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ABSTRACT
We use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called

Cockerham’s model, for studying epistasis between genes. The properties of Cockerham’s model in
modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and
discussed. Because of its orthogonal property, Cockerham’s model has several advantages in partitioning
genetic variance into components, interpreting and estimating gene effects, and application to quantitative
trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis
between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also
addressed. Real and simulated examples are used to illustrate Cockerham’s model, compare different
models, and map for epistatic QTL. Finally, we extend Cockerham’s model to multiple loci and discuss
its applications to QTL mapping.

GENES interact when they express their effects; i.e., components corresponding to additive, dominance,
the effects of genotypes at one locus depend on and epistatic variances using the least-squares princi-

what genotypes are present at other loci. Interaction ple. Cockerham (1954) further partitioned the epi-
(epistasis) between genes affecting qualitative trait varia- static variance into components using orthogonal con-
tion has been demonstrated for a long time since Gregor trasts. Kempthone (1957) and Hayman and Mather
Mendel in 1865. Although the evidence of epistasis be- (1955) adopted the same epistasis model. Hayman and
tween genes controlling quantitative traits [quantitative Mather (1955) and Mather (1967) proposed other
trait loci (QTL)] has been reported by traditional tech- epistasis models for modeling epistasis. Van Der Veen
niques, such as variance component analyses (Brim and (1959) reviewed the genetic models of digenic epistasis
Cockerham 1961; Lee et al. 1968; Stuber and Moll published by then and summarized them into three
1971), epistasis between individual QTL generally has categories:
been difficult to discern by traditional techniques. The

a. The pure-line-metric or F∞-metric model (F∞ denotesrecent advances in molecular biology have allowed fine-
the population derived from selfing F2 individualsscale genetic marker maps of various organisms to be
for t generations as t → ∞): The parameters in theconstructed for the study of individual QTL. Using such
F∞-metric model show orthogonality with respect tomaps, statistical methods for estimating the positions and
genotypic frequencies of an F∞ population under link-effects of individual QTL (QTL mapping) have been
age equilibrium.proposed (Lander and Botstein 1989; Jansen 1993;

b. The F2-metric model (corresponding to Cockerham’sZeng 1994; Kao et al. 1999; Sen and Churchill 2001).
model): The parameters in the F2-metric model areThe problem of epistasis has been considered in some
mutually orthogonal with respect to genotypic fre-QTL mapping studies (e.g., Stuber et al. 1992; Cheve-
quencies of an F2 population under linkage equilib-rud and Routman 1995; Doebley et al. 1995; Cocker-
rium.ham and Zeng 1996; Kao et al. 1999; Goodnight 2000;

c. The mixed-metric model (corresponding to HaymanZeng et al. 2000), but not sufficiently, and many theoreti-
and Mather’s model): The mixed-metric model is acal and statistical issues involved with epistasis have not
mixture of the Cockerham’s model and F∞-metricbeen discussed. Here, we discuss a genetic model, called
model, and it can be transformed to the F2-metricCockerham’s model, in relation to QTL mapping with
model by subtraction of the mean.epistasis. We also investigate the model properties under

linkage disequilibrium.
Later, Crow and Kimura (1970), Mather and JinksFisher (1918) first partitioned genetic variance into
(1982), Haley and Knott (1992), and Kearsey and
Pooni (1996) applied the F∞-metric model to the study
of epistasis between genes, and Goodnight (2000)
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three models can be translated to each other by addition the scale component of genotype ij for the t th contrast.
The first requirement ensures that deviations aroundor subtraction of a constant (see Table 1 of Van Der

Veen’s 1959 article), they have different meanings in the mean are compared (the scales Wtij ’s are contrasts).
The second requirement ensures that the contrasts areinterpreting gene effects, show different structures of

variance components, and possess different properties orthogonal. W1 and W2 (W3 and W4) are the linear and
quadratic orthogonal contrasts for locus A (locus B).in statistical estimation, which may affect the study of
W5 is the linear � linear contrast. W6 is the linear �QTL as shown in this article.
quadratic contrast. W7 is the quadratic � linear contrast.In this article, we start from the traditional partition
W8 is the quadratic � quadratic contrast. Cockerham’sof genetic variance into variance components using
orthogonal contrast scales serve the same purpose asCockerham’s (1954) orthogonal contrasts, then lead
the orthogonal contrasts for partitioning the sum ofup to a definition of the genetic parameters for genetic
squares due to treatment into independent single-effects, and present Cockerham’s epistasis model. The
degree-of-freedom components in experimental designproperties of Cockerham’s model in modeling and map-
(Steel and Torrie 1981). The statistical linear andping epistatic genes are investigated when genes are in
quadratic terms correspond to the genetical additivelinkage equilibrium and disequilibrium. The differ-
and dominance terms, respectively. Cockerham usedences between Cockerham’s model and the other mod-
these orthogonal scales to partition the genetic varianceels are compared, and the advantages of Cockerham’s
and find the partition of variance � 2

t due to orthogonalmodel are discussed. It shows that Cockerham’s model
scale Wt byis a more appropriate model than the other models for

the study of epistasis between genes and QTL mapping
� 2

t �
(�i,j p ijGijWtij)2

(�i,j p ijW
2
tij)

,in the populations, such as F2 and backcross. Real and
simulated examples are used to illustrate Cockerham’s
model, compare different genetic models in the analysis where Gij denotes the genotypic value of the genotype
of epistasis between genes, and map for epistatic QTL. ij. He also defined Gij in terms of the scales as
Finally, we generalize Cockerham’s model to multiple

Gij � E 0 � �
8

t�1

EtWtij , (1)loci and discuss its applications to QTL mapping.

where Et’s are the corresponding coefficients, by solving
COCKERHAM’S GENETIC MODEL the equations themselves, and used it to find the correla-

tion between relatives in a population. His idea of defin-Cockerham (1954) used eight orthogonal contrast
ing the genotypic value by the orthogonal contrast scalesscales to partition the genetic variance contributed by
leads up to Cockerham’s genetic model for modelingtwo genes into eight components and to define the ge-
epistasis between genes.notypic value of a genotype to find the correlation be-

Cockerham’s genetic model: We now apply Cocker-tween relatives in a population. His definition of geno-
ham’s orthogonal contrast scales to the F2 populationtypic value using the orthogonal scales leads the way to
to derive Cockerham’s model for the F2 population. Forconstruct a genetic model, which is called Cockerham’s
an F2 population, the genotypic frequencies of the ninemodel, for modeling epistasis and defining gene effects
genotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB,in a population. In this section, the orthogonal contrast
aaBb, and aabb are 1/16, 1/8, 1/16, 1/8, 1/4, 1/8, 1/16,scales are introduced to present Cockerham’s model,
1/8, and 1/16, respectively, and Cockerham’s orthogo-and the genetic parameters of Cockerham’s model are
nal contrasts can be modified as shown in Table 1 (see

defined. The similarities and differences between Cock-
also Cockerham and Zeng 1996). By solving Equa-

erham’s model and alternative models are compared,
tion 1 with the scales in Table 1, the unique solutions

and their variance component structures are presented. of the coefficients in terms of the genotypic values are
Orthogonal contrasts: Assuming that allele frequen-

cies at one locus are uncorrelated with frequencies at
E 0 �

G 22

16
�

G 21

8
�

G 20

16
�

G 12

8
�

G 11

4another locus (two loci are in linkage equilibrium),
Cockerham (1954) partitioned the genetic variance
caused by two loci, A and B, each with two alleles (A, �

G 10

8
�

G 02

16
�

G 01

8
�

G 00

16
, (2)

a, and B, b), of a diploid organism using the orthogonal
contrast scales in Table 2 of his article. The scales

E1 �
G 22

8
�

G 21

4
�

G 20

8
�

G 02

8
�

G 01

4
�

G 00

8
, (3)W �t ’s, which are functions of genotypic frequencies p ij ’s,

have to satisfy two requirements

E 2 �
G 12

8
�

G 11

4
�

G 10

8
�

G 22

16
�

G 21

8�
i,j

p ijWtij � 0 and �
i,j

p ijWtijWt �ij � 0,

where i ( j) indexed by 2, 1, or 0 refers to the genotype �
G 20

16
�

G 02

16
�

G 01

8
�

G 00

16
, (4)

AA (BB), Aa (Bb), or aa (bb) at locus A (B), and Wtij is
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TABLE 1

The eight orthogonal contrast scales (W ’s) for the F2 population

Genotype AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

G G 22 G 21 G 20 G 12 G 11 G 10 G 02 G 01 G 00

P 1⁄16
1⁄8 1⁄16

1⁄8 1⁄4 1⁄8 1⁄16
1⁄8 1⁄16

W1 1 1 1 0 0 0 �1 �1 �1
W2 �1⁄2 �1⁄2 �1⁄2 1⁄2 1⁄2 1⁄2 �1⁄2 �1⁄2 �1⁄2
W3 1 0 �1 1 0 �1 1 0 �1
W4 �1⁄2 1⁄2 �1⁄2 �1⁄2 1⁄2 �1⁄2 �1⁄2 1⁄2 �1⁄2
W5 1 0 �1 0 0 0 �1 0 1
W6 �1⁄2 1⁄2 �1⁄2 0 0 0 1⁄2 �1⁄2 1⁄2
W7 �1⁄2 0 1⁄2 1⁄2 0 �1⁄2 �1⁄2 0 1⁄2
W8

1⁄4 �1⁄4 1⁄4 �1⁄4 1⁄4 �1⁄4 1⁄4 �1⁄4 1⁄4

G ’s and P ’s denote the genotypic values and expected genotypic frequencies for the nine genotypes of two
unlinked genes, A and B.

