lower power in QTL
detection.

(ii) Variances of predictor variables

The aim of this study is to calculate the power for
detecting two or more closely linked QTLs and to
extend the power analysis to the populations beyond
F2 using both REG and ML interval mapping. When
analysing the power for detecting one QTL, we only
need to understand the asymptotic behaviour of the
variances of predictor variables to construct the test
statistic for power analysis as has been done by Hu &
Xu (2008). For dissecting linked QTLs, we should
further derive the covariances between different QTL
predictor variables to obtain the asymptotic vari-
ance–covariance matrix of QTL parameters for power
analysis. An important step to obtain the variances
and covariances of the predictor variables is to
characterize the genotypic distributions of multiple
genes in the populations. For example, evaluating
E(wij) and var(wij) in the BC between a population
MjNj/MjNj on F1 requires considering the four flank-
ing marker genotypes of two genes,MjNj/MjNj,MjNj/
Mjnj, MjNj/mjNj and MjNj/mjnj with frequencies
(1xr)/2, r/2, r/2 and (1xr)/2, where r is the recom-
bination fraction between A and B (Xu, 1995).
Evaluating them in the F2 between two populations,
MjNj/MjNj andmjnj/mjnj, requires taking into account
ten marker genotypes of two genes, MjNj/MjNj, mjnj/
mjnj, Mjnj/Mjnj, mjNj/mjNj, MjNj/Mjnj, MjNj/mjNj,
Mjnj/mjnj, mjNj/mjnj, MjNj/mjnj and Mjnj/mjNj with
frequencies (1xr)2/4, (1xr)2/4, r2/4, r2/4, r(1xr)/2,
r(1xr)/2, r(1xr)/2, r(1xr)/2, (1xr)2/2 and r2/2 (Hu
& Xu, 2008). In the progeny populations from F2,
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these ten genotypic frequencies change over popu-
lations. For AI populations subject to more cycles of
random mating, the well-known formula, Pk(MjNj)=
(1xr)rP(MjNj)+rrP(Mj)rP(Nj), can be used to
obtain the genotypic frequencies, where Pk(MjNj) is
the frequency of MjNj in the next generation. For RI
populations subject to further selfing, Haldane &
Waddington’s transition equations (1931) can be ap-
plied to obtain the ten frequencies. Using the same
notations as in Haldane & Waddingtion’s paper, we
denote the frequency of MjNj/MjNj (mjnj/mjnj) geno-
type as C, the frequency of Mjnj/Mjnj (mjNj/mjNj)
genotype as D, the frequency of MjNj/Mjnj (MjNj/
mjNj, Mjnj/mjnj, or mjNj/mjnj) genotype as E, the fre-
quency of MjNj/mjnj genotype as F and the frequency
of Mjnj/mjNj genotype as G, respectively, in the
populations. With such settings, it is straightforward
to show that E(wij)=0 and to formulate the variance
of wij in a population as

var(wij)=E(w2
ij)= g

10

k=1

fk(pk1xpk3)
2, (3)

where pk1 and pk3, k=1, 2, …, 10, are conditional
probabilities of QjQj and Qjqj genotypes given the ten
flanking marker genotypes, and fk are the frequencies
of the ten marker genotypes for two flanking markers
(C, D, E, F and G). Note that the derivation of pk1 and
pk3 is not straightforward as has been done in BC and
F2 populations, and it involves using the genotypic
distributions of three genes (Kao & Zeng, 2009). If the
event of double recombinations is ignored within a
marker interval, equation (3) can be explicitly for-
mulated as

var(wij)=2(C+D+E)x4p(1xp)(E+2D), (4)

where p=r1/r (r and r1 are the recombination fractions
between (Mj, Nj) and (Mj, Qj)). It is interesting to
analyse equation (4) to gain some insight into var(wij).
In equation (4), var(wij) is bounded by 2(C+D+E),
which is the variance of a fully observed QTL-coded
variable. The term p(1xp) measures the relative QTL
position in a marker interval, and E+2D measures
the interval size. As the marker interval becomes
wider or the QTLs get closer to the centre position of
the interval, E+2D or p(1xp) becomes larger, and
the value of var(wij) becomes smaller. In the F2

population, 2(C+D+E)=1/2, E+2D=r/2 and
var(wij)=1/2x2rp(1xp), which are bounded by 1/2.
In AI Ft populations, 2(C+D+E)=1/2 and E+2D=
rt/2, where rt=[1x(1xr)tx2(1x2r)]/2. The variance
var(wij)=1/2x2rtp(1xp), which is also bounded by
1/2 (p=r1t/rt) and decreases in the later populations.
In RI populations, 2(C+D+E) is between 1/2 and
1, and E+2D is between 2/r and 2r/(1+2r). The
value of var(wij) increases as population advances.
In RIL, 2(C+D+E)=1, E+2D=2r/(1+2r) and

var(wij)=1x(8r/(1+2r))p(1xp), which are bounded
by 1. Similarly, the variance of the predictor variable
for dominance effect is about y1/4xr/2r{1xr
[(1x2p(1xp))2+2p(1xp)]}, which is bounded by 1/4
in the F2 population. The variance of the predictor
variable is var(wij)=1/4xrp(1xp) bounded by 1/4
in the BC population (see also Xu, 1995). Hu & Xu
(2008) formulated var(wij) in the F2, RIL and DH
populations when double recombinations in the
intervals are considered. In general, the larger the
variance of a predictor variable, the greater the power
in QTL detection.

