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ABSTRACT
The differences between maximum-likelihood (ML) and regression (REG) interval mapping in the

analysis of quantitative trait loci (QTL) are investigated analytically and numerically by simulation. The
analytical investigation is based on the comparison of the solution sets of the ML and REG methods in
the estimation of QTL parameters. Their differences are found to relate to the similarity between the
conditional posterior and conditional probabilities of QTL genotypes and depend on several factors, such
as the proportion of variance explained by QTL, relative QTL position in an interval, interval size, difference
between the sizes of QTL, epistasis, and linkage between QTL. The differences in mean squared error
(MSE) of the estimates, likelihood-ratio test (LRT) statistics in testing parameters, and power of QTL
detection between the two methods become larger as (1) the proportion of variance explained by QTL
becomes higher, (2) the QTL locations are positioned toward the middle of intervals, (3) the QTL are
located in wider marker intervals, (4) epistasis between QTL is stronger, (5) the difference between QTL
effects becomes larger, and (6) the positions of QTL get closer in QTL mapping. The REG method is
biased in the estimation of the proportion of variance explained by QTL, and it may have a serious
problem in detecting closely linked QTL when compared to the ML method. In general, the differences
between the two methods may be minor, but can be significant when QTL interact or are closely linked.
The ML method tends to be more powerful and to give estimates with smaller MSEs and larger LRT
statistics. This implies that ML interval mapping can be more accurate, precise, and powerful than REG
interval mapping. The REG method is faster in computation, especially when the number of QTL consid-
ered in the model is large. Recognizing the factors affecting the differences between REG and ML interval
mapping can help an efficient strategy, using both methods in QTL mapping to be outlined.

SINCE Lander and Botstein (1989) initiated an the computation of the maximum-likelihood estimates
interval mapping method for systematically search- (MLE) of the finite normal mixture model, the iterative

ing the entire genome for quantitative trait loci (QTL) expectation-maximization (EM) algorithm (Dempster
using molecular genetic marker data, many efforts have et al. 1977) is broadly applicable as Newton-Raphson and
been made to enhance the precision, accuracy, and Fisher’s score methods may turn out to be complicated.
power of QTL mapping. They include the extension of When the number of QTL considered in the model
the statistical model from one-QTL to multiple-QTL increases, the numbers of mixture components and pa-
(Jansen 1993; Zeng 1994; Kao et al. 1999), incorpora- rameters in the likelihood increase dramatically. As a
tion of random effects in the model (Hoeschele and result, maximization of the likelihood through the EM
VanRaden 1993a,b), ease of computation (Haley and algorithm could become difficult to obtain; moreover,
Knott 1992; Martinez and Curnow 1992; Xu when mapping the entire genome for QTL, the search
1998a,b), generalization to different experimental de- needs to be performed at every position of the genome.
signs (Carbonell et al. 1992; Jiang and Zeng 1997; Therefore, the ML estimation by the EM algorithm is
Song et al. 1999; Zeng et al. 2000) and to multiple and often regarded to be complex in analysis and computa-
categorical trait analyses (Hackett and Weller 1995; tionally expensive for QTL mapping (Haley and Knott
Jiang and Zeng 1995; Henshall and Goddard 1999), 1992; Satagopan et al. 1996; Xu 1998a,b). In view of
the use of permutation tests, and Bayesian estimation these difficulties, regression (REG) interval mapping,
(Doerge and Churchill 1996; Satagopan et al. 1996; which regresses the quantitative trait value on the condi-
Sillanpaa and Arjas 1999) in QTL mapping. tional expected genotypic value, was proposed to ap-

The likelihood of the interval mapping model is gen- proximate ML interval mapping to save computation
erally a finite normal mixture (Lander and Botstein time at one or multiple genomic positions (Haley and
1989; Jansen 1993; Zeng 1994; Kao et al. 1999). In Knott 1992; Martinez and Curnow 1992). Although

REG interval mapping lacks some attractive properties,
such as consistency and asymptotic efficiency, as com-
pared to ML interval mapping in statistical inference,Author e-mail: chkao@stat.sinica.edu.tw
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TABLE 1

Conditional probabilities of a putative QTL given flanking marker genotypes
for a backcross population

QTL genotype
Marker Marker
type genotype QQ Qq

1 MN/MN (1 2 r1)(1 2 r2)
1 2 r

r1r2

1 2 r
2 MN/Mn (1 2 r1)r2

r
r1(1 2 r2)

r
3 MN/mN r1(1 2 r2)

r
(1 2 r1)r2

r
4 MN/mn r1r2

1 2 r
(1 2 r1)(1 2 r2)

1 2 r

r is the recombination fraction between the two flanking markers M and N. r1 (r2) is the recombination
fraction between the putative QTL and the left (right) marker M (N).

and may suffer from the lack of interpretability in terms their differences, a one-QTL model for a backcross pop-
ulation is first used as an example. Their differencesof the genetic model (Haley and Knott 1992; Jansen

1993), it is often claimed that the two approaches pro- under a multiple-QTL model are discussed later. The
one-QTL ML mapping model can be written asvide virtually similar or identical estimates and test statis-

tics in QTL mapping (Haley and Knott 1992; Xu
yi 5 m 1 ax*i 1 εi, i 5 1, 2, . . . , n, (1)1998a,b). As a consequence, the REG method has been

widely accepted and applied to QTL mapping studies where yi is the quantitative trait value of individual i, m
by many researchers (Haley et al. 1994; Whittaker et is the mean, a is the effect of QTL Q, x*i , taking a value
al. 1996; Xu 1996, 1998a,b; Goffinet and Mangin 1⁄2 (21⁄2) for homozygote QQ (heterozygote Qq), denotes
1998; Lebreton et al. 1998; Dupuis and Siegmund 1999; the genotype of Q, and εi is the environmental deviation
Rebai and Goffinet 2000). and is assumed to follow N(0, s2). Although the geno-