AA and aa and thus is defined as the genetic parameter
of dominance effect of gene A, d 1. The same argumentE 3 �

G 22

8
�

G 12

4
�

G 02

8
�

G 20

8
�

G 10

4
�

G 00

8
, (5)

leads us to define coefficients E 3 and E 4 as the genetic
parameters of additive and dominance effects of gene

E4 �
G 21

8
�

G 11

4
�

G 01

8
�

G 22

16
�

G 12

8 B, a 2 and d 2. If the substitution effects at one locus
depend on genotypes at the other locus, there is an
interaction between the two genes in the usual sense.�

G 02

16
�

G 20

16
�

G 10

8
�

G 00

16
, (6)

Coefficient E 5 quantifies the difference between addi-
tive effects of gene A (gene B), (G 2* � G 0*)/2 [(G *2 �

E 5 �
(G 22 � G 02) � (G 20 � G 00)

4
G *0)/2], in the background of two different homozy-
gotes of gene B (gene A), BB and bb (AA and aa), and
this difference is defined as the genetic parameter of

�
(G 22 � G 20) � (G 02 � G 00)

4
, (7) additive � additive epistatic effect, iaa . The larger the

difference is, the stronger the interaction is. The same
argument leads to the definitions of E6 , E 7 , and E 8 asE6 �

(2G 21 � G 22 � G 20) � (2G 01 � G 02 � G 00)
4

, (8)
the genetic parameters of additive � dominance, iad ;
dominance � additive, ida ; and dominance � domi-

E 7 �
(2G 12 � G 22 � G 02) � (2G 10 � G 20 � G 00)

4
, (9) nance, idd ; epistatic effects between genes A and B. The

definitions of these nine genetic parameters are summa-
rized in Table 2. After defining the genetic parameters

E 8 �
2(2G 11 � G 21 � G 01) � (2G 12 � G 22 � G 02)

4 of genetic effects, Equation 1 can be expressed more
succinctly as

�
(2G 10 � G 20 � G 00)

4 Gij � � � a1x 1 � d1z1 � a2x 2 � d 2z 2 � iaawaa � iadwad

� idawda � iddwdd , (11)
�

2(2G 11 � G 12 � G 10) � (2G 21 � G 22 � G 20)
4 by defining the coded variables as

�
(2G 01 � G 02 � G 00)

4
. (10)

x1 � �
1 if A is AA

0 if A is Aa

�1 if A is aa ,
x 2 � �

1 if B is BB

0 if B is Bb

�1 if B is bb ,
If the two genes are in linkage equilibrium, E 0 is the
mean of the genotypic values, G.., and therefore can be
denoted as �. Coefficient E 1 is equivalent to (G 2. �

z1 � �
1⁄2 if A is Aa

�1⁄2 otherwise,
z 2 � �

1⁄2 if B is Bb

�1⁄2 otherwise,G 0.)/2, which is one-half of the difference in genotypic
value between the two homozygote means of AA and aa

waa � x1 � x 2 , wad � x1 � z 2 , wda � z1 � x 2 ,and thus is defined as the genetic parameter of additive
effects of gene A, a1. Coefficient E 2 is equivalent to wdd � z1 � z 2.
(2G 1. � G 2. � G 0.)/2, which represents the departure

The coded variables of this model are mutually indepen-in genotypic value of the heterozygote mean of Aa from
the midpoint between the two homozygote means of dent to each other due to orthogonality. The model
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TABLE 2 tion, the structure of variance components for the total
genetic variance, VG, contributed by the two genes, eachDefinition of genetic parameters
with two alleles, is shown in appendix c. From appendix
c, we can see that the total genetic variance is com-Solution Parameter definition Notation
posed of genetic variance of individual effects and co-

E 0 Mean � variances between different effects, and it will change
E1 Additive effect of locus A a1 with gene frequencies (p ’s) and linkage disequilibriumE 2 Dominance effect of locus A d 1

(D). Certainly, the relative strengths of genetic effectsE 3 Additive effect of locus B a 2
will vary according to the change in gene frequency andE4 Dominance effect of locus B d 2

E 5 Additive � additive effect of loci A iaa linkage disequilibrium. For an F2 population (pA � pB �
and B 0.5), the total genetic variance reduces to Equation 34

E6 Additive � dominance effect of loci iad and contains covariances between different genetic ef-
A and B fects through linkage. If genes are unlinked in the F2E 7 Dominance � additive effect of loci ida population (pA � pB � 0.5 and D � 0), the total geneticA and B

variance can be partitioned into eight independentE 8 Dominance � dominance effect of idd
components without covariance asloci A and B

E i’s are the solutions of Equation 1 with the orthogonal VG �
1
2

a 2
1 �

1
4
d 2

1 �
1
2
a 2

2 �
1
4
d 2

2 �
1
4
i 2

aa �
1
8
i 2

ad �
1
8
i 2

da �
1
16

i 2
dd .

contrast scales in Table 2. The exact expressions of E i’s are
shown in Equations 2–10. (12)

Each variance component is contributed by its own ge-
can also be represented in a different form as Table 3. netic parameter. For example, the additive variance
Note that the marginal means of the three genotypes, component of gene A, a 2

1/2, is contributed by its additive
G 2., G 1., and G 0., for locus A are � � a1 � d 1/2, � � effect, a1, and it has no genetic covariance with other
d 1/2, and � � a1 � d 1/2, respectively, as the segregation effects. This property greatly facilitates the evaluation
ratio is 1:2:1. There are similar forms for locus B. The of the contribution of an effect to the genetic variance.
grand mean G.. is equivalent to �. The other models, such as F∞-metric and mixed-metric

Genetic variance structure: When applying Cocker- models, do not have such a property (see Equation 18).
Linkage disequilibrium: The coded variables in Cocker-ham’s model to modeling genotypic values in a popula-

TABLE 3

Cockerham’s model (the F2-metric model)

AA Aa aa

G 22 G 12 G 02 G.2

BB
� � a1 �

d 1

2
� a 2 �

d 2

2
� �

d 1

2
� a 2 �

d 2

2
� � a1 �

d 1

2
� a 2 �

d 2

2
� � a 2 �

d 2

2

� iaa �
iad

2
�

ida

2
�

idd

4
�

ida

2
�

idd

4
� iaa �

iad

2
�

ida

2
�

idd

4

G 21 G 11 G 01 G.1

Bb
� � a1 �

d 1

2
�

d 2

2
� �

d 1

2
�

d 2

2
� � a1 �

d 1

2
�

d 2

2
� �

d 2

2

�
iad

2
�

idd

4
�

idd

4
�

iad

2
�

idd

4

G 20 G 10 G 00 G.0

bb
� � a1 �

d 1

2
� a 2 �

d 2

2
� �

d 1

2
� a 2 �

d 2

2
� � a1 �

d 1

2
� a 2 �

d 2

2
� � a 2 �

d 2

2

� iaa �
iad

2
�

ida

2
�

idd

4
�

ida

2
�

idd

4
� iaa �

iad

2
�

ida

2
�

idd

4

G 2. G 1. G 0. G..

�
� � a1 �

d 1

2
� �

d 1

2
� � a1 �

d 1

2

The marginal means Gi. (G.j) for locus A (B) are calculated under segregation ratio 1:2:1 for AA (BB), Aa
(Bb), and aa (bb) in the F2 population. The genetic parameters a1 , d 1 , a 2 , d 2 , iaa , iad , ida , and idd are defined in
Table 2.
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TABLE 4

The F∞-metric model

AA Aa aa

G 22 G 12 G 02 G.2

BB � � a1 � a 2 � iaa � � d 1 � a 2 � ida � � a1 � a 2 � iaa � � a 2 �
d 1

2
�

ida

2

G 21 G 11 G 01 G.1

Bb � � a1 � d 2 � iad � � d 1 � d 2 � idd � � a1 � d 2 � iad � �
d 1

2
� d 2 �

idd

2

G 20 G 10 G 00 G.0

bb � � a1 � a 2 � iaa � � d 1 � a 2 � ida � � a1 � a 2 � iaa � �
d 1

2
� a 2 �

ida

2

G 2. G 1. G 0. G..