(iii) Power for detecting a QTL

When only one QTL is considered in the model, Hu
& Xu (2008) showed an example that var(wij) is 0.450
for a QTL located in the middle of a 10-cM marker
interval (r1=r2=0.04758 and r=0.09063), and that
252 individuals are required to detect this QTL with
80% power under a=0.01 when the QTL explains
5% of the trait variation in the F2 population. Our
formulae in equation (3) allow us to calculate the
values of var(wij) and sample sizes required in differ-
ent populations under the same conditions. For the
same conditions, the values of var(wij) derived using
our formulae in the different AI and RI populations
are presented in Table 1. It shows that the trend in
the change of variance behaves differently under self-
ing and random mating. When further selfing, the
variance increases. When successive intercrossing, the
variance tends to decrease. For example, the values
are 0.651 and 0.806 in the RI F3 and RIL (generation
10 of RI population is called RIL), respectively, and
they are 0.426 and 0.271 in the AI F3 and AI F10, res-
pectively. The different values of var(wij) cause the
non-centrality parameter to be different, thus affect-
ing the power of detection. To guarantee an 80%
power to detect this QTL under a=0.01, it would
require about 175, 155, 148 and 143 individuals in
the RI F3, F4, F5 and RIL populations, and it would
require 262, 284, 302 and 426 individuals in the AI F3,
F4, F5 and F10 populations. This shows that the
sample size can be saved in the more advanced RI
populations and may not be saved in the later AI
populations when mapping a single QTL located in
the interval.

(iv) Covariances between predictor variables

To obtain covariances between the predictor vari-
ables, cov(wij, wik)’s, we need to understand the geno-
typic distributions of three and four genes in a
population. For two linked QTLs, Qj and Qk, flanked
by two marker pairs (Mj, Nj) and (Mk, Nk) they can be
located in neighbouring or non-neighbouring marker
intervals. For the neighbouring case, the order is
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Mj-Qj-Nj-Qk-Nk (Nj and Mk are the same marker).
For the non-neighbouring case, the order is Mj-Qj-
Nj–Mk-Qk-Nk order. Note that the case for QTLs
located in non-neighbouring intervals may include
additional markers between Nj and Mk. For the case
of Mj-Qj-Nj–Mk-Qk-Nk order, the two predictor vari-
ables, wij and wik, are constructed using the marker
pairs (Mj, Nj) and (Mk, Nk). Therefore, computing
their covariance, cov(wij, wik), needs to considered all
for the 136 possible genotypes of Mj, Nj, Mk and Nk

markers (see the Appendix). For the case ofMj-Qj-Nj-
Qk-Nk order, obtaining the covariance only needs to
evaluate all the 36 marker genotypes ofMj, Nj and Nk

markers. The latter case is more difficult to detect Qj

andQk simultaneously as they share the same flanking
marker Nj. The covariance between wij and wik can be
generally expressed as

cov(wij,wik)=E(wijrwik)

= g
ng

k=1

fkr(pk1xpk3)(pj1xpj3), (5)

where ng=36 or 136 and fk are the genotypic fre-
quencies of flanking markers from trigenic and tetra-
genic distributions. In F2 population, the genotypic
distributions of three and four markers can be ob-
tained from the product of probability distributions

of adjacent pairwise genes, i.e. P(MjNjNk)=P(MjNj)r
P(NjNk) and P(MjNjMkNk)=P(MjNj)rP(NjMk)r
P(MkNk), under the Haldane map function. For
example, the gamete frequency P(MjNjMkNk)=
(1xr1)(1xr2)(1xr3)/2 in the F2 population, where r1,
r2 and r3 are the recombination fractions between
(Mj, Nj), (Nj, Mk) and (Mk, Nk). For the advanced
populations beyond F2, trigenic and tetragenic geno-
typic distributions cannot be obtained from the direct
product of pairwise gene distributions. We use special
devises outlined in Kao & Zeng (2009) and in the
Appendix to obtain the genotypic distributions
of three and four genes. Although the covariance
in equation (5) does not have a simple form as in
equation (4) for variance, it can be easily written into
a computer programme to obtain the covariances
under different situations in different populations.
For example, in the case ofMj-Qj-Nj–Mk-Qk-Nk order
with dMjQj

=5 cM, dQjNj
=5 cM, dMkQk

=5 cM and
dQkNk

=5 cM, the values of cov(wij, wik) are 0.7445,
0.6736, 0.6095, 0.5515 and 0.4991 for dNjMk

=10, 15 20,
25 and 30 cM, respectively, in the F2 population. In
the case of Mj-Qj-Njk-Qk-Nk order with dMjQj

=5 cM,
dQjNj

=5 cM, dMjQk
=5 cM and dQkNk

=5 cM, its co-
variances in different populations are presented in
Table 1. Table 1 shows that the covariance increases
under further selfing and decreases when subjected to

Table 1. The values of variances, covariances and correlations of the predictor variables in the AI and RI Ft

populations. The case considered is Mj-Qj-Nj-Qk-Nk with dMjQj
=5 cM, dQjNj

=5 cM, dNjQk
=5 cM and

dQkNk
=5 cM

t V(xij) C(xij, xik) r(xij, xik) V(wij) C(wij, wik) r(wij, wik) V(xij*) C(xij*, xik*) r(xij*, xik*)

AI Ft

2 0.5 0.410 0.819 0.450 0.409 0.909 0.437 0.380 0.869
3 0.5 0.372 0.744 0.426 0.372 0.874 0.427 0.370 0.866
4 0.5 0.339 0.677 0.402 0.338 0.841 0.410 0.343 0.836
5 0.5 0.308 0.616 0.378 0.307 0.811 0.382 0.302 0.790
6 0.5 0.280 0.560 0.355 0.278 0.784 0.361 0.273 0.755
7 0.5 0.255 0.509 0.333 0.253 0.759 0.338 0.237 0.702
8 0.5 0.232 0.463 0.312 0.230 0.736 0.337 0.228 0.676
9 0.5 0.206 0.412 0.291 0.208 0.715 0.305 0.198 0.650
10 0.5 0.172 0.383 0.271 0.189 0.696 0.310 0.192 0.620