Although REG may approximate ML interval mapping type of Q for an individual is usually unobserved and
well in some cases as shown by Haley and Knott (1992) could be QQ or Qq, its distribution can be inferred from
and Xu (1998a,b), their differences in the estimation its flanking marker genotypes. Suppose the flanking
of QTL parameters could be significant for practical markers are M and N. Then, there are four types of
QTL mapping as shown in this article. Unfortunately, marker genotypes, type 1 MN/MN, type 2 MN/Mn, type
there are few attempts to investigate these differences 3 MN/mN, and type 4 MN/mn, as shown in Table 1.
in the literature. Xu (1995) pointed out that the estima- Given the four marker genotypes, the conditional prob-
tion of residual variance by REG interval mapping is abilities for QTL genotypes QQ and Qq, denoted by pi1
biased. In this article, the differences between the two and pi2, respectively, at a position between the markers
approaches in the estimation of and testing for QTL can be calculated based on Haldane’s mapping function
parameters due to several factors, such as heritability, (Haldane 1919), and they are listed in Table 1.
size of interval, relative QTL position in an interval, the Since the QTL genotype x*i could be homozygote (1⁄2)
difference between QTL effects, epistasis, and linkage or heterozygote (21⁄2) for an individual, the likelihood
between QTL, are investigated both analytically and nu- is then a normal mixture with mixing proportions equiv-
merically by simulation. With the understanding of the alent to the conditional probabilities pi1 and pi2. For n
factors affecting the differences between the two meth- individuals in the sample, the likelihood of the model
ods, a more efficient, precise, and powerful strategy in Equation 1 is
using both methods can be explored in QTL mapping.
The QTL mapping properties under these factors are L(u|Y,X) 5 p

n

i51

[o
2

j51

pijN(mij,s2)], (2)
also investigated and discussed.

where u denotes parameters (pij, m, a, s2), Y and X
denote the trait value and marker genotypes, N(mij, s2)MAXIMUM-LIKELIHOOD INTERVAL MAPPING
denotes the normal density function with mean mij and

The differences between the ML and REG interval variance s2, and
mappings can be illustrated by investigating the differ-
ences between their estimators of mean, genetic effects, mi1 5 m 1

a
2

and mi2 5 m 2
a
2and residual variance. To simplify the explanation of
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are genotypic values of QQ and Qq. In estimation, this
z*i 5 E(x*i 2|yi,Xi,u) 5 11222pi1 1 121

222pi2 5
1
4normal mixture model can be treated as an incomplete

data problem (Little and Rubin 1987), which regards
are the conditional posterior expectations of x*i andthe QTL genotype x i* as missing data and trait yi and
x*i 2 given yi and Xi, respectively. In each iteration, newmarkers Xi as observed data, and the EM algorithm can
estimates of m, a, and s2 are obtained in the M-step.be implemented to maximize the likelihood and obtain
These new estimates are then used to obtain new pi1’sthe MLE.
and pi2’s for the next iteration. The converged valuesLet the probability distribution of missing data x*i as
in the iteration are the MLE. A disadvantage of the EM
algorithm was that it did not provide the estimates ofg(x*i ) 5 5pi1 if x*i 5 1/2

pi2 if x*i 5 21/2. the covariance matrix of the MLE. However, this disad-
vantage can be easily removed by using appropriate

The conditional distribution of the observed data, yi and
methods, such as by Louis (1982) and Meng and Rubin

Xi, given the missing data xi* can be considered as an
(1991), associated with the EM algorithm. The null hy-

independent sample from a population such that yi|(u,
pothesis, H0, a 5 0, for the existence of a QTL is testedXi, xi*) z N(m 1 axi*, s2), and the EM algorithm can
by a likelihood-ratio test (LRT), 22 loge(L0/L1), wherebe used to obtain the MLE. At a given position, pij’s can
L0 and L1 are the maximum likelihoods under H0 andbe determined. By the definition of the EM algorithm,
no restriction. The larger the LRT statistic at a testingthe iteration of the EM-step for obtaining m, a, and s2

position, the more likely the existence of a QTL at thatproceeds as follows:
position.E-step: The posterior probabilities of the QTL geno-

types x*i ’s of the n individuals are updated as

REGRESSION INTERVAL MAPPING
pi1 5 p(x*i 5

1
2
|yi,Xi,u) 5

pi1N(mi1,s2)
pi1N(mi1,s2) 1 pi2N(mi2,s2) Haley and Knott (1992) commented on ML interval

mapping that the iterative procedure of the EM algo-and
rithm in obtaining the MLE can be complex and compu-
tationally slow to converge. Therefore, they developed

pi2 5 p(x*i 5
1
2
|yi,Xi,u) 5

pi2N(mi2,s2)
pi1N(mi1,s2) 1 pi2N(mi2,s2) REG interval mapping to approximate ML interval map-

ping for mapping QTL. They claimed that the REG
for i 5 1, 2, . . . , n (see Kao and Zeng 1997 for the method can ease the computation and produce very
detailed procedure of derivation). Note that pi1 for indi- similar results as those obtained by the ML method. The
vidual i is a function of pi1, pi2, yi, m, a, and s2. It is one-QTL REG interval mapping model for a backcross
important to clarify the relationship between the condi- population can be formulated as
tional probability pi1 and conditional posterior probabil-

yi 5 m 1 awi 1 εi, (6)ity pi1 of the QTL genotype in the comparison of ML
and REG interval mappings. It is shown later that the

where m, a, and εi have the same definitions as the modelmore similarity between pi1 and pi1 for each i, the better
in Equation 1, andthe approximation of REG to ML interval mapping.