� � a1 �
d 2

2
�

iad

2
� � d 1 �

d 2

2
�

idd

2
� � a1 �

d 2

2
�

iad

2
� �

d 1

2
�

d 2

2
�

idd

4

The marginal means Gi. (G.j) for locus A (B) are calculated under segregation ratio 1:2:1 for AA (BB), Aa
(Bb), and aa (bb). a1 (a 2) and d 1 (d 2) are the additive and dominance effects of locus A (B). iaa , iad , ida , and
idd are the additive-by-additive, additive-by-dominance, dominance-by-additive, and dominance-by-dominance
epistatic effects.

ham’s model (the scales in Table 1) are orthogonal and between the two homozygotes is not equal to the genetic
parameter of additive effect a1 (a 2). For example, G 2. �contrast to each other when the ratio of genotypic fre-

quencies is 1:2:1:2:4:2:1:2:1 (genes are unlinked) in an (� � a1 � d 2/2 � iad/2), (G 2. � G 0.) � a1 � iad/2, and
G.. � � � d 1/2 � d 2/2 � idd/4 (Table 4). This resultF2 population. Therefore, the definition of the genetic

parameters in Table 2 is appropriate for interpreting the deviates from the usual definition in the one-locus analy-
sis. The solutions of the marginal genetic parameters,gene effects and the genetic variance can be partitioned

(Equation 12) as if genes are unlinked. If there is seg- a1 , d 1 , a 2 , d 2 , in terms of the genotypic values for the
F∞-metric model areregation distortion and/or linkage, the ratio will deviate

from 1:2:1:2:4:2:1:2:1 (Table 6) and there will be covari-
ances between some genetic effects (Equation 34). To take � �

G 22 � G 20 � G 02 � G 00

4
, (13)

linkage disequilibrium into account in using Cocker-
ham’s model, we introduce statistical parameters to con-

a1 �
(G 22 � G 20) � (G 02 � G 00)

4
, (14)trast with genetic parameters in interpreting gene ef-

fects when genes are in linkage disequilibrium (see next
section). d 1 �

2(G 12 � G 10) � (G 22 � G 20) � (G 02 � G 00)
4

, (15)
F∞-metric and mixed-metric models:The F∞-metric model

can be expressed in equation form as Equation 11 by
a2 �

(G 22 � G 02) � (G 20 � G 00)
4

, (16)coding

d 2 �
2(G 21 � G 01) � (G 22 � G 02) � (G 20 � G 00)

4
, (17)x1 � �

1 if A is AA

0 if A is Aa

�1 if A is aa ,
x 2 � �

1 if B is BB

0 if B is Bb

�1 if B is bb ,
and the solutions of epistasis genetic parameters, iaa , iad ,
ida , and idd , are the same as those in Cockerham’s model.

z1 � �1 if A is Aa

0 otherwise,
z 2 � �1 if B is Bb

0 otherwise, Apparently, most of the heterozygotes are excluded in
the estimation of � and marginal parameters, making

and waa � x1 � x 2 , wad � x1 � z 2 , wda � z1 � x 2 , and the F∞-metric model difficult in interpreting the gene
wdd � z1 � z 2 , where the coded variables for epistasis action for the F2 population.
are just the products of marginal variables. Equivalently, The equation form for the mixed-metric model, which
the F∞-metric model can be illustrated by Table 4. It is is a mixture of Cockerham’s model and the F∞-metric
easy to check that the coded variables of the F∞-metric model with the first part of marginal effects from the
model do not have the property of orthogonal contrast. F∞-metric model and the latter part of epistatic effects
Also, the marginal means of one locus are involved in from Cockerham’s model, is trivial (not shown), and it is
the genetic parameter of another locus and their epista- tabulated in Table 5. The coded variables of the mixed-

metric model are orthogonal, but not contrasts. Exceptsis parameters, and the difference in genotypic values
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TABLE 5

The mixed-metric model

AA Aa aa

G 22 G 12 G 02 G.2

BB � � a1 � a 2 � � d 1 � a 2 � � a1 � a 2 � � a 2 �
d 1

2� iaa �
iad

2
�

ida

2
�

idd

4
�

ida

2
�

idd

4
� iaa �

iad

2
�

ida

2
�

idd

4

G 21 G 11 G 01 G.1

Bb � � a1 � d 2 � � d 1 � d 2 � � a1 � d 2 � � d 2 �
d 1

2�
iad

2
�

idd

4
�

idd

4
�

iad

2
�

idd

4

G 20 G 10 G 00 G.0

bb � � a1 � a 2 � � d 1 � a 2 � � a1 � a2 � � a 2 �
d 1

2� iaa �
iad

2
�

ida

2
�

idd

4
�

ida

2
�

idd

4
� iaa �

iad

2
�

iad

2
�

idd

4

G 2. G 1. G 0. G..

� � a1 �
d 2

2
� � d 1 �

d 2

2
� � a1 �

d 2

2
� �

d 1

2
�

d 2

2

The marginal means Gi. (G.j) for loci A (B) are calculated under segregation ratio 1:2:1 for AA (BB), Aa
(Bb), and aa (bb). a1 (a 2) and d 1 (d 2) are the additive and dominance effects of locus A (B). iaa , iad , ida , and
idd are the additive-by-additive, additive-by-dominance, dominance-by-additive, and dominance-by-dominance
epistatic effects.

MODELING QUANTITATIVE TRAITSfor �, the solutions of the genetic parameters of the
mixed-metric model are the same as those of Cocker- When applying Cockerham’s model to analyze a quanti-
ham’s model. The solution of � is not equal to G... By tative trait, controlled by two epistatic genes A and B,
subtracting d 1/2 � d 2/2, the mixed-metric model will from a sample of size n of an F2 population, the trait
become Cockerham’s model. In Table 5, the marginal value of the kth individual with genotype ij can be mod-
means of one locus involve the dominance effect of eled as
another locus, which deviates from the one-locus analy-

y ijk � Gij � ε ijksis. For example, the marginal mean of genotype AA,
G 2. , is � � a1 � d 2/2. Except for �, the solutions of the � � � a1x1 � d 1z1 � a2x 2 � d 2z 2 � iaawaa
genetic parameters of the mixed-metric model are the

� iadwad � idawda � iddwdd � ε ijk , (19)same as those of Cockerham’s model.
As the F∞-metric model is not an orthogonal model, where εijk is a residual. Let P̃ij and nij denote the observed

the total genetic variance contributed by two genes in frequency and sample size of genotype ij where nij �
linkage equilibrium is n � P̃ij . In expectation, E(nij) � n � Pij and E(y ij.) �

n � Pij � Gij, where Pij is the population frequency of
VG �

1
2
a 2

1 �
1
4
d 2

1 �
1
2
a 2

2 �
1
4
d 2

2 �
1
4
i 2

aa �
1
4
i 2

ad �
1
4
i 2

da genotype ij and depends on the linkage strength be-
tween genes (Table 6). Note that the ratio of Pij ’s re-
duces to 1:2:1:2:4:2:1:2:1 if genes are unlinked (D � 0).

�
3
16

i 2
dd �

1
2
a1iad �

1
2
a2ida �

1
4
d 1iaa Least-squares estimates of genetic parameters: The

least-squares estimates (LSE) of the genetic parameters
in Equation (19) have similar formulations as those of�

1
4
d 2iaa �

1
4
d1 idd �

1
4
d 2idd , (18)

Equations 2–10 except that Gij is replaced with y ij. . For
example, the LSE of a1 iswhich consists of the covariances between marginal and

epistatic gene effects. These covariances make the evalu-
â1 �

y 22.

8
�

y 21.

4
�

y 20.

8
�

y 02.

8
�

y 01.

4
�

y 00.

8
. (20)ation of the contribution of an individual effect to the

total genetic variance difficult. The genetic variance struc-
When genes are unlinked (the segregation ratio isture of the mixed-metric model is the same as that of
1:2:1:2:4:2:1:2:1), the expectation of â1 isCockerham’s model. Note that the genetic variance struc-

tures of Cockerham’s model and the F∞-metric model can-
E(â1) �

G 2. � G 0.