RI Ft

2 0.5 0.410 0.819 0.450 0.409 0.909 0.437 0.380 0.869
3 0.750 0.577 0.769 0.651 0.577 0.886 0.640 0.563 0.880
4 0.875 0.658 0.741 0.739 0.644 0.872 0.734 0.637 0.868
5 0.938 0.679 0.724 0.778 0.672 0.864 0.793 0.671 0.846
6 0.969 0.692 0.714 0.794 0.682 0.859 0.807 0.685 0.849
7 0.984 0.697 0.708 0.802 0.687 0.856 0.814 0.688 0.845
8 0.992 0.699 0.705 0.804 0.687 0.855 0.814 0.690 0.848
9 0.996 0.700 0.703 0.806 0.688 0.854 0.811 0.689 0.849
10 0.998 0.901 0.702 0.806 0.688 0.854 0.815 0.691 0.848

V(xij) : variance of V(xij). C(xij, xik) and r(xij, xik) : covariance and correlation between xij and xik. xij and xik denote the
predictor variables when Qj and Qk are fully observed, and wij and wik (xij* and xik* denote the predictor variables when Qj and
Qk are not observed and constructed from their flanking markers in the REG (ML) interval mapping model.
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more intercrossing. For example, the covariance is
0.409 in the F2 population. The values are 0.577 and
0.688 in the RI F3 and RIL, respectively, and they are
0.372 and 0.189 in the AI F3 and AI F10, respectively.
Although the covariance can become larger or smal-
ler, the correlations between the coded variables,
r(wij, wik), all decrease in the advanced populations
(Table 1). The correlation is 0.909 in the F2 popu-
lations. It becomes 0.886 and 0.854 in the RI F3 and
RIL, and it is 0.874 and 0.696 in the AI F3 and F10

populations. As will be discussed later, the detection
of linked QTLs can benefit from the diminishing cor-
relation between predictor variables in the advanced
populations.

(v) Variances of the estimated QTL effects

For a single QTL model, we only need the variance of
the coded variable, var(wij), to construct a test statistic
in power analysis (equation (2)). As the variance of
the estimated effect is the inverse of the information
number of QTL effect, i.e. var(âj)=Ix1(aj), for n large,
we have

var( âj )=
s2

nrvar(wij)
(6)

and varx1(âj)/n=I(aj)/nyvar(wij)/s
2 in a single QTL

model. For multiple, say p, QTLs in the model, the
variance–covariance matrix of the predictor variables
is required in constructing the test statistics. Simi-
larly, for n large, we have I(a)/n=[(WkW)/s2]/
npV(W)/s2, where W denotes the matrices whose i,
jth entry is wij and V(W) is the variance–covariance
matrix with diagonal elements var(wij)’s, j=1,
2, …, p, and off-diagonal elements cov(wij, wik)’s.
Under normal assumption, n1/2(âxa)pNp(0,V

x1(W)
rs2) (Fuller 1976). Without loss of generality,
we present the case of p=2 with Qj and Qk in the
model for a better illustration. For p=2, the Vx1(W)
matrix is

Vx1(W)=[1xr2(wij,wik)]
x1

r

varx1(wij) x
cov(wij,wik)

var(wij)rvar(wik)

x
cov(wij,wik)

var(wij)rvar(wik)
varx1(wik)

0
BBB@

1
CCCA,

(7)

where r(wij,wik)=cov(wij,wik)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(wij)rvar(wik)

p
.

Therefore, the variances of estimated aj and ak are

var(âj )=
1

[1xr2(wij,wik)]
r

s2

nrvar(wij)

and

var( âk )=
1

[1xr2(wij,wik)]
r

s2

nrvar(wik)
, (8)

respectively. By comparing equations (6) with (8), it
shows that the variances of the estimated QTL effects
are not only affected by var(wij) and var(wik) but also
by cov(wij, wik) through r(wij, wik). The first term on
the right-hand side of equation (8) is usually called
variance inflation factor (VIF), which can be also
expressed in terms of information numbers, I(aj), I(ak)
and I(aj, ak), as

VIF=[1xr2(wij,wik)]
x1= 1x

I(aj)rI(ak)

I2(aj, ak)

� �x1

: (9)

The VIF can measure the inflation level of the
variance of an estimate (Marquardt, 1970). When
r(wij, wik)=0, VIF=1 and there is no variance in-
flation. If r(wij, wik)l0, VIF>1 indicating that the
inflation of variances occurs. In general, large VIF
indicates seriously inflated variances and a severe
collinearity problem, and the linked QTL are not
likely to be detected statistically. For the same Mj-Qj-
Nj-Qk-Nk order considered in Table 1, the value of
VIF in var(âj) or var(âk) is 5.750 ((1x0.9092)x1), im-
plying that its variance is inflated by 5.750 times as
compared to when they are unlinked. The values of
VIF are 4.651 and 3.694 in the RI F3 and RIL, res-
pectively, and they are 4.650 and 1.940 in the AI F3

and AI F10, respectively. The values of VIF become
smaller in the more advanced populations. Therefore,
advanced populations have the ability to provide
smaller VIF values for more powerful QTL detection
(more explanation is given below). Also, the VIF is
generally larger when interval sizes become wider or
the putative QTL move towards the centres of inter-
vals (not shown). With VIF, Vx1(W) in equation (7)
can be simplified in expression as Vx1(W)=VIFrA0,
where A0=[aij]2r2 denotes the 2r2 matrix in the
equation.