Note that pi1 5 pi1 if pi1 5 1 or pi1 5 0 (i.e., the QTL is
wi 5 E(x*i |Xi) 5

1
2
pi1 2

1
2
pi2 5 pi1 2

1
2located at the marker) or a 5 0. If pi1 ≈ 1 or pi2 ≈ 0 or

a ≈ 0, then pi1 ≈ pi1.
M-step: Find m, a, and s2 to satisfy is the conditional expectation of the QTL genotype

given the flanking marker genotype. By treating wi as
fixed, the model is a regression model, and this methodm 5

1
no

n

i51

(yi 2 w*i a) (3)
is called REG interval mapping in QTL mapping. In
estimation, both least-squares and maximum-likelihood

a 5 on
i51w*i (yi 2 m)

on
i51z*i

(4) techniques can be implemented to estimate m, a, and
s2 in Equation 6. Least-squares estimates (LSE) of m
and a are the solutions of

s2 5
1
n3o

n

i51

(yi 2 m)2 2 2(yi 2 m)w*i a 1 z*i a24, (5)

m 5
1
no

n

i51

(yi 2 wia) (7)
where

a 5 on
i51wi(yi 2 m)

on
i51zi

, (8)w*i 5 E(x*i |yi,Xi,u) 5
1
2

pi1 2
1
2

pi2 5 pi1 2
1
2

and where
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Proportion of variance explained by a QTL: If the
zi 5 w 2

i 5 1pi1 2
1
222 5

1
4

2 pi1(1 2 pi1). proportion of variance explained by a QTL is small, the
ratio of QTL effect a to the environmental deviation s

Note that the estimates of the regression model will fail (a/s) will be small. Consequently, the densities of nor-
if zi 5 0 (pi1 5 pi2 5 1|2) for every i. However, this mal mixture components are about the same for differ-
situation will not occur because pi1 ? pi2 for individuals ent genotypes, i.e.,
with type 1 (MN/MN) and type 4 (MN/mn) flanking

N(mi1,s2) ≈ N(mi2,s2) ≈ N(m,s2),marker genotypes in the backcross population. The LSE
of s2 is and pi1 ≈ pi1. The extreme case is a 5 0 (mi1 5 mi2 5 m)

and pi1 5 pi1. Therefore, REG mapping can approximate
ŝ2 5

1
n 2 2 o

n

i51

[(yi 2 m)2 2 2(yi 2 m)wia 1 zia2], (9) ML mapping well when the proportion is low (the QTL
effect a is small). When the proportion is high, QTL

where n 2 2 is the degree of freedom for the residual effect a becomes relatively large when compared with
sum of squares. The likelihood of the REG mapping the environmental deviation s, and the difference be-
model is a normal density tween the two normal densities can become significant.

As a result, the approximation of REG to ML interval
LREG(u|Y,X) 5 p

n

i51

N(m 1 awi,s2) (10) mapping may not be good for QTL with large effect.
Relative QTL location in an interval: If a QTL is lo-

rather than a normal mixture density. The mixing pro- cated on the boundary of a marker interval, pi1 is close
portion of pij’s in the ML mapping likelihood (Equation to 1 or 0, and the conditional and posterior probabilities
2) is blended into wi of Equation 10. If the maximum- will be similar (pi1 ≈ pi1). When the QTL position shifts
likelihood principle is used in estimation, the MLE of from the boundary toward the middle of an interval, pi1
m and a for maximizing Equation 10 are the same as and pi1 become more dissimilar to each other. If the
Equations 7 and 8. The MLE of s2 has a divisor n instead QTL is located in the middle, individuals with type 2
of n 2 2 in Equation 9. or 3 flanking marker genotype have pi1 5 0.5, and pi1

and pi1 will be the most dissimilar. Consequently, the
approximation of REG to ML mapping will be better

DIFFERENCES BETWEEN ML AND
when the QTL is located near the boundary, but itREG INTERVAL MAPPING
becomes poor as the location moves toward the middle

By comparing the solution sets between ML and REG of an interval.
interval mappings, it can be seen that the two solution Interval size: There are four types of flanking marker
sets have similar expressions, but different contents. In genotypes (Table 1). Types 1 and 4 are nonrecombi-
the REG method, the conditional expectations of QTL nant, and types 2 and 3 are recombinant. Given a posi-
genotype, wi and zi, are used in estimation. In the ML tion in an interval, the conditional probability pi1 for
method, the conditional posterior expectations of QTL QQ will be closer to 1 or 0, i.e., pi1 can be closer to
genotype, wi* and zi*, play the same role in estimation. pi1, for nonrecombinant individuals than recombinant
The conditional expectations consider only the condi- individuals. As there are more nonrecombinant flank-
tional probabilities of QTL genotypes pi1’s, and the con- ing genotypes in a narrow interval than in a wider inter-
ditional posterior expectations consider the posterior val, the approximation of REG to ML mapping conse-
probabilities pi1’s. It can be seen that the posterior prob- quently is better for a QTL located in a narrow interval
ability pi1 also utilizes phenotypic information as well as than in a wider interval. Therefore, if QTL are located
marker information. Intuitively, the ML method can in the dense marker region, the differences between
provide better estimates than the REG method because the two methods will be minor.
pi1 is more informative than pi1. Analytically, the differ-
ences between ML and REG interval mapping in estima-

MULTIPLE-QTL MODELtion will depend on the differences between the two
kinds of expectations. The two kinds of expectations For the one-QTL model, it has been shown that the
are equivalent if and only if pi1 5 pi1 and pi1 5 1 (or pi1 5 approximation of REG to ML interval mapping depends
0) for each i (the QTL is located at a marker). How on the similarity between the conditional probability pi1good the approximation of REG to ML interval mapping and conditional posterior probability pi1 for each i. The
is depends on the similarity between pi1’s and pi1’s. In- same argument also applies to the multiple-QTL model.
vestigating the factors affecting the similarity between When multiple, say, m QTL are considered, the multiple
pi1 and pi1 can lead to identifying the differences between interval mapping (MIM; Kao et al. 1999) model can be
the two methods. These factors include (1) proportion of written as
variance explained by a QTL (size of a QTL), (2) the
relative QTL position within an interval, and (3) the size yi 5 m 1 o

m

j51

ajx*ij 1 o
m

j?k
djk(Ijkx*ij x*ik) 1 εi, (11)

of the interval flanking the QTL.
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where xij* denotes the genotype of QTL Q j, aj and Ijk plained by QTL, the relative QTL position in an interval,
and interval sizes, discussed in the previous section, theare the main and epistatic effects, djk is an indicator

variable for indicating whether the epistasis between Q j relative sizes of genotypic values of the 2m possible geno-
types, mij’s, can affect the approximation of REG to MLand Q k is present or not, and εi is the environmental

deviation. interval mapping in the multiple-QTL model. If mij’s are
dissimilar to each other (more disperse), pij’s can beFor m QTL, there are 2m possible QTL genotypes;

hence there are 2m corresponding genotypic values, mij’s, more dissimilar to pij’s, and the differences between the
two methods can become large. The difference betweenwith probabilities pij’s, j 5 1, 2, . . . , 2m. The likelihood

of the multiple-QTL model is then a 2m normal mixture the sizes of QTL effects and the strength of epistasis
between QTL seems to be an appropriate measure to