2
, (21)not be translated to each other by adding or subtracting

a constant value, and therefore they are different models
from this point. which corresponds to the additive effect of gene A.
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TABLE 6

Genotypic frequencies (P ’s) in terms of allele frequencies (p’s) and the linkage disequilibrium coefficient (D)

AA Aa aa Total

P22 P12 P02 P.2

BB (pA pB � D)2 2(pA pB � D) � (pa pB � D) (pa pB � D)2 p 2
B

P21 P11 P01 P.1

Bb 2(pA pB � D) � (pA pb � D) 2(pA pb � D)(pa pB � D) 2pB pb2(pa pB � D) � (pa pb � D)
� 2(pA pB � D) � (pa pb � D)

P20 P10 P00 P.0

bb (pA pb � D)2 2(pA pb � D)(pa pb � D) (pa pb � D)2 p 2
b

Total P2. p 2
A P1. 2pA pa P0. p 2

a 1

pA , pa , pB , and pb denote the frequencies of alleles A, a, B, and b of genes A and B. Pij denotes the genotypic
frequencies. D is the linkage disequilibrium between genes A and B.

However, when genes are linked, â1 is not a measure of nine expected normal equations are denoted as � 0 , �1 ,
the difference between the two homozygote means as . . . , � 8 . Then, Equation A1 can be written as
the ratio is no longer 1:2:1:2:4:2:1:2:1. Likewise, the LSE

� 0 � P22G 22 � P21G 21 � P20G 20 � P12G 12 � P11G 11of the genetic parameters are appropriate estimates of
the nine gene effects when genes are unlinked, but they � P10G 10 � P02G 02 � P01G 01 � P00G 00 ,
are not appropriate estimates when genes are linked.

which is the mean genotypic value in the population.To remedy this problem, statistical parameters of gene
Equation A2 can be written aseffects are introduced for interpretation in contrast to

genetic parameters of gene effects.
Statistical parameters of gene effects: When the deriv- �1 �

P22G 22 � P21G 21 � P20G 20 � P02G 02 � P01G 01 � P00G 00

P22 � P21 � P20 � P02 � P01 � P00

,
atives of the error sum of squares in Equation 19 with
respect to every genetic parameter in turn are set equal and it can be reformulated as
to zero, it gives the nine normal equations. For example,
the normal equation with respect to a1 is

�1 �
(P22G 22 � P21G 21 � P20G 20)/(P22 � P21 � P20)

2
y 2.. � y 0.. � (n 22 � n 21 � n 20 � n 02 � n 01 � n 00)�̂

� (n 22 � n 21 � n 20 � n 02 � n 01 � n 00)â1 �
(P02G 02 � P01G 01 � P00G 00)/(P02 � P01 � P00)

2

� (�n 22 � n 21 � n 20 � n 02 � n 01 � n 00)
d̂ 1

2 �
G 2. � G 0.

2
� (n 22 � n 20 � n 02 � n 00)â2

since P22 � P21 � P20 � P02 � P01 � P00 � 1⁄4 in the F2

population. That is, �1 quantifies one-half of the differ-� (�n 22 � n 21 � n 20 � n 02 � n 01 � n 00)
d̂ 2

2 ence in genotypic value between the two homozygote
means of gene A; i.e., �1 is a quantity to measure the� (n 22 � n 20 � n 02 � n 00)îaa

additive effect of gene A, no matter whether genes are
in linkage equilibrium or not. Further, as the genotypic� (�n 22 � n 21 � n 20 � n 02 � n 01 � n 00)

îad

2 frequencies of gene A (B) have relationship 2P2. � 2P0. �
P1. � 1⁄2(2P.2 � 2P.0 � P.1 � 1⁄2) in the F2 population

� (�n 22 � n 20 � n 02 � n 00)
îda

2 despite linkage,

� 2 � 2(P12G 12 � P11G 11 � P10G 10 � P22G 22 � P21G 21
� (n 22 � n 21 � n 20 � n 02 � n 01 � n 00)

îdd

4
.(22)

� P20G 20 � P02G 02 � P01G 01 � P00G 00)

By taking expectation, the expected normal equations
�

2(P12G 12 � P11G 11 � P10G 10)/(P12 � P11 � P10)
2can be obtained and expressed in terms of genotypic

values Gij’s, population genotypic frequencies Pij ’s, and
genetic parameters E ’s, as shown from Equations A1–A9

�
(P22G 22 � P21G 21 � P20G 20)/(P22 � P21 � P20)

2(appendix a). For simplicity, the left-hand sides of these
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� 0 � � �
	

2
iaa � 	2idd

4
, (24)

�
(P02G 02 � P01G 01 � P00G 00)/(P02 � P01 � P00)

2

�1 � a1 � 	a 2 � 	2iad

2
� 	

ida

2
, (25)

�
2G 1. � G 2. � G 0.

2
, (23)

� 3 � 	a1 � a 2 � 	
iad

2
� 	2ida

2
(26)which measures the dominance effect of gene A. For

epistasis parameters,
� 2

2
�

d 1

2
� 	2d 2

2
�

	

2
iaa , (27)

� 5 �
(P22G 22 � P20G 20) � (P02G 02 � P00G 00)

P22 � P20 � P02 � P00 �4

2
� 	2d 1

2
�

d 2

2
�

	

2
iaa , (28)

�
(P22G 22 � P02G 02) � (P20G 20 � P00G 00)

P22 � P20 � P02 � P00

,

� 5 �
4

1 � 	2 �	2� �
	

2
d 1

2
�

	

2
d 2

2
� �1 � 	2

4 �iaa �
	

2
idd

4 �, (29)
which is a weighted version of the additive � additive
epistasis. When genes are unlinked, � 5 reduces to the �6

2
� 2�� 	2

2
a1 �

	

2
a 2 �

1
2

iad

2
�

	

2
ida

2 �, (30)genetic parameter iaa . When genes are linked, the ge-
netic parameter iaa is still valid for the additive � additive
effect since marginal means are not involved in it. Simi- � 7

2
� 2�� 	

2
a1 �

	2

2
a 2 �

	

2
iad

2
�

1
2

ida

2 �, (31)
larly, the genetic parameters iad , ida , and idd are still appro-
priate to measure the additive � dominance, domi- � 8

4
� 	2� �

	

2
iaa �

idd

4
, (32)nance � additive, and dominance � dominance effects

under linkage disequilibrium, and � 6 , � 7 , and � 8 are
where 	 � 1 � 2r . The statistical parameters (�’s) areweighted versions of the epistatic effects, and they all re-
functions of the genetic parameters (E ’s) and a linkageduce to iad , ida , and idd if genes are in linkage equilibrium.
parameter (	), and vice versa. The approximation ofGiven genotypic values G’s, the quantities, �’s, will
the genetic parameter to its corresponding statisticalhave different values according to different strengths of
parameter depends on the strength of linkage and thelinkage (ratios of genotypic frequencies). On the con-
sizes of other genetic parameters. In matrix equation,trary, the genetic parameters, E’s, will not change ac-
the above equations can be also expressed ascording to different strengths of linkage. Therefore, we

define �’s as statistical parameters to contrast with the B � T E, (33)
genetic parameters of gene effects. The genetic parame-

whereters can be obtained directly from Cockerham’s model,
but the statistical parameters cannot. However, there
exists a one-to-one relationship between the two kinds B� � �� 0 �1

� 2

2
� 3

� 4

2
1 � 	2

4
� 5

�6

2
� 7

2
� 8

4 �
of parameters as shown below. It allows that once the
genetic parameters are obtained from the model the sta- contains the statistical parameters,
tistical parameters can be obtained by transformation.

Relationship between genetic and statistical parameters:
E � � �� a1

d 1

2
a 2

d 2

2
iaa

iad

2
ida

2
idd

4 �In a population, the frequency of the gamete AB, PAB , can
be expressed in terms of allele frequencies (p’s) and the

contains the genetic parameters, andlinkage disequilibrium coefficient D (Weir 1996) as

PAB � pApB � D,

where D is equivalent to (1 � 2r)/4 (r is the recombina-
tion fraction between loci A and B). If the union of
gametes is random, the genotypic frequencies Pij’s are
products of gametic frequencies (Table 6). The ex-
pected normal equations from Equations A1–A9 can be
further expressed in terms of the genetic parameters T �
















1 0 0 0 0
	

2
0 0 	2

0 1 0 	 0 0 �	2 �	 0

0 0 1 0 	2 �
	

2
0 0 0

0 	 0 1 0 0 �	 �	2 0

0 0 	2 0 1 �
	

2
0 0 0

	

2
0 �

	

2
0 �

	

2
1 � 	2

4
0 0

	

2
0 �	2 0 �	 0 0 1 	 0
0 �	 0 �	2 0 0 	 1 0

	2 0 0 0 0
	

2
0 0 1
















(E ’s), the statistical parameters (�’s), the population
allele frequencies (p’s), and the linkage disequilibrium
coefficient D as shown in Equations B1–B9 in appendix b.
In the F2 population, the allele frequencies pA , pa , pB ,
and pb are one-half, and the nine expected normal equa-
tions in appendix b reduce to the following:
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is a symmetric and nonsingular matrix with components
associated with the linkage parameter 	. The inverse of �

	

4
[1 � 	2]iaaidd �

	

4
iadida (34)

T is
(appendix c). The genetic variance is composed of the

T �1 �
1

(1 � 	2)2 variances and covariances of genetic parameters. If
genes are in linkage equilibrium or attain equilibrium
in later generations by random mating (	 � 0), the
covariances disappear and the genetic variance will be
partitioned into eight independent components (Equa-
tion 12).