(vi) Test statistics for detecting linked QTL

We now derive the test statistics for analysing the
separation of linked QTL and calculating the sepa-
rating power. Let

tj=(âjxaj)=sj and tk=(âkxak)=sk (10)

be the standardized estimated QTL effects, where
sj
2=VIFra11rs2/n and sk

2=VIFra22rs2/n are the
variances of the estimated effects (a11=varx1(wij) and
a22=varx1(wij)). As Ix1(aj)=(a11rs2)/n and Ix1(ak)=
(a22rs2)/n, it is more convenient and succinct to ex-
press sj

2 and sk
2 as

s2
j=VIFrIx1(aj) and s2

k=VIFrIx1(ak) (11)
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in a population. Accordingly, the joint distribution of
tj and tk follows a bivariate normal distribution with
mean zero and covariance matrix with diagonal ele-
ments, one, and off-diagonal elements, r(wij, wik), as

tj

tk

� �
� N2

0

0

� �
,

1 xr(wij,wik)

xr(wij,wik) 1

� �� �
:

(12)

Given a pre-specified critical value c at the significance
level a, the power of separation is the sum of prob-
abilities that tj and tk are simultaneously different
from zeros :

P tj>cx
aj
sj

, tk>cx
ak
sk

� �
+P tj<xcx

aj
sj

, tk<xcx
ak
sk

� �

+P tj>cx
aj
sj

, tk<xcx
ak
sk

� �
+P tj<xcx

aj
sj

, tk>cx
ak
sk

� �

(13)

in the bivariate normal distribution. Note that the
sum of four probabilities is equivalent to Type I error
a under the null hypothesis (H0 : aj=0 and ak=0).
Under the alternative hypothesis (H1 : ajl0 and
akl0), equation (13) is the power to reject H0 and
allows us to evaluate the power of separation for dif-
ferent values of aj and ak in different populations (see
section 4).

When an ML interval mapping is implemented in
separating linked QTLs, the model is a normal mix-
ture model under the assumption of normal errors.
We use xij*’s to denote the predictor variables in the
ML interval mapping models. By treating xij*’s as
missing data and yi as observed data, we can apply the
EM algorithm to obtain the MLE and information
matrix by operating on the complete-data likelihood

L(Ycomjh)=f(yijh, xi1*, . . . , xip*) g(xi1*, . . . , xip*): (14)

For p QTL, there are 3p QTL genotypes, and let mj,
j=1, 2, …, 3p, denote their genotypic values. In the
complete-data likelihood, the conditional distribution
of the observed data given missing data, f(yi|h, xi1*,
…, xip*), follows a normal distribution N(mj, s2),
and g(xi1*, …, xip*) is a 3p-nomial distribution depend-
ing on the values of xij*’s (QTL genotypes). Let qij’s be
the 3p-nomial probabilities derived from the con-
ditional probabilities of QTL genotypes given the
flanking marker genotypes. Both MLE and observed
information matrix involve the posterior prob-
abilities of the QTL genotypes, pij=[qijrN(mj, s2)]=
[g3p

j=1qijrN(mj, s2)] (please see Kao & Zeng (1997)
for more details about the derivations). Therefore, for
p=2, evaluating the (expected) information numbers,
I(aj), I(ak) and I(aj, ak), needs to integrate the distri-
bution of markers and traits, and thus is more chal-
lenging. Here, we suggest a Monte Carlo simulation
approach to evaluate the expected pij by simulating,

say 10 000, individuals to approximate the expected
pij as E(pij)= g10 000

i=1 p̂ij

� �
=10000, where p̂ij denotes

the value of pij of each individual. In turn, the infor-
mation numbers can be obtained. Similarly, to those
outlined in REG interval mapping, we can denote
I(aj)/n=var(xij*)/s

2 and I(aj, ak)/n=cov(xij*, xik*)/s
2 for

sufficiently large n in ML interval mapping. Table 1
presents the values of I(aj) and I(aj, ak) for the same
case of Mj-Qj-Nj-Qk-Nk order. The values are ob-
tained by simulating trait values governed by two
QTLs with equal effects, and the heritability is
h2=0.05 with s2=1. As s2=1, I(aj)=var(xij*) and
I(aj, ak)=cov(xij*, xik*). The values of var(xij*) are
0.437, 0.640 and 0.815 in the F2, RI F3 and RIL, res-
pectively, and are 0.428 and 0.310 in the AI F3 and
F10, respectively (the values of var(xik) are of very
similar size and not presented). As compared to
var(wij) in REG interval mapping, these variances are
of similar sizes. The values of cov(xij*, xik*) are 0.380,
0.563, 0.691, 0.370 and 0.192 in the F2, RI F3, RIL, AI
F3 and AI F10 populations. Except for the value in
generation 10, these values are smaller as compared to
the values of cov(wij, wik) in REG interval mapping
(the values of cov(wij, wik) are 0.409, 0.577, 0.688,
0.392 and 0.189, respectively). Also, the values of
correlation between the QTL-coded variables can be
also obtained (Table 1). In general, the predictor
variables in ML interval mapping have smaller co-
variances (correlations). Therefore, the ML method
will have smaller VIF values when fitting closely
linked QTL together. The values of VIF are 4.084,
4.299 and 3.232 in the F2, RI F3 and RIL, respectively,
and are 3.999 and 1.655 in the AI F3 and AI F10, res-
pectively. These results indicate that the ML interval
mapping suffers a low collinearity problem, and it can
be more efficient and powerful in detecting linked
QTLs as will be further validated in sections 3 and 4.
By obtaining the information numbers of the QTL
effects for ML interval mapping, the components
in equation (12) can be updated to construct test
statistics, tj=(âjxaj)/sj and tk=(âkxak)/sk for ML
interval mapping. Then, using the bivariate normal
distributions, the hypothesis H0 : aj=0 and ak=0 can
be tested for calculating the power of ML interval
mapping.