L(u|Y,X ) 5 p
n

i51
3o

2m

j51

pij N(mij,s2)4. (12) quantify the dissimilarity between the 2m genotypic val-
ues. If QTL effects differ from each other significantly
or epistasis between QTL is strong, pij’s tend to be dis-It seems that the derivation of the MLE of m, a1, a2, . . . ,
similar to pij’s. Consequently, the differences betweenam, Ijk, and s2 and their asymptotic variance-covariance
REG and ML interval mapping will be larger if QTLmatrix is tedious as the number of QTL considered
effects differ significantly or the interaction betweenincreases in the model. However, this tedious estimation
QTL is strong.problem can be easily solved by the general formulas

If QTL are linked, they are correlated. Their correla-proposed by Kao and Zeng (1997) by expanding the
tion is 1 2 2r, where r is the recombination fractiongenetic design matrix D and conditional probability
between QTL. As QTL (predictors) in the model arematrix Q according to the number and positions of
correlated, the effects of collinearity, on modeling suchtesting QTL. These two matrices play the same role as
as imprecise estimation and losing power in testing forthe matrix of independent variable X in regression.
individual parameters, will occur (Neter et al. 1990).Given X matrix in multiple regression, the estimates
When detecting closely linked QTL using the multiple-of regression coefficients and the asymptotic variance-
QTL model, the correlations between the conditionalcovariance matrix can be easily obtained by formulas
expectations of QTL, wij’s, in the REG model tend tob 5 (X 9X )21 X 9Y and V 5 (X 9X )21s2. Given these two
be higher than those between the conditional posteriormatrices D and Q in the multiple-QTL mapping model,
expectations, w*ij ’s, in the ML model. As a result, thethe derivation of the MLE and the asymptotic variance-
REG method tends to give estimates with large SD andcovariance matrix can be systematically obtained by the
be less powerful in testing for closely linked QTL (togeneral formulas. Given the testing QTL positions, pij’s
separate closely linked QTL). The closer they are, thecan be determined. According to the general formulas,
worse the approximation of the REG to ML methodin the E-step, the 2m posterior probabilities of QTL geno-
will be.types for n individuals,

pij 5
pij N(mij, s2)

o2m
j51 pij N(mij, s2)

; i 5 1, 2, . . . , n, SIMULATION STUDIES

Simulations were performed to verify the effects ofj 5 1, 2, . . . , 2m,
the above factors, such as the proportion of variance

are updated. In the M-step, the solutions of the parame- explained by QTL, interval size, QTL position, the dif-
ter estimation are in the closed form as shown in Kao ference between QTL effects, epistasis, and linkage, on
and Zeng (1997). The asymptotic variances of QTL the approximation of REG to ML interval mapping.
positions and effects can also be obtained using the Assume two unlinked epistatic QTL with effects (a1 5
general formulas. 1, a2 5 1, I12 5 1) that affected a quantitative trait of

The REG interval mapping model for taking m QTL interest in a backcross population (epistasis contributes
into account can be written as 11.11% of the total genetic variation). For simplicity,

10 equally spaced marker intervals were simulated for
yi 5 m 1 o

m

j51

ajwij 1 o
m

j?k
djk(Ijkwijwik) 1 εi. each chromosome. Four proportions of variance ex-

plained by QTL (h2’s), 0.01, 0.1, 0.3, and 0.5, and three
different interval sizes, 10, 20, and 40 cM, are simulated.In the model, wij is the conditional expectation of Q j

given its flanking markers. The LSE of m, a1, a2, . . . , am, The relative QTL positions are placed in the middle or
on the boundary of a marker interval (1, 2, and 4 cMIjk, and s2 as well as their asymptotic variances can be

obtained using the standard least-squares technique. away from the left marker of the three different spaced
intervals, respectively). When investigating the effect ofDifferences due to QTL effects, epistasis, and link-

age: By the same argument, it is required that pij ≈ pij epistasis, the main and epistatic QTL effects are further
set at (a1 5 1, a2 5 1, I12 5 2) or (a1 5 1, a2 5 1, I12 5for each i and j for REG interval mapping to approxi-

mate ML interval mapping well in the multiple-QTL 3), and the QTL are placed in the middle of 40-cM
intervals. Together the QTL contribute 50% of themodel. Besides the factors, such as the proportion ex-
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TABLE 2

Comparison of maximum likelihood and regression interval mapping of simulated data (h2 5 0.5)

Spacing

10 cM 20 cM 40 cM

Mean SD MSE Mean SD MSE Mean SD MSE

m 5 0 ML 0.004 0.056 0.003 0.005 0.057 0.003 0.004 0.063 0.004
REG 0.004 0.057 0.003 0.005 0.060 0.004 0.004 0.064 0.004

a1 5 1 ML 1.008 0.117 0.014 1.001 0.121 0.015 0.993 0.142 0.020
REG 1.006 0.121 0.015 1.000 0.125 0.016 0.993 0.156 0.024

a2 5 1 ML 0.996 0.114 0.013 0.997 0.126 0.016 0.998 0.138 0.019
REG 0.997 0.115 0.013 0.997 0.132 0.017 0.998 0.154 0.024