�












1
1 � 	2

0
�	2

1 � 	2
0

�	2

1 � 	2
�2	 0 0

	4

1 � 	2

0 1 0 �	 0 0 �	2 	 0
�	2

1 � 	2
0

1
1 � 	2

0
	4

1 � 	2
2	 0 0

�	2

1 � 	2

0 �	 0 1 0 0 	 �	2 0
�	2

1 � 	2
0

	4

1 � 	2
0

1
1 � 	2

2	 0 0
�	2

1 � 	2

�2	 0 2	 0 2	 4(1 � 	2) 0 0 �2	

0 �	2 0 	 0 0 1 �	 0
0 	 0 �	2 0 0 �	 1 0
	4

1 � 	2
0

�	2

1 � 	2
0

�	2

1 � 	2
�2	 0 0

1
1 � 	2












QTL MAPPING USING COCKERHAM’S MODEL

In this section, we apply Cockerham’s model to con-
struct a statistical epistasis model to map for epistatic
QTL and analyze epistasis between QTL. The problems
when epistasis is present and ignored in QTL mapping
are also investigated. By taking epistasis into account in(Wolfram 1992). The two kinds of parameters have
QTL mapping, the accuracy of estimation and powera one-to-one relationship. When genes are in linkage
of detection can be improved.equilibrium (	 � 0), T is diagonal, and �’s are equal

Mapping epistatic QTL: Assume that a quantitativeto E ’s. When genes are not in linkage equilibrium (	 �
trait y is controlled by two interacting QTL, Q A and Q B,0), they are different, but transferable.
located at positions p1 and p2, in two different intervals,Random mating: Linkage disequilibrium decays after
I1 and I2. The statistical QTL mapping model can berandom mating. If the F2 progeny are further randomly
written asmated, linkage disequilibrium is mitigated by a factor

1 � r , 0 
 r 
 0.5, gradually in each generation. The y i � � � a1x*1 � d 1z*1 � a 2x*2 � d 2z*2 � iaax*1 x*2
general formula of the linkage disequilibrium coeffi-

� iadx*1 z*2 � ida z*1 x*2 � idd z*1 z*2 � ε i ,cient in generation Ft under random mating is

i � 1, 2, · · · , n, (35)	t � (1 � r)t�2 	,
where ε i follows N(0, � 2), and the codes for variableswhere t � 2 is the number of generations. As t gets larger,
x*1 (x*2 ) and z*1 (z*2 ) follow the codes of x1 (x 2) and z1	t approaches zero; i.e., linkage equilibrium will be gradu-
(z2) in Cockerham’s model (Equation 11). As Q A (Q B) isally attained in later generations by random mating. After
not located at the marker, its genotypes, i.e., the valuerandom mating, 	t changes (becomes smaller), as do
of x*1 and z*1 (x*2 and z*2 ), are not observable. However,the genotypic frequencies (Pij’s), and accordingly the
through its flanking markers, the conditional genotypic

statistical parameters (�’s) change and become closer to
distribution of Q A (Q B) can be inferred on the basis of

the genetic parameters (E ’s). Therefore, the statistical
Haldane’s mapping function (Haldane 1919) as listed

parameters (�’s) depend on the population frequen-
in Table 2 of Kao and Zeng (1997). The joint condi-

cies (Pij’s) and will have different values in different tional genotypic distribution of Q A and Q B in intervals I1generations. When 	t approaches 0, the ratio of the and I2 can be obtained using the property of conditional
genotypic frequencies approaches 1:2:1:2:4:2:1:2:1, and independence between them (Kao and Zeng 1997).
the statistical parameters (�’s) will approach the genetic Let p ij’s, j � 1, 2, · · · , 9, denote the conditional probabil-
parameters (E ’s). Hence, the genetic parameters of ities of the nine possible QTL genotypes for individual i.
genes in linkage disequilibrium estimated in the F2 pop- The likelihood of the statistical model is a mixture of
ulation can be regarded as the gene effects in later nine normals as
generations when linkage equilibrium is attained.

Variance components: The genetic variance contrib- L(�, a1, d 1, a 2, d 2, iaa, iad, ida, idd, � 2 | Y, X, Z) � �
n

i�1

[�
32

j�1

p ij N(�ij, � 2)],
uted by two genes in the F2 population is

(36)

where p ij’s and �ij’s are the mixing proportions andVar(G) �
1
2
a 2

1 �
1
4
d 2

1 �
1
2
a 2

2 �
1
4
d 2

2 �
1
4
i 2

aa �
1
8
i 2

ad �
1
8
i 2

da

genotypic values of the nine genotypes for individual i.
To obtain the maximum-likelihood estimates (MLE) of

�
1
16

[1 � 	4]i 2
dd � 	a1a 2 �

	2

2
a 1iad �

	

2
a1ida the genetic parameters and their asymptotic variance-

covariance matrix for the normal mixture model, the
general formulas by Kao and Zeng (1997) based on the�

	2

2
d 1d 2 �

	

2
d 1iaa �

	2

2
a 2iad �

	2

2
a 2ida �

	

2
d 2iaa

expectation-maximization (EM) algorithm (Dempster
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et al. 1977) can be used. The general formulas are based stasis in QTL mapping. When the quantitative trait af-
fected by the two epistatic QTL, Q A and Q B, is regressedon two matrices, the genetic design matrix D and the

conditional probability matrix Q. Here, the genetic de- on a marker M along the genome to infer QTL, under
Cockerham’s model, the regression coefficient for thesign matrix is a matrix with dimension 9 � 8 as
additive effect of M is

D � [W1 W2 W3 W4 W5 W6 W7 W8], (37)
aM � (1 � 2rAM)a1 � (1 � 2rBM)a 2where Wi ’s, i � 1, 2, · · · , 9, are the orthogonal contrast

scales of Cockerham’s model in Table 1, and the condi-
�

1
2
(1 � 2rAB)(1 � 2rBM)iadtional probability matrix Q is a 92 � 32 matrix with

elements associated with the mixing proportions. By
applying the matrices D and Q to the general formulas, �

1
2
(1 � 2rAB)(1 � 2rAM)ida , (40)

the MLE and the asymptotic variance-covariance matrix
can be obtained. where rAM, rBM, and rAB are the recombination fractions

The proposed statistical QTL mapping model in between Q A and M, Q B and M, and Q A and Q B, respec-
Equation 35 can be used to search for epistatic QTL as tively, and the regression coefficient for the dominance
well as to analyze epistasis between QTL by taking epista- effect is
sis into account. In QTL mapping, we usually first search

d M � (1 � 2rAM)2d 1 � (1 � 2r BM)2d 2 � (1 � 2rAM)(1 � 2r BM)iaa .for QTL by ignoring epistasis. When epistasis is ignored,
(41)the accuracy in estimation and power of detection could

be affected (see below). Thus, it is very likely that the If the marker M is coincident with Q A, the coefficient aM,
detected epistatic QTL are those with relatively large which reduces to the estimate of additive effect of Q A, is
marginal effects and the undetected epistatic QTL are confounded by the additive effect of Q B and their epistatic
those with relatively minor marginal effects. By taking effects, iad and ida, via linkage, and the coefficient dM, which
epistasis into account, Equation 35 can be used to search is the estimate of dominance effect of Q A, is confounded
for the undetected minor epistatic QTL by testing by the dominance effect of Q B and their epistatic effects,
hypotheses iaa, via linkage. When the quantitative trait is regressed on

both Q A and Q B, the partial regression coefficient for theH0: a 2 � d 2 � iaa � iad � ida � idd � 0;
H1: at least one of them is not 0; (38) additive effect of Q A, given the additive effect of Q B is

given the detected QTL with marginal effects a1 and d 1 aA.Ba
� a1 �

1
2
(1 � 2rAB)ida , (42)

in the model. Note that hypotheses in (38) can consider
only additive effect and a part of the four epistatic effects and the partial regression coefficient for the dominance
in testing. Alternatively, Equation 35 can be used to test effect of Q A given the dominance effect of Q B is
for the existence of epistasis between two detected QTL
by setting hypotheses dA.Bd

� d 1 �
(1 � 2rAB)

1 � (1 � 2rAB)2
iaa . (43)

H0: iaa � iad � ida � idd � 0;
H1: at least one of them is not 0; (39) Again, the partial regression coefficients aA.Ba

and dA.Bd

are confounded by their epistasis, ida and iaa , respectively,
given their marginal effects in the model. Certainly, via linkage. If Q A and Q B are unlinked (rAB � 0.5), the
the hypotheses in (39) can contain individual epistasis confounding of epistasis disappears and the coefficients
parameters in the analysis. The hypotheses in (38) and (Equations 40–43) are all unbiased for a1 and d 1. It
(39) can be tested using the likelihood-ratio test (LRT) implies that if epistasis between QTL is present and
statistic, ignored in QTL mapping, the estimation of the mar-

ginal effects and positions of QTL are asymptotic unbi-
LRT � �2 log

L 0

L1

, ased if the epistatic QTL are unlinked. But, if the epi-
static QTL are linked, the estimates of QTL positions
and marginal effects are biased and confounded by epi-where L 0 and L1 are the likelihoods under H0 and H1.