When more, say p, QTLs are considered in the
REG interval mapping model, the information matrix
of parameters is I(a)=(WkW)/s2. It can shown that
I(a)/nyV(W)/s2. As V(W) is invertible, we can
express Vx1(W)=VIF rA0, where A0=[aij]prp. For
ML interval mapping, the information matrix can
be obtained by using the general formulae of Kao &
Zeng (1997). Similarly, when sample size grows large,
I(a)/n can be expressed as V(X*)/s2 (X* denotes the
matrix whose i, jth entry is xij*), whose diagonal
elements are the expected I(aj)’s, j=1, 2, …, p and off-
diagonal elements are expected I(aj, ak)’s. The V(X*)
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matrix is also invertible and can be formulated as
Vx1(X*)=VIFrA0. For both REG and ML interval
mapping, we can define sj

2=VIFrajjrs2/n, where ajj,
j=1, 2, …, p denote the diagonal elements in A0.
Then, we can construct the standardized estimated
effects as tj=(âjxaj)/sj, j=1, 2, …, p, and (t1, t2, …,
tp)k follows a p-variate normal distribution. Given
specified critical values, the probability of significance
can be calculated (Genz & Bretz, 2009) to evaluate the
power of separating more linked QTLs.

(vii) Genetic parameters and residual variances

Further, we know that the relationship between en-
vironmental variance, s2, and genetic variance, VG,
can be formulated as s2=1xh2

h2
rVG, where h2 is the

heritability of quantitative trait variation. The genetic
variance can be decomposed into components of
genotypic frequencies and QTL effects. For two
QTLs with additive effects only, VG=var(xij)raj

2+
var(xik)rak

2+2rcov(xij, xik)rajrak, where xij
and xik denote the coded variables of the two fully
observed QTLs (see Kao & Zeng, 2009 for the
components of VG with complete effects and con-
tributed by more QTLs). As var(xij)=var(xik)=
2(C+D+E) and cov(xij, xik)=2(CxD) depend on
the genotypic distribution of experimental popu-
lations, given specific QTL effects, VG is population
dependent. For example, V(xij)=1/2 and cov(xij, xik)
=(1x2rt)/2 in AI Ft populations, and 1/2<V(xij)<1
and (1x2r)/2<cov(xij, xik)<(1x2r)/(1+2r) in RI Ft

populations. Therefore, a more detailed formulation
of VG can be also expressed as

VG=
1xh2

h2
r2[(C+D+E)r(a2

j+a2
k)+(CxD)

rajrak]: (15)

Xu (1995) pointed out that the residual variance in
REG interval mapping inflates, due to the uncertainty
of the QTL genotype, and that the amount of in-
flation parameter is about [var(xij)xvar(wij)]raj

2 in a
single QTL model. For a multiple QTL model, the
amount is about gp

j=1[var(wij)rvar(wij)]ra2
j ignoring

covariance parts. If the event of double recom-
binations in the interval is negligible, this amount can
be expressed as 4p(1xp)(E+2D)raj

2 in a single QTL
model. For p QTL, Qj, in p distinct intervals, (Mj, Nj),
j=1, 2, …, p, the amount of inflation is about
gp

j=1 4pj(1xpj)(Ej+2Dj)ra2
j , where pj=r1j/rj (rj and

r1j are the recombination fractions between (Mj, Nj)
and between (Mj, Qj), and Ej (Dj) is the frequency of
MjNj/Mjnj (Mjnj/Mjnj) in the population. There is no
inflation if QTLs are completely observed (coincident
with markers). Therefore, when QTLs are located at
intervals and inferred from flanking markers, the in-
flation of residual variance reduces the QTL detection

power as compared to the power of detecting com-
pletely observed QTL (see also section 5).

The above analyses decompose equation (12) into
components related to sample size, QTL effects, dis-
tance between genes, interval size and genotypic
distribution of a population. They pave the way to
predict and analyse the power of separation under
these factors, across populations and using different
methods, and to conduct the QTL analysis when
QTLs are completely observed (coincident with
markers) or not observable (located in the markers
intervals). The validity of proposed formulae in pre-
dicting the power of separating linked QTLs is first
checked by Monte Carlo simulations, and then the
formulae are applied to the power analysis under
several mapping factors in different populations.

3. Simulation

We consider the case of Mj-Qj-Nj–Mk-Qk-Nj order in
the F2 population. We assume that all markers are
10 cM apart, and the two QTLs are located in the
middle of their intervals. We set h2=0.2, aj=1 and
ak=1. With such a setting, var(wij)=var(wik)=0.4522
and r(wij, wik)=0.7445 in REG interval mapping. The
predicted powers by REG interval mapping are 2.34,
8.70, 20.09, 34.27, 48.35, 60.63 and 70.61% for
n=200, 250, 300, 350, 400, 450 and 500 at a=0.005.
For ML interval mapping, var(xij*)=var(xik*)=0.4515
and r(xij*, xik*)=0.7272. The predicted powers by ML
interval mapping are 3.90, 12.59, 26.18, 41.45, 55.54,
67.19 and 76.27% for the six different sample sizes
at the same a level. Under each case, 200 simulated
replicates were generated to obtain the observed
powers. The observed power is the proportion of rep-
licates with both test statistics larger than the critical
value. For both methods, their observed powers are
compared with the predicted powers for each case and
plotted in Fig. 1. It indicates that the observed and
predicted powers by REG and ML interval mapping
are reasonably close to each other under the given
sample sizes. Thus, simulation results validate our
proposed formulae.