I12 5 1 ML 1.011 0.230 0.053 0.991 0.250 0.063 0.994 0.274 0.075
REG 1.008 0.241 0.058 0.996 0.286 0.082 0.999 0.357 0.127

s2 5 0.563 ML 0.551 0.071 0.005 0.549 0.076 0.006 0.552 0.085 0.007
REG 0.614 0.074 0.008 0.670 0.086 0.019 0.782 0.099 0.058

h2 5 0.5 ML 0.511 0.044 0.002 0.510 0.049 0.003 0.509 0.061 0.004
REG 0.452 0.043 0.004 0.399 0.048 0.013 0.302 0.051 0.042

LRT1 ML 80.0 16.1 69.4 15.0 50.9 12.8
REG 75.4 15.5 62.2 14.2 42.1 11.7

LRT2 ML 79.5 14.9 69.2 14.2 51.3 12.6
REG 74.8 14.2 62.0 13.2 42.4 11.3

LRT ML 125.8 16.5 110.5 15.8 82.5 15.1
REG 120.5 16.1 102.4 15.5 72.6 14.4

For each combination of simulated parameters, 500 replicates, each with sample size 200, were analyzed
with QTL located in the middle of the marker interval. LRT is the likelihood-ratio test for H0: a1 5 0, a2 5 0,
and I12 5 0. LRT1 is the likelihood-ratio test for H0: a1 5 0, I12 5 0, and a2 ? 0. LRT2 is the likelihood-ratio
test for H0: a2 5 0, I12 5 0, and a1 ? 0. h2, the proportion of variance explained by QTL.

quantitative trait variation (the percentages of epistatic of the two methods under various cases. MSE, which is
defined asvariance in the total genetic variance are 33.33 and

52.94%, respectively). When investigating the effect of
E(û 2 u)2 5 Var(û) 1 [E(û) 2 u]2

the difference between QTL effects on the approxima-
tion, five unlinked QTL are placed in the middle of 10- 5 Var(û) 1 (Bias û)2,
or 40-cM intervals with effects (a1 5 1, a2 5 1, a3 5 1,

incorporates two components, one measuring the vari-a4 5 1, a5 5 1), (a1 5 4, a2 5 1, a3 5 1, a4 5 2, a5 5 1),
ability of the estimate (precision), and the other measur-or (a1 5 4, a2 5 1, a3 5 1, a4 5 21, a5 5 1), respectively,
ing its bias (accuracy). A good method needs to controland together contribute 50% of the trait variation.
both variance and bias in estimation.When investigating the effect of linkage, two QTL are

As expected, if h2 is low (h2 5 0.01), the two methodsplaced in two neighboring 40-cM intervals and are 10,
provide almost identical means and SDs of the estimates20, 30, or 40 cM apart from each other (5, 10, 15, and
for m, a1, a2, I12, s2, and h2, and LRT statistics. These20 cM from the marker between them). Their effects
results for h2 5 0.01 correspond with the findings ofare set at (a1 5 1, a2 5 21) without epistasis or (a1 5
Haley and Knott (1992) and Xu (1995, 1998a,b).1, a2 5 21, I12 5 1) with epistasis, and the heritability
When h2 becomes higher (h2 . 0.1), their differencesis assumed to be 0.1, 0.3, or 0.5 for each case. The
due to the factors of interval size and QTL positionsample size is 200, and 500 replicates were simulated
become observable, but minor (the ML method gener-for all cases.
ally has a smaller MSE and larger LRT statistic). ToFor simplicity of comparison, the QTL positions are
shorten the article, only part of the results are presented,assumed to be known, and the simulation is performed
and the investigation focuses on the factors of linkage,at the positions. When calculating the power of separat-
different QTL sizes, and epistasis under the multiple-ing closely linked QTL, a successful separation requires
QTL model.the partial LRT statistic for each QTL . x2

1,0.05/10 (x2
2,0.05/10

Proportion of variance explained by QTL, intervalfor the epistasis case). Means of the estimated parameter
size, and QTL position: The means of the estimatedvalues, their standard deviations (SDs), and mean
main and epistatic effects by the ML and REG methodssquared errors (MSEs), as well as the LRT statistics, are
are almost identical and very close to the true valuesrecorded. MSE is used to evaluate the approximation

of REG to ML interval mapping and the performance for various h2’s, interval sizes, and QTL positions. How-
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TABLE 3

Comparison of maximum likelihood and regression interval mapping of
simulated data under different strengths of epistasis

Effect ratio

1:1:1 1:1:2 1:1:3

Mean SD MSE Mean SD MSE Mean SD MSE

m 5 0 ML 0.004 0.063 0.004 0.005 0.072 0.005 0.006 0.087 0.008
REG 0.004 0.064 0.004 0.004 0.075 0.006 0.005 0.091 0.008

a1 5 1 ML 0.993 0.142 0.020 0.993 0.160 0.026 0.994 0.187 0.035
REG 0.993 0.156 0.024 0.992 0.182 0.033 0.990 0.219 0.048

a2 5 1 ML 0.998 0.138 0.019 1.001 0.158 0.025 1.002 0.186 0.035
REG 0.998 0.154 0.024 1.000 0.179 0.032 1.002 0.215 0.046

I12 ML 0.994 0.274 0.075 1.993 0.331 0.110 2.984 0.398 0.159
REG 0.999 0.357 0.127 2.000 0.418 0.175 3.000 0.504 0.254

s2 ML 0.552 0.085 0.007 0.735 0.110 0.012 1.042 0.156 0.025
REG 0.782 0.099 0.058 1.081 0.139 0.129 1.577 0.199 0.304

h2 5 0.5 ML 0.509 0.061 0.004 0.510 0.056 0.003 0.510 0.058 0.003
REG 0.302 0.051 0.042 0.277 0.053 0.053 0.255 0.053 0.063