The critical value of the LRT statistic for rejecting H0 static effects via linkage. This unbiasedness property for
unlinked QTL attributes to the orthogonal property ofcan be chosen from �2 distribution on the basis of the

Bonferroni argument. Cockerham’s model. The approaches of interval map-
ping (Lander and Botstein 1989; Jansen 1993; ZengWhat are the problems if epistasis is present and ig-

nored? Although epistasis is an ubiquitous phenomenon 1994; Kao et al. 1999), which test every position within
marker intervals along the entire genome for QTL de-(Wright 1980), many QTL mapping methods ignore

epistasis in the analysis for simplicity. It is important to tection, share the same problems and properties under
Cockerham’s model.investigate the problems if epistasis is present and ig-

nored and further to solve the problems and analyze epi- The similar investigation on the problems if epistasis
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is present and ignored in QTL mapping can also be decreases. If epistasis is taken into account, the epistatic
variance can be controlled, and the power will increase.done for the F∞-metric and mixed-metric models. Under

the F∞-metric model, the regression coefficient for the The increase in power depends on the size of the epi-
static effect. The larger the epistatic effect that can beadditive effect of a marker M is
controlled in mapping, the larger the increase in power

aM � (1 � 2rAM)a1 � (1 � 2rBM)a 2 that can be gained. In conclusion, by taking epistasis
into account in QTL mapping, the chance of finding

�
1
2
(1 � 2rAM)[1 � (1 � 2rBM)2]iad more QTL and the accuracy of estimating QTL positions

and effects can be improved.
�

1
2
(1 � 2rBM)[1 � (1 � 2rAM)2]ida , (44)

ADVANTAGES OF COCKERHAM’S MODELand the regression coefficient for the dominance effect
of a marker M is Cockerham’s model has several advantages in the study

of epistasis as compared to the F∞-metric and mixed-dM � (1 � 2rAM)2d 1 � (1 � 2rBM)2d 2 metric models. When genes are in linkage equilibrium,
� (1 � 2rAM)(1 � 2rBM)iaa the advantages include the following:

1. The genetic variance can be partitioned into eight�
1
2
[(1 � 2rAM)2 � (1 � 2rBM)2]idd . (45)

independent components (Equation 12), and there
is no genetic covariance. Each component is contrib-If the marker M is coincident with Q A, the coefficients,
uted by its corresponding genetic parameter. This isaM and dM, reduce to the estimates of the additive and
a desirable property in modeling. On the contrary,dominance effects of Q A. The estimate of the additive
the F∞-metric does not have such a property (Equa-effect of Q A is confounded by the additive effect of Q B, tion 18).a2, and their epistatic effects, iad and ida, and the estimate

2. The marginal means of one locus do not involveof dominance effect of Q A is confounded by the domi-
the parameters of another locus and the epistasisnance effect of Q B and their epistatic effects, iaa and idd. parameters, which would make Cockerham’s modelWhen the quantitative trait is regressed on both Q A and
readily interpretable (Table 3). The marginal meansQ B, the partial regression coefficient for the additive
of locus A are (a1 � d 1/2), d 1/2, and (�a1 � d 1/2),effect of Q A given the additive effect of Q B is
which correspond to the one-locus analysis (differing
by a constant d 1/2) despite epistasis. For the F∞-metric

aA.Ba
� a1 �

1
2

iad �
1
2
(1 � 2rAB)ida , (46) model, the marginal means of locus A are (a1 � d 2/

2 � iad/2), (d 1 � d 2/2 � idd/2), and (�a1 � d 2/2 �
and the partial regression coefficient for the dominance iad/2), which are confounded by the genetic parame-
effect of Q A given the dominance effect of Q B is ter of dominance effect of locus B (d 2) and their

epistasis parameters, iad and idd. In the mixed-metric
dA.B d

� d 1 �
1 � 2rAB

1 � (1 � 2rAB)2
iaa �

1
2

idd . (47) model, the marginal means of locus A are a1 � d 2/
2, d1 � d 2/2, and �a1 � d 2/2, which are confounded

Again, the partial regression coefficients of the additive by the genetic parameters of dominance effect of
and dominance effects are confounded by epistatic ef- locus B (d 2). Both the F∞-metric and mixed-metric
fects, and they are biased estimates of the additive and models do not follow the definition in the one-locus
dominance effects. If rAB � 0.5, the four coefficients in analysis.
Equations 44–47 are still biased. For example, when 3. The difference between the two homozygote means,
rAB � 0.5, aA � a1 � iad/2 and aA.Ba

� a1 � iad/2, which (G 2. � G 0.)/2[(G.2 � G.0)/2], estimates the genetic
parameter a1 (a 2) of locus A (B), and the departureare all biased estimates of a1. Therefore, the F∞-metric

model always has the problems of confounding and is of the heterozygote mean to the midpoint between
the two homozygote means, (2G 1. � G 2. � G 0.)/biased in estimation if epistasis is present and ignored

whether the QTL are linked or not. This implies that 2[(2G .1 � G .2 � G.0)/2], estimates the genetic param-
eter d 1 (d 2) of locus A (B). They follow the sameQTL mapping could be problematic for the F∞-metric

model if epistasis is ignored. As the mixed-metric model definition of additive and dominance effects in the
one-locus analysis. In the F∞-metric model, they esti-is also orthogonal, it possesses the same properties as

those of Cockerham’s model in the QTL analysis. mate a1 � iad/2 (a 2 � ida/2) and d 1 � idd/2 (d 2 � idd/
2) and violate the definition in the one-locus analysis.When epistasis is present and ignored in QTL map-

ping, the genetic variance contributed by epistasis is not 4. With the orthogonal property, the estimation of one
genetic (marginal or epistatic) effect will not be af-controlled in the model and becomes a part of the

genetic residual. Thus, the sampling variances of the fected by the presence or absence of other genetic
effects in the model. Essentially, when epistasis iseffects are inflated, and the power of detecting QTL
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TABLE 7 parameters (full model) are considered, the estimated
genetic parameters by Cockerham’s model, the F∞-met-The means of trait LBIL in the F2 population
ric model, and the mixed-metric model are listed in Ta-from Doebley et al. (1995)
ble 9. In Table 9, except for �, the estimates of the eight
genetic parameters by Cockerham’s model and the mixed-Q A

metric model are the same. Cockerham’s model and the
AA Aa aa Mean F∞-metric model have different estimates of marginal ef-

Q B 101.6a 83.62 47.80 77.21 fects, but the same estimates of epistatic effects (see Cocker-
BB 8b 20 11 39 ham’s genetic model for the reasons). The estimates of a1

66.50 47.55 54.57 54.19 and d 1 are 15.11 (P value 0.0008) and �3.92 (P value
Bb 22 42 21 85 0.5035), respectively, for Cockerham’s model, and they

61.11 40.94 17.98 36.37
are 24.25 (P value 0.0008) and 5.15 (P value 0.5617),bb 3 24 10 37
respectively, for the F∞-metric model. The estimates of74.52 54.09 44.08 55.67
a 2 and d 2 are 19.46 (P value 0.0001) and �5.66 (P val-Mean 33 86 42 161
ue 0.3336), respectively, for Cockerham’s model, and

LBIL, average length of vegetative internodes in the primary they are 17.59 (P value 0.0001) and 3.40 (P valuelateral branch. Q A and Q B represent unlinked genes UMC107
0.3336), respectively, for the F∞-metric model. Veryand BV302, respectively.
likely, the marginal effects of Q A and Q B are mostlya Trait mean.