4. Numerical analysis

On the basis of our proposed formulae, numerical
analyses of the power of dissecting closely linked
QTLs under various mapping factors and in different
experimental populations are shown in Figs 2(a–d).
The factors considered are sample size, QTL effect,
interval size and distance between QTLs, and the
populations considered include the F2, AI and RI.
Also, both REG and ML interval mapping are
applied to the power analysis. In all the cases, we
assume h2=0.2. Figure 2(a) shows the power curves of
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separating two QTLs located in 10 or 20 cM spaced
marker intervals under different distances. The order
considered is Mj-Qj-Nj–Mk-Qk-Nk, and both QTL
are located right in the middle of their intervals
(dMjQj

=5 cM, dQjNj
=5 cM, dMkQk

=5 cM and dQkNk
=

5 cM in the case of the 10 cM intervals, and
dMjQj

=10 cM, dQjNj
=10 cM, dMkQk

=10 cM and
dQkNk

=10 cM in the case of the 20 cM intervals).
The distances between QTLs are 20, 25, 30, 35, 40, 45
and 50 cM, respectively (dNjMk

=10, 15, 20, 25 and
30 cM in the 10 cM intervals, and dNjMk

=0, 5, 10, 15
and 20 cM in the 20 cM intervals). The two QTLs
have equal effects and the sample size is 200. It shows
that, given a distance between QTLs, the powers of
separation are larger when they are in the narrow in-
tervals. Also, the powers by ML interval mapping is
higher than those by REG interval mapping. As
mentioned earlier, separating linked QTLs is the
most difficult for the case of Mj-Qj-Nj-Qk-Nk (Mj-Qj-
Nk-Qk-Nk) order, because they share a common
flanking marker. Figures 1 b–d present the powers of
separating two 10-cM-apart QTLs in the F2, AI and
RI populations for this order. Assume that dMjQj=
5 cM, dQjNj=5 cM, dNjQk=5 cM and dQkNk=5 cM,
and that the QTLs have equal effects. In Fig. 2 b, with
500 sample size, the powers of REG and ML interval
mapping are very low (close to zeros) in the F2 and F3

populations. But, the powers increase in the more
advanced populations. The powers increase to 0.238
and 0.670 using REG interval mapping in AI F6 and
RI F6 populations, and they increase to 0.367 and
0.741, respectively, using the ML method. Figure 2 b
also presents the powers of separation whenQj andQk

are completely observed (and fitted into the model).

As expected, the powers are greater when they are
completely observed (the curves with solid and empty
triangles). For example, the power is 0.427 in F2, and
it becomes 0.732 and 0.925 in AI F3 and RI F3 popu-
lations, respectively. The powers gradually attain
more than 0.99 for more advanced populations.
Figure 2 c shows the powers of separating two fully
observed linked QTLs under different sample sizes.
The QTLs have equal effects. The powers are about 0,
0.001, 0.037, 0.198 and 0.427 for n=100, 300 and 500,
respectively, in the F2 population, and are 0.059
(0.032), 0.194 (0.518), 0.565 (0.862), 0.815 (0.968) and
0.930 (0.994), respectively, in the AI F5 (RI F5) popu-
lations. This shows that advanced populations can be
much more efficient, and that the RI populations can
be more powerful than the AI populations in sepa-
ration. Figure 2 d illustrates the relations between
power and sample size when separating 10-cM-apart
QTL with different sizes in the F2 population. The
QTLs are assumed to be completely observed. The
powers of separating QTLs with similar size (e.g.
aj : ak=1 : 1) are higher than those of separating QTLs
with different size (e.g. aj : ak=2 : 1), and that the
powers for separating QTLs with different direction
of effects (e.g. aj : ak=1 :x1) is much higher than
those with the same direction of effects (e.g. aj : ak=
1 : 1). For example, the powers are 0.236, 0.344, 0.427,
0.981 and 1.000 (0.298) for the effect ratio 1 : 2, 1 : 1.5,
1 : 1, 1 :x1.5 and 1 :x1 with n=500, respectively.
In general, an effective separation of closely linked
QTLs requires large n, high h2, and small r and more
QTL information in a population.

5. Discussion

QTL mapping is a key approach to the understanding
and estimation of the genetic architectures of quanti-
tative traits in quantitative genetics (Zeng et al., 1999).
In QTL mapping, when QTLs are tightly linked, the
estimation of QTL parameters could be easily biased,
and the power of detection could be reduced. There-
fore, the study of detecting and separating the linked
QTLs correctly and efficiently remains an important
issue in QTL mapping (Lander & Botstein, 1989,
Ronin et al., 1999; Hu & Xu, 2008). We tackle this
issue by developing test statistics to test the effects of
QTLs located at the markers or in the intervals. Both
the REG and ML interval mapping models are con-
sidered. By well characterizing the genotypic dis-
tributions of three and four genes, we are able to
evaluate the variances and covariances of the pre-
dictor variables of QTL in the models, and then to
construct test statistics for detecting linked QTLs
under more wide-ranging situations. Our proposed
test statistics are simple functions of information
numbers, VIF and genetic parameters in the models
in the populations. They allow us to predict the power
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Fig. 1. The predicted and observed powers obtained by
ML and REG interval mapping under different sample
sizes in the F2 population. The order considered is Mj-Qj-
Nj–Mk-Qk-Nk. The two QTLs have equal effects and are
located in the middle of the 10 cM spaced intervals. The
distance between QTLs is 20 cM and h2=0.2.
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of separating linked QTLs under different mapping
factors and across different populations. The direct
application of our approach to QTL mapping re-
quires the intervals potentially localizing QTL are
known for testing. However, those potential intervals
are not known before implementing the preliminary
analysis. To identify the potential intervals, the use of
multi-dimensional search, such as screening all pairs
of close intervals, along the whole genomes may not
be appropriate, as it can be subjected to a substantial
computational burden. In practice, one suggestion is
to first use one-QTL model analysis (one-dimensional
search) to identify the regions containing poten-
tial intervals. In the likelihood profiles of the one-
dimensional search, the regions showing significant
sign changes in the estimated QTL effects or showing

wide and significant peaks (ghost QTL) may indicate
containing potential intervals (Haley & Knott, 1992;
Kao et al., 1999; Zeng et al., 1999). Then our ap-
proach can be applied to these potential intervals for
further analysis of closely linked QTLs.