LRT ML 82.5 15.1 80.3 16.3 75.2 16.0
REG 72.6 14.4 65.5 14.8 59.5 14.4

For each combination of simulated parameters, 500 replicates, each with sample size 200, were analyzed
with QTL located in the middle of a 40-cM marker interval. s2 5 0.563 for effect 1:1:1; s2 5 0.75 for effect
1:1:2; s2 5 1.063 for effect 1:1:3. I12 5 1, 2, and 3 for the three effect ratios, respectively. h2, the proportion
of variance explained by QTL.

ever, the ML method tends to provide estimates with becomes stronger, the MSEs of the estimates by both
methods become larger, and their differences in MSEsmaller SD (MSE) and larger LRT statistics when com-

pared to the REG method. For example, the MSEs of and LRT statistics become larger. For example, the
MSEs of Î12 by the ML method are 0.075, 0.110, andâ1 by the REG method are 0.178, 0.050, and 0.024 for

h2 5 0.1, 0.3, and 0.5, respectively, and the MSEs by the 0.159 for the three ratios, respectively, and they are
0.127, 0.175, and 0.254 by the REG method, respectively.ML method are 0.175, 0.047, and 0.020, respectively

(only the result for h2 5 0.5 and QTL located in the A similar trend can be observed for other estimates.
The means of LRT statistics for the three ratios are 82.5,middle of the intervals is shown in Table 2). There is a

similar pattern for other estimates. The estimates of s2 80.3, and 75.2 for the ML method, respectively, and
they are 72.6, 65.5, and 59.5 for the REG method, respec-and h2 by the REG method are biased, and the estimates

by the ML method are (asymptotically) unbiased. For tively. The bias of the REG method in the estimation of
s2 and h2 also becomes much more serious as interactionexample, the ĥ2 by the REG method is 0.072 (SD 0.033),

0.187 (SD 0.047), and 0.302 (SD 0.051) for h2 5 0.1, between QTL gets stronger. The ĥ2 by the REG method
is 0.302 (SD 0.051), 0.277 (SD 0.053), and 0.255 (SD0.3, or 0.5, respectively, and the ĥ2 by the ML method

is 0.128 (SD 0.055), 0.316 (SD 0.070), and 0.509 (SD 0.053) for the three ratios, respectively (h2 5 0.5). The
ML method, however, can estimate h2 and other parame-0.061), respectively. The bias of the REG method in

estimating s2 and h2 becomes obvious as h2 becomes ters well for all ratios.
Difference between QTL effects: Table 4 shows thelarge. Also, the ML method gives larger LRT statistics

than the REG method in all cases. The difference in means, SDs, and MSEs of the estimates as well as the
mean LRT statistics for QTL effects (a1 5 1, a2 5 1,mean LRT statistics between the two methods is negligi-

ble: 0.4 (15.2 2 14.8 5 0.4 for 40-cM marker spacing) a3 5 1, a4 5 1, a5 5 1), (a1 5 4, a2 5 1, a3 5 1, a4 5 2,
a5 5 1), and (a1 5 4, a2 5 1, a3 5 1, a4 5 21, a5 5 1).for h2 5 0.1 (results not shown), but 9.9 (82.5 2 72.6 5

9.9 for 40-cM marker spacing) for h2 5 0.5. Therefore, When QTL effects are of the same size, the mean LRT
statistic of the ML method is 1.8 (81.5 2 79.7) largerthe difference in the LRT statistic becomes larger as h2

becomes higher. Similar patterns of difference in MSE than that of the REG method. If there are some relatively
large and small QTL, their differences in LRT statisticsand LRT statistics, caused by the change of h2, can be

observed for other interval sizes and QTL positions. are 3.7 (84.1 2 80.4) and 5.8 (84.7 2 78.9), respectively,
for the other two cases. Also, the estimates by the REGEpistasis: The means, SDs, and MSEs of the estimates

as well as the mean LRT statistics for effect ratios 1:1:1, method tend to have larger MSEs, and the ĥ2 and ŝ2 by
the REG method are biased. For the case (a1 5 1, a2 51:1:2, and 1:1:3 are listed in Table 3. As interaction
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TABLE 4

Comparison of maximum likelihood and regression interval mapping of simulated
data under different relative sizes of QTL effects

10-cM interval,
40-cM interval, h2 5 0.5 h2 5 0.1

(a1 5 a4 5 1) (a1 5 4, a4 5 2) (a1 5 4, a4 5 21) (a1 5 a4 5 1)

Mean MSE Mean MSE Mean MSE Mean MSE

m 5 0 ML 20.001 0.009 20.002 0.041 0.002 0.035 20.011 0.022
REG 0.000 0.009 20.003 0.040 20.001 0.037 20.011 0.022

a1 ML 1.012 0.051 3.981 0.176 3.984 0.210 1.000 0.094
REG 1.013 0.055 4.033 0.223 3.981 0.210 1.000 0.100

a2 5 1 ML 0.994 0.050 1.024 0.249 1.014 0.210 1.011 0.094
REG 0.993 0.056 0.978 0.273 1.020 0.225 1.011 0.091

a3 5 1 ML 0.997 0.052 0.992 0.244 0.990 0.212 1.005 0.101
REG 0.993 0.052 0.985 0.251 0.988 0.219 1.005 0.101

a4 ML 1.002 0.046 2.010 0.213 20.993 0.181 1.010 0.107
REG 1.006 0.048 2.013 0.227 20.980 0.195 1.010 0.107

a5 5 1 ML 0.996 0.049 0.993 0.238 1.002 0.202 0.995 0.110
REG 0.996 0.053 0.986 0.265 1.003 0.219 0.993 0.111

s2 ML 1.165 0.214 5.396 0.901 4.731 0.576 11.15 1.01
REG 1.661 0.217 7.640 4.361 6.690 3.467 11.2 0.919

h2 ML 0.530 0.069 0.527 0.005 0.524 0.004 0.112 0.001
REG 0.327 0.032 0.329 0.032 0.324 0.032 0.099 0.001

LRT ML 81.5 (14.0) 84.1 (14.2) 84.7 (14.4) 52.3 (13.6)
REG 79.7 (14.1) 80.4 (14.4) 78.9 (14.4) 52.2 (13.5)

For each combination of simulated parameters, 500 replicates, each with sample size 200, were analyzed
with QTL located in the middle of the marker interval. h2, the proportion of variance explained by QTL.
s2 5 1.25 for (a1 5 1, a2 5 1, a3 5 1, a4 5 1, a5 5 1) and h2 5 0.5. s2 5 5.75 for (a1 5 4, a2 5 1, a3 5 1,
a4 5 2, a5 5 1) and h2 5 0.5. s2 5 5.00 for (a1 5 4, a2 5 1, a3 5 1, a4 5 21, a5 5 1) and h2 5 0.5. s2 5 11.25
for (a1 5 1, a2 5 1, a3 5 1, a4 5 1, a5 5 1) and h2 5 0.1.