b Sample size. additive, and their dominance effects are not significant.
The estimate of iaa is 2.68 (P value 0.7054). Analytically,
it means that the additive effects of Q B (Q A) in the

present and ignored, the estimation of the marginal background of AA (BB) and aa (bb), which are (Y22 �
effects and the location of epistatic QTL is still asymp- Y20)/2 � 20.27 [(Y22 � Y02)/2 � 26.93] and (Y02 �
totically unbiased and not affected by epistasis. This Y00)/2 � 14.91 [(Y20 � Y00)/2 � 21.57], differ by 2.68,
advantage ensures that QTL mapping can be first per- and this difference is not statistically significant at the
formed without taking epistasis into account without 5% level (Figure 1a). The estimate of iad is �18.28 (P
causing a problem under Cockerham’s model. The value 0.0411). Analytically, it means that the dominance
F∞-metric model does not have such property (see effects of Q B in the background of AA and aa, which
qtl mapping using cockerham’s model). are 21.68 [(2Y01 � Y02 � Y00)/2] and �14.88 [(2Y21 �

Y22 � Y20)/2], are significantly different at the 5% level.
The significance of additive-by-dominance interaction

EXAMPLES
can be illustrated by Figure 1b. In Figure 1b, the cross
between the two lines tells that genotype Bb performsIn this section, real and simulated data were used to

illustrate Cockerham’s model, compare the differences better than BB in the background of aa, but it does
worse in the background of AA. The estimate of ida, 3.75,between Cockerham’s model and other models, verify

the properties in statistical estimation, and map for epi- is not significant (P value 0.6725) as illustrated by the
three nearly parallel lines in Figure 1c. The estimate ofstatic QTL.

Real data: Doebley et al. (1995) crossed two corn idd , �18.13, is not statistically significant at the 5% level
(P value 0.1227), although it shows that there is a crossinbred lines, Teosinte-M1L � Teosinte-M3L, to generate

183 F2 progeny, and they concluded that two unlinked between lines in Figure 1d. The proportion of the ge-
netic variance in the total variance (model R 2) is 23.66%markers UMC107 (Q A) and BV302 (Q B) are the candi-

date QTL for trait LBIL (average length of vegetative (Table 8).
The estimates of the statistical parameters are �̂ 0 �internodes in the primary lateral branch) in QTL analy-

sis. Among the 183 progeny, 21 individuals have a miss- 55.67, �̂1 � 8.10, �̂ 2 � 4.24, �̂ 3 � 21.91, �̂4 � 3.10, �̂ 5 �
8.59, �̂ 6 � 0.71, �̂ 7 � �7.52, and � 8 � �38.88 followinging trait and one individual has a missing genotype.

Therefore, only the 161 individuals with complete trait the definitions, or they can be obtained by using Equa-
tions A1–A9 by plugging in observed genotypic frequen-and genotype information were used in the analysis.

The observed allele frequencies are p̂A � 0.4720, p̂a � cies in Table 7 and the nine estimated genetic parame-
ters in Table 9. Although the values of the statistical and0.5280, p̂B � 0.5062, and p̂ b � 0.4938. The genotypic

frequencies are 0.050, 0.137, 0.019, 0.124, 0.261, 0.149, genetic parameters are expected to be very close for
unlinked genes, they are very different based on this0.068, 0.130, and 0.062 for genotypes AABB, AABb, AAbb,

AaBB, AaBb, Aabb, aaBB, aaBb, and aabb, respectively, data set. The difference occurs because the observed
segregation ratio deviates from the expected segrega-which significantly deviate from the expected frequen-

cies for two unlinked genes. The small sample size of tion ratio.
If only the significant effects, a1, a 2 , and iad (reducedAAbb in 3 individuals is responsible for the deviation.

The observed genotypic means (yij.’s) and sample sizes model), are considered for Cockerham’s model, the
estimates of a1, a 2 , and iad are 15.27 (SD 4.13, P value(nij’s) of the data are listed in Table 7. If all eight genetic
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Figure 1.—Epistasis plot of the four
types of epistasis from the data of Doebley
et al. (1995) in Table 7. (a) Additive-by-
additive epistasis. (b) Additive-by-domi-
nance epistasis. (c) Dominance-by-additive
epistasis. (d) Dominance-by-dominance
epistasis.

0.0003), 19.13 (SD 4.04, P value 
 0.0001), and �18.44 in calculating the variance components, the additive
effect of Q A, a1, contributes �34.05% to the total genetic(SD 8.27, P value 
0.0271), respectively, which are very

close to the estimates in the full model. This shows that variance (Equation 12), the additive effect of Q B, a 2 ,
contributes �52.04% to the total genetic variance, andthe estimation of one genetic parameter in Cockerham’s

model will not be affected by the presence or absence the epistatic effect, iad, contributes �13.90% to the total
genetic variance under Cockerham’s model. There isof other genetic parameters due to its orthogonal prop-

erty. However, the F∞-metric model does not have such no genetic covariance between effects for unlinked loci.
The mixed-metric model has the same genetic variancea property. If the reduced model is considered for the

F∞-metric model, the estimates of a1, a 2, and iad become structure as Cockerham’s model. The genetic variance
and covariance components under the F∞-metric model24.48 (SD 6.28, P value 0.0001), 19.12 (SD 4.04, P val-

ue 
 0.0001), and �18.44 (SD 8.27, P value 0.0271), can be obtained using Equation 18.
Simulation: Assume that a quantitative trait is affectedrespectively. The estimate of a 2 changes from 17.59 in

the full model to 19.12 in the reduced model due to by two unlinked epistatic QTL. The first QTL, Q A, is
located at 52 cM on the first chromosome, and the sec-the confounding of ida/2 � 3.75/2 (estimated in the

full model) by Equation 46. Both models have the same ond QTL, Q B, is located at 93 cM on the second chromo-
some. There are 11 15-cM equally spaced markers onmodel R 2 � 0.2121.

If only the significant effects are taken into account each chromosome. The additive and dominance effects

TABLE 8

Two-way ANOVA of Doebley et al.’s (1995) data in Table 7

Source d.f. Sum of square Mean square F value P value

Q A 2 16995.08 8497.54 6.89 0.0014
Q B 2 19227.48 9613.74 7.80 0.0006
Q A � Q B 4 10921.70 2730.42 2.21 0.0701
Error 152 187440.72 1233.16
Total 160 245527.72

R -square is 0.2366.
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TABLE 9

Results from analysis of Doebley et al.’s (1995) data in Table 7 by Cockerham’s model,
the F∞-metric model, and the mixed-metric model

Parameter estimate Standard error Test for parameter � 0 P value

Cockerham F∞ Cockerham F∞ Cockerham F∞ Cockerham F∞

� 56.87 57.13 2.92 7.07 19.48 8.08 0.0001 0.0001
a1 15.11 24.25 4.47 7.07 3.41 3.30 0.0008 0.0008
d 1 �3.92 5.15 5.84 8.05 �0.67 0.58 0.5035 0.5617
a 2 19.46 17.59 4.42 7.07 4.40 2.49 0.0001 0.0140
d 2 �5.66 3.40 5.84 8.87 �0.97 0.38 0.3336 0.7022
iaa 2.68 2.68 7.07 7.07 0.38 0.38 0.7054 0.7054
iad �18.28 �18.28 8.87 8.87 �2.06 �2.06 0.0411 0.0411
ida 3.75 3.75 8.85 8.85 0.42 0.42 0.6725 0.6725
idd �18.13 18.13 11.68 11.68 �1.55 �1.55 0.1227 0.1227

Except for �, the mixed-metric model gives the same estimates of the parameters a1 , d 1 , a 2 , d 2 , iaa , iad , ida ,
and idd as those of Cockerham’s model. The estimate of � by the mixed-metric model is 61.66 with SD 5.79.

of Q A are a1 � 3 and d 1 � 1. Q B has additive effect a 2 � The simulation results are shown in Table 10. When
epistasis is ignored in QTL mapping, the powers to de-1 and no dominance effect. The additive-by-additive

epistatic effect is iaa � 2, and the other three epistatic tect Q A and Q B are 1.0 and 0.238 (�2
1,0.05/20 � 9.14;

�2
2,0.05/20 � 11.98), respectively. The mean estimates ofeffects are assumed to be zero. With these parameter

settings, the marginal effects of Q A and Q B contribute positions of Q A and Q B are 51.25 with standard deviation
(SD) 7.73 and 89.63 with SD 24.19, respectively. The76 and 8% to the total genetic variance, and epistasis

contributes 16% to the total genetic variance. The heri- means of the estimated additive and dominance effects
of Q A are 2.9941 (SD 0.5969) and 0.9816 (SD 0.9018).tability of the quantitative trait is assumed to be 0.2,

or equivalently the environmental variance is 25. The The mean estimate of the additive effect of Q B (from
significant replicates) is 1.8567 (SD 0.4196), which issample size is 200, and the number of simulated repli-

cates is 500. When using the statistical model in Equa- poorly estimated. If the mean of the estimated effect
of Q B is calculated on the basis of all 500 replicates, ittion 35 for QTL mapping, a stepwise selection proce-

dure (Kao et al. 1999) was adopted to detect QTL and is 1.1214 (SD 0.7956), which is much closer to the true
value. This corresponds to the theoretical proof ofanalyze epistasis, and the critical value for claiming sig-

nificance was chosen as �2
k,0.05/20, where k is the number asymptotical unbiasedness for marginal effect in estima-

tion if epistasis is present and ignored under Cock-of parameters in testing.