The different advanced populations have different
population structures, such as homozygosities, linkage
disequilibria (correlations between genes) and geno-
typic frequencies (Weir, 1996). Therefore, they will
show different properties in the resolution of closely
linked QTLs. When QTLs are linked, their corre-
lation can be generally formulated as 1x2R, where
R is the proportion of recombinants in a population.
In a population, the closer they are linked, the less
recombinants are produced and the stronger the
correlation is. Fitting linked QTLs is equivalent to
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Fig. 2. (a) Power curves of separating two linked QTLs located in the middle of the 10- or 20-cM-spaced marker intervals
under various distances in the F2 population. The order considered is Mj-Qj-Nj–Mk-Qk-Nk. The distances between QTLs
are 20, 25, 30, 35, 40, 45 and 50 cM, respectively. The two QTLs have equal effects, and n=200. (b) Power curves of
separating two 10-cM-apart QTLs when QTLs are coincident with markers (MR) or located in the intervals (REG and
ML) in the AI and RI populations. QTLs have equal effects and n=500. The order considered is Mj-Qj-Nj-Qk-Nk. (c)
Power curves of separating two 10-cM-apart QTLs under different sample sizes in the AI and RI populations. QTLs have
equal effects and are located at markers. (d) Power curves of separating two 10-cM-apart QTLs with different sizes of
effects under different sample sizes in the F2 population. QTLs are assumed to be located at markers. In all cases, h2=0.2.
a=0.005 is chosen as the significant level.
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fitting correlated variables into the model, which
cause the problems of collinearity in statistical esti-
mation. Consequently, the separation becomes more
difficult for closer QTLs as the collinearity problem
becomes more severe. The obvious way to relieve the
collinearity problem is to increase the proportion of
recombinant in a population. In the BC or F2 popu-
lations, the proportion of recombinants is equivalent
to the recombination fraction between QTLs (R=r).
In the AIL and RIL populations, more recombinants
can be produced and accumulated, so that R>r as
generation proceeds. Then, these advanced popu-
lations would provide smaller VIF and reduce corre-
lations for the QTL parameters to facilitate QTL
detection. Nevertheless, we should know that the sizes
of marker intervals localizing QTLs may expand
(relative to that in the backcross or F2 population) in
the more advanced AI populations (Lynch & Walsh,
1998; Kao & Zeng, 2009) so that the benefit may be
offset. Greatly improving separation in the AI popu-
lations requires denser markers around the detected
QTL (QTL located in narrow intervals), and the im-
provement would be limited if QTLs are in the sparse
marker region (wide intervals). The more powerful
separation in the later RI population is also due to
the increase of additive variances (accumulation of
homozygotes). For example, the additive variance of
a QTL in RIL can be twice of that in the F2 popu-
lation, and the power of separation can be much
higher in the RIL (see Fig. 2 b, c). By well utilizing the
properties of genome structures in the later advanced
populations, it is possible to improve the resolution
of closely linked QTLs in QTL detection.

Given a distance between QTLs, the powers of
separating QTL at the markers are greater than
those in the intervals (Fig. 2 b). To detect QTLs
located in the intervals, the REG or ML interval
mapping models have been very popular and used in
the separation. In either one of the two statistical
models, when the flanking marker intervals become
wider or the locations of QTLs are closer to the
middle of the intervals, the variances of predictor
variables become smaller and their correlations be-
come larger (not shown). Consequently, their detec-
tion would be more difficult (Fig. 2 a). Our proposed
formulase can take the parameters of QTLs positions
and effects and the population structures together
into account to predict the power of separation. In
general, given a distance between QTL, separation
can be more effective for QTLs of similar size,
located closer to markers and in narrow intervals,
with opposite direction effects, and contributing to a
high proportion of trait variation. Also, it is possible
to gain more power in QTL detection by utilizing

more advanced populations. The results may facili-
tate the analysis of QTL resolution in the genetic
study of quantitative traits.
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Appendix. Genotypic distribution in advanced populations

Consider an F2 or advanced population derived from
two inbred lines P1 and P2. For m genes, there are 2m

different gametic genotypes and 22mx1+2m/2 zygotic
genotypes. For example, there are 4, 8 and 16 gametic
genotypes and 10, 36 and 136 zygotic genotypes for
m=2, 3 and 4. As different populations undergo
various number of meiosis cycle, the distributions of
gametic and zygotic genotypes vary. For selfing,
Haldane & Waddington (1931) formulated the tran-
sition equations of the ten genotypic frequencies for
m=2. Kao & Zeng (2009) obtained the transition
equations of the 36 genotypic frequencies for m=3.
The procedures of obtaining transition equations for
m=4 are given below. Let 1 and 0 represent the
capital and small-letter alleles, respectively, from P1

and P2, so that the configurations of the 16 gametes
can be represented as 1111, 0000, 1110, 0001, 1101,
0010, 1011, 0100, 0111, 1000, 1100, 0011, 1010, 0101,