1, a3 5 1, a4 5 1, a5 5 1, and h2 5 0.1) and 10-cM intervals, the ML and REG methods are investigated both analyti-
cally and numerically. It is found that the REG methodthe difference in mean LRT statistic between the two

methods is at a very micro level (52.3 2 52.2 5 0.08). tends to give estimates with larger MSE and smaller LRT
statistics in testing parameters, and it is less powerful inLinkage: The powers of separating 10-, 20-, 30-, and

40-cM-apart QTL are 97.2, 99.0, 99.6, and 99.8% for the QTL detection when compared with the ML method.
Also, the REG method is biased in estimating the resid-ML method, respectively, and are 22.0, 60.0, 91.6, and

98.4% for the REG method, respectively (Table 5 and ual variance and the proportion of total variance ex-
plained by QTL. Therefore, ML interval mapping isFigure 1). Also, the difference in MSE between the two

methods becomes larger as QTL get closer. The MSE more accurate, precise, and powerful than REG interval
ratios of â1 for the two methods are 4.52 (0.226/0.050), mapping in QTL mapping. The differences in power,
8.67 (0.091/0.011), 4.00 (0.056/0.014), and 2.57 (0.036/ MSE, and LRT statistics between the two methods de-
0.011), respectively (Figure 1c). The estimated h2 by the pend on factors such as size of QTL effect, interval size,
REG method is seriously biased. The means of ĥ2 by the relative QTL position in an interval, difference between
REG method are 0.037, 0.070, 0.112, and 0.162 for QTL effects, epistasis, and linkage between QTL, as
10-, 20-, 30-, and 40-cM-apart QTL, respectively (h2 5 shown in the article. Their differences in general may
0.5). The ML method, however, can estimate h2 well be minor, but can be significant in certain situations.
(see also Figure 1c). If h2 5 0.3 or 0.1, the power, the The differences become larger as the proportion ex-
MSE ratio of â1, and ĥ2 for the two methods are shown plained by QTL becomes higher, marker interval becomes
in Figure 1, a–c. If the linked QTL show epistasis, the wider, QTL position moves from boundary to middle
advantage gained by the ML method becomes even of an interval, the difference of QTL effects is larger,
more significant (Figure 1d). epistasis becomes stronger, and the QTL positions are

closer. Especially, the REG method may have a serious
problem in detecting closely linked QTL when com-

CONCLUSION AND DISCUSSION pared with the ML method. As shown in Table 5 and
Figure 1, the difference in detecting closely linkedIn this article, the differences in QTL parameter esti-

mation and testing for the existence of QTL between (10–20 cM apart) QTL with opposite effects is quite
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TABLE 5

Comparison of maximum likelihood and regression interval mapping of simulated
data under different strengths of linkage

Distance between QTL

10 cM 20 cM 30 cM 40 cM

Mean MSE Mean MSE Mean MSE Mean MSE

m 5 0 ML 0.001 0.001 0.000 0.001 0.000 0.002 0.000 0.002
REG 0.000 0.008 20.001 0.002 0.001 0.002 0.001 0.002

a1 5 1 ML 0.974 0.050 1.002 0.011 0.994 0.014 0.996 0.011
REG 1.002 0.226 1.005 0.091 1.005 0.056 0.999 0.036

a2 5 21 ML 20.972 0.051 21.002 0.011 20.994 0.013 20.995 0.014
REG 21.002 0.228 21.005 0.090 21.005 0.057 20.998 0.036

h2 5 0.5 ML 0.496 0.007 0.508 0.005 0.507 0.006 0.510 0.006
REG 0.037 0.217 0.070 0.186 0.112 0.152 0.162 0.116

LRT ML 42.0 (16.1) 32.7 (11.0) 36.6 (11.0) 46.0 (12.4)
REG 6.7 (5.1) 13.5 (7.1) 21.6 (9.0) 30.6 (10.5)

LRT1 ML 40.9 (16.1) 31.2 (10.8) 33.7 (10.6) 39.9 (11.4)
REG 7.7 (5.4) 14.7 (7.2) 24.0 (9.3) 35.6 (11.4)

LRT2 ML 40.9 (16.1) 31.3 (11.0) 33.8 (10.9) 40.0 (11.7)
REG 6.7 (5.1) 13.4 (6.9) 21.5 (9.0) 30.5 (10.5)

Power (%) ML 97.2 99.0 99.6 99.8
REG 22.0 60.0 91.6 98.4

For each combination of simulated parameters, 500 replicates, each with sample size 200, were analyzed
with two QTL contributing 50% of the total genetic variance and located in the middle of the marker interval.
LRT is the likelihood ratio test for H0: a1 5 0 and a2 5 0. LRT1 is the likelihood ratio test for H0: a1 5 0 and
a2 ? 0. LRT2 is the likelihood ratio test for H0: a2 5 0 and a1 ? 0. Power, percentage of replicates with LRT1

. 7.88 and LRT2 . 7.88. Numbers in parentheses denote standard deviation. h2, the proportion of variance
explained by QTL.

significant (power 0.22 vs. 0.97 for 10-cM-apart QTL tors as shown in this article. Using the multiple-QTL
model of the ML approach, it has been found thatand h2 5 0.5; power 0.60 vs. 0.99 for 20-cM-apart