1001 and 0110. In the F2 population, these 16 gamete
frequencies can be obtained the under Haldane map
function (using the Markov property), and they are
P(1111)=P(0000)=(1xr1)(1xr2)(1xr3)/2, where r1,
r2 and r3 are the recombination rates between the first
and second genes, between the second and third genes
and the third and four genes, respectively. The other
frequencies are P(1110)=P(0001)=(1xr1)(1xr2)r3/2,
P(1101)=P(0010)=(1xr1)r2r3/2, P(1011)=P(0100)=
r1r2(1xr3)/2, P(0111)=P(1000)=r1(1xr2)(1xr3)/2,
P(1100)=P(0011)=(1xr1)r2(1xr3)/2, P(1010)=
P(0101)=r1r2r3/2 and P(1001)=P(0110)=r1(1xr2)r3/
2, respectively. The random unification of these 16
gametes frequencies will produce the 136 different
zygotes in a population. If selfing persists after F2 to
produce RI populations, the transition equation for
the frequency of 1111

1111
genotype is

Pt+1
1111

1111

� �
=Pt

1111

1111

� �
+

1

4
Pt

1111

1110

� �
+

1

4
Pt

1111

1011

� �
+

1

4
Pt

1111

1101

� �
+

[(1xr2)(1xr3)+r2r3)]
2

4
Pt

1111

1010

� �

+
[r2(1xr3)+r3(1xr2)]

2

4
Pt

1110

1011

� �
+

(1xr3)
2

4
Pt

1111

1100

� �
+

r23
4
Pt

1110

1101

� �

+
(1xr2)

2

4
Pt

1111

1001

� �
+

r22
4
Pt

1101

1011

� �
+

(1xr2)
2(1xr3)

2

4
Pt

1111

1000

� �
+

r22(1xr3)
2

4
Pt

1100

1011

� �

+
r22r

2
3

4
Pt

1010

1101

� �
+

(1xr2)
2r23

4
Pt

1001

1110

� �
+

1

4
Pt

1111

0111

� �

+
[(1xr1)[(1xr2)(1xr3)+r2r3]+r1[r2(1xr3)+r3(1xr2)]]

2

4
Pt

1111

0110

� �

+
[(1xr1)[r2(1xr3)+r3(1xr2)]+r1[(1xr2)(1xr3)+r2r3]]

2

4
Pt

1110

0111

� �

+
(1xr1)

2[(1xr1)(1xr2)+r1r2]
2

4
Pt

1111
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� �
+

r21[r1(1xr2)+r2(1xr1)]
2

4
Pt
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� �

+
r21[(1xr1)(1xr2)+r1r2]

2

4
Pt
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� �
+

(1xr1)
2[r1(1xr2)+r2(1xr1)]

2

4
Pt

1110

0011

� �

+
[(1xr1)(1xr2)+r1r2]

2

4
Pt

1111

0101

� �
+

[r1(1xr2)+r2(1xr1)]
2

4
Pt

1101

0111

� �

+
[(1xr1)(1xr2)+r1r2]

2(1xr3)
2

4
Pt

1111

0100

� �
+

(1xr3)
2[r1(1xr2)+r2(1xr1)]

2

4
Pt

1100

0111

� �

+
r23[(1xr1)(1xr2)+r1r2]

2

4
Pt

1110

0101

� �
+

r23[r1(1xr2)+r2(1xr1)]
2

4
Pt

1101

0110

� �

+
[(1xr1)(1xr2)]

2

4
Pt

1111

0001

� �
+

r21r
2
2

4
Pt
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0101

� �
+

(1xr1)
2r22

4
Pt

1101

0011

� �
+

r21(1xr2)
2

4
Pt

1001

0111

� �

+
[(1xr1)(1xr2)(1xr3)]

2

2
Pt

1111

0000

� �
+

[r1(1xr2)(1xr3)]
2

2
Pt
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0111

� �
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+
[(1xr1)r2(1xr3)]

2

2
Pt

1100

0011

� �
+

[r1r2r3]
2

2
Pt

1010

0101

� �
+

[(1xr1)(1xr2)r3]
2

2
Pt

1110

0001

� �

+
[r1r2(1xr3)]

2

2
Pt

1011

0100

� �
+

[r1(1xr2)r3]
2

2
Pt

1001

0110

� �
+

[(1xr1)r2r3]
2

2
Pt

1101

0010

� �

+
(1xr1)

2

4
Pt

1111

0011

� �
+

r21
4
Pt

1011

0111

� �
:

The above equation contains 41 terms and is derived
below. Among all 136 zygotes, 41 of them are capable
of producing 1111 gamete with different proportions.
Therefore, the frequency of 1111

1111
zygote in t+1 gener-

ation is equivalent to the sum of frequencies of 1111
1111

progeny of these 41 parental zygotes in t generation.
The proportion of 1111

1111
progeny from 1111

1111
parents is

100%. The proportion of 1111
1111

progeny from 1111
1110

, 1111
1011

and 1111
1101

parents are 1/4. The proportions from
1111
1010

, 1110
1011

, 1001
0110

and 1101
0010

parents are [(1xr2)(1xr3)+
r2r3)]

2/4, [r2(1xr3)+r3(1xr2)]
2/4, [r1(1xr2)r3]

2/4 and
[(1xr1)r2r3]

2/4, respectively. Likewise, The proportion
of 1111

1111
progeny from the other genotypes can be

also obtained. Because of symmetry, there are
72 transition equations in total, and the remaining
71 equations can be formulated in a similar way. The
complete 72 equations and the computer programme
(written in R language) are provided in Sup-
plementary materials. The computer programme is
also placed at http://www.stat.sinica.edu.tw/ychkao
for download. If mating is random, the transition
equations for obtaining the frequencies of gametic
genotypes for any m can be derived by using
Geiringer’s approach (1944), and then the frequencies
of zygotic genotypes can be obtained.
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