QTL and h2 5 0.5; power 0.09 vs. 0.54 for 10-cM-apart quantitative traits with a somewhat medium to high heri-
tability might be affected by several linked and unlinkedQTL and h2 5 0.3; power 0.34 vs. 0.61 for 20-cM-

apart QTL and h2 5 0.3). In addition, the REG method is QTL, having different sizes, directions, and interaction
of effects (Kao et al. 1999; Weber et al. 1999; Zeng etseriously biased in estimating the proportion of variance

explained by QTL (Figure 1b), and it gives the estimates al. 2000). Also, the linkage map may have wide marker
intervals (Grattapaglia et al. 1996; Satagopan et al.of the effects with much larger MSEs (Figure 1c). The

problem of the REG method in detecting closely linked 1996; Li et al. 1997; Kao et al. 1999). As a result, the
REG method can be significantly different from theQTL becomes worse if epistasis is present (Figure 1d).

It was often pointed out that there is no significant ML method and thus be problematic in practical QTL
mapping.difference in the estimation of QTL parameter and sta-

tistical power of QTL detection between the REG and The cost in computation per iteration in the EM algo-
rithm is generally not very expensive (McLachlan andML methods with the exception that the estimate of

residual variance by the REG method is biased (Haley Krishnan 1997). If the model is extended to fit five
QTL, the ML method needs z18 iterations to convergeand Knott 1992; Xu 1995, 1998a,b). These findings

were mostly done by simulation and concentrated on and is ,10 times slower than the REG method for the
40-cM interval case (the REG method takes z65 sec andthe comparison of mean estimate (accuracy) of QTL

effect for low heritability (h2 5 0, 0.008, 0.03, and 0.111 the ML method takes z608 sec to finish the computa-
tion of 500 replicates). Therefore, the ML methodin Haley and Knott 1992) and a QTL positioned in

a narrow interval (interval size 10 cM in Xu 1998a,b) should not be regarded as formidably expensive in com-
putation as the computer technology is advancing. Xufor a one-QTL model. Therefore, their differences due

to factors such as different QTL sizes, epistasis, and (1998a,b) proposed the iteratively reweighted least-
squares (IRWLS) method to correct the bias of the REGlinkage between QTL had not been identified and

needed to be checked using the multiple-QTL model. method in estimating residual variance. The estimates
by both REG and IRWLS methods tend to have largerWhen multiple QTL are considered simultaneously in

the model, the differences in power and estimation be- SD than those by the ML method (Tables 1–4 in Xu
1998a; Table 7 in Xu 1998b). As the MLEs have thetween the two methods can be significant for these fac-
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Figure 1.—The power, estimate
of proportion of variance ex-
plained by QTL (h2), and MSE of
effect estimate by the ML and REG
methods in the analysis of two
linked QTL without (a1 5 1, a2 5
21) and with (a1 5 1, a2 5 21,
I12 5 1) epistasis under different
genetic distances and proportions
of variance explained by QTL (h2).
(a) Power of separating two linked
QTL with no epistasis. The solid
lines from bottom to top denote
the power by the ML method for
h2 5 0.1, 0.3, and 0.5, respectively.
The dotted lines from bottom to
top denote the power by the REG
method for h2 5 0.1, 0.3, and 0.5,
respectively. (b) Estimate of h2.
The solid lines from bottom to top
denote the estimate of h2 by the
ML method for h2 5 0.1, 0.3, and
0.5, respectively. The dotted lines
from bottom to top denote the es-
timate of h2 by the REG method
for h2 5 0.1, 0.3, and 0.5, respec-
tively. (c) Ratio of MSE. The solid,
dotted, and dashed lines from bot-
tom to top denote the MSE ratio
of â1 by the REG method and ML
method for h2 5 0.1, 0.3, and 0.5,
respectively. (d) Power of separat-
ing two linked QTL with epistasis.
The solid lines from bottom to top
denote the power by the ML
method for h2 5 0.1, 0.3, and 0.5,
respectively. The dotted lines
from bottom to top denote the
power by the REG method for h2 5
0.1, 0.3, and 0.5, respectively.

property of asymptotical efficiency, it should not be residual error does not follow normal distribution, the
mixture model in Equation 2 should take its specificsurprising that the ML method has the ability to provide

the smallest SD among estimates (Casella and Berger form into account to model the relation between the
quantitative trait and QTL in estimation. In practice,1990). Therefore, ML interval mapping is not only a

more powerful but also a more precise method in QTL although most of the residual errors are normally dis-
tributed and the use of the normal mixture modelmapping.

The distributions of most quantitative traits approxi- should be safe in most situations, it is important to
examine the pattern of residuals, which is a requisitemate more or less close to normal or can be scaled to

normal through simple transformation (Falconer and procedure in model selection, to ensure that the final
QTL mapping model is appropriate.Mackay 1996). Therefore, when mapping QTL, the

likelihood is generally modeled as a normal mixture The QTL mapping result will be used as a base for
follow-up operations, such as marker-assisted selection(Equation 2). When applying the EM algorithm to the

estimation of a normal mixture model, the estimating or gene transfer, on QTL for trait improvement. To
ensure the validity of trait improvement, the quality ofEquations 3, 4, and 5 depend on the conditional poste-

rior probabilities of QTL genotypes pij’s, which take the QTL mapping should be more important than the ease
of computation. Researchers using the REG method fordistribution of the residual error into account using

normal density. The estimation of the REG method mapping QTL need to be concerned with the factors
affecting its approximation to the ML method in prac-depends on the conditional probabilities pij’s, which

ignore the distribution of residual error, and the IRWLS tice. For example, if there are wide marker intervals
along the genome (known data structure), or the QTLmethod takes only the second moment of residual error

into account whatever the underlying residual error dis- effects are not sure to be equally small, or the QTL are
linked with epistasis (unknown QTL parameters), thetribution is. This is also the reason why the ML method

can be better than the REG and IRWLS methods. If the REG method may perform poorly when compared to
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