TABLE 10

Simulation results of mapping epistatic QTL in the F2 population

Without epistasis a With epistasis b

Q A Q B Q A Q B

Power 1.000 0.238 1.000 0.500
Position 51.25 (7.73) 89.63 (24.19) 50.99 (7.95) 90.46 (18.67)

0.0125 (0.3701) 0.0091 (0.3635)
a 2.9941 (0.5696) 1.8567 (0.4196) 2.9658 (0.5700) 1.3314 (0.6368)
d 0.9816 (0.9018) 1.0024 (0.8697)
iaa 1.9897 (0.9948)
� 2 24.26 (3.29) 24.02 (3.50)
h 2 0.2158 (0.0445) 0.2257 (0.0494)

Numbers in parentheses are standard deviations. The critical values for claiming significance are �2
1,0.05/20 � 9.14

and �2
2,0.05/20 � 11.98. Two unlinked QTL, Q A and Q B, are simulated on the chromosomes with 11 15-cM equally

spaced markers. Q A is placed at 52 cM with additive effect 3 and dominance effect 1. Q B is placed at 93 cM
with additive effect 1 (a1 � 3, d 1 � 1, a 2 � 1; VA /VG � 76%, VB /VG � 16%). The mean is 0, and the additive-
by-additive epistatic effect is 2 (� � 0, iaa � 2; Vi /VG � 16%). The heritability is 0.2 (h 2 � 0.2, � 2 � 25). The
sample size is 200 and the simulated replicates are 500.

a QTL mapping with epistasis ignored.
b QTL mapping with epistasis taken into account.
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TABLE 12TABLE 11

The three orthogonal contrast scales (W ’s) Cockerham’s epistasis model for the backcross population
for the backcross population

AA Aa Mean
Genotype AABB AABb AaBB AaBb

G 22 G 12 G.2

G G 22 G 21 G 12 G 11 BB a1

2
�

a 2

2
�

w 12

4
�

a1

2
�

a 2

2
�

w 12

4
a 2

2P 1⁄4 1⁄4 1⁄4 1⁄4
W1

1⁄2 1⁄2 �1⁄2 �1⁄2
G 21 G 11 G.1W2

1⁄2 �1⁄2 1⁄2 �1⁄2
W3

1⁄4 �1⁄4 �1⁄4 1⁄4 Bb a1

2
�

a 2

2
�

w 12

4
�

a1

2
�

a 2

2
�

w 12

4
�

a 2

2
G ’s and P ’s denote the genotypic values and expected geno-

Mean G 2. G 1.typic frequencies for the four genotypes of two unlinked genes,
A and B. a1

2
�

a1

2

The marginal means G i. and G.j are calculated for genes in
erham’s model (Equation 42). The estimates of environ- linkage equilibrium.
mental variance and heritability are 24.26 (SD 3.29) and
0.2158 (SD 0.0445), respectively. If epistasis is consid-
ered, the powers to detect Q A and Q B are 1.0 and 0.5, contribute 42.86% each and the epistatic effects contrib-
respectively. The power of detecting Q B improves from ute 14.28% to the total genetic variance. If a1 � a 2 �
0.238 without epistasis to 0.5 with epistasis. The mean d 1 � d 2 � �iaa/2 � �iad 2 � �ida/2 � �idd/2, the
estimates of positions of Q A and Q B are 50.99 (SD 7.95) genotypes show classical duplicate interaction with a
and 90.46 (SD 18.67), respectively. The estimated addi- 15:1 ratio. The contributions of marginal effects of A
tive and dominance effects of Q A have means 2.9658 and B and epistatic effects to the total genetic variance
(SD 0.5700) and 1.0024 (SD 0.8697), respectively. The are 20, 20, and 60%, respectively. Other classical epista-
mean of the estimated additive effect for Q B is 1.3314 sis, such as recessive, dominant, and suppression, can
(SD 0.6368) from significant replicates, and it is 1.0447 also be quantified by Cockerham’s model. The parame-
(SD 0.6941) from all replicates. The mean of the esti- terization of epistasis can facilitate the study of epistasis
mated epistatic effects is 1.9897 (SD 0.948). The esti- in quantitative trait analyses.
mates of environmental variance and heritability are Backcross populations: Cockerham’s model for a back-
24.02 (SD 3.50) and 0.225 (SD 0.0494). cross population can be also obtained on the basis of

the same orthogonal contrast principle. When two loci
A and B are considered, the F1 progeny, which produce

CONCLUSION AND DISCUSSION four different digenic gametes, AB, Ab, aB, and ab, with
expected frequencies (1 � r)/2, r/2, r/2, and (1 � r)/2,We use the orthogonal contrast scales proposed by
respectively, are backcrossed to one of the parents. TheCockerham (1954) to define gene effects and to con-
allele frequencies pA , pa , pB , and pb in the gametes ofstruct a genetic model, called Cockerham’s model, for
the F1 progeny are one-half. The scales for partitioningthe study of epistasis between genes. The properties of
the genetic variance of two unlinked genes in the back-Cockerham’s model in modeling and mapping epistatic
cross population are listed in Table 11, and Cock-genes are investigated, and its variance component struc-
erham’s model for the backcross population is shownture is also derived when genes are in linkage equilibrium
in Table 12 or can be expressed succinctly asand disequilibrium. The differences between Cocker-

ham’s model and other models in analyzing epistasis Gij � � � a1x1 � a 2x 2 � w 12(x1x 2), (48)
and mapping epistatic QTL are also compared. There

where i ( j) is 2 or 1 to denote the genotype AA (BB)are several advantages of using Cockerham’s model in
or Aa (Bb) or QTL A (B), and x1 (x 2) is the orthogonalmodeling epistasis of genes because of its orthogonal
contrast scale 1⁄2 or �1⁄2 if genotype of A (B) is AA (BB)property. The advantages can benefit the study of QTL
or Aa (Bb). The unique solutions of �, a1 , a 2 , and w 12mapping. The issues of QTL mapping when epistasis is
areinvolved are also discussed. Real and simulated exam-

ples are used to illustrate Cockerham’s model, verify its
statistical properties, and map for epistatic QTL. � �

G 22 � G 21 � G 12 � G 11

4
,

Parameterization of epistasis: Different types and de-
grees of epistasis can be also quantified by Cockerham’s

a1 �
G 22 � G 21 � G 12 � G 11

2
,model. For example, if a1 � a 2 � d 1 � d 2 � 3iaa/2 �

3iad/2 � 3ida/2 � 3idd/2, the genes show classical com-
plementary interaction with a 9:7 ratio among different a 2 �

G 22 � G 21 � G 12 � G 11

2
,

genotypic values, and the marginal effects of A and B
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tional independence property to construct the condi-
w 12 � (G 22 � G 21) � (G 12 � G 11) tional probability matrix Q. The orthogonalized MIM

model can facilitate the search of epistatic QTL, en-� (G 22 � G 12) � (G 21 � G 11).
hance the resolution of QTL mapping, and help outline

When genes are unlinked, the parameters � � G.. , a1 � a better QTL mapping strategy.
G 2. � G 1. , a1 � G.2 � G.1 are the mean and marginal
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APPENDIX A
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By taking expectation of each normal equation of
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2the model in Equation 19, the nine expected normal
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The expected normal equations can be expressed as a� {(�P22 � P21 � P20 � P02 � P01 � P00)�

function of genotypic values, genotypic frequencies, and
� (�P22 � P21 � P20 � P02 � P01 � P00)a1 genetic parameters.
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2
APPENDIX B

� (�P22 � P20 � P02 � P00)a 2 � (P22 � P21 � P20 � P02 � P01 � P00)
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2 When the genotypic frequencies (Pij’s) are expressed
in terms of allele frequencies (p’s) and the linkage dis-

� (�P22 � P20 � P02 � P00)iaa equilibrium coefficient (D) as shown in Table 6, and
the left-hand sides of the expected normal equations in

� (P22 � P21 � P20 � P02 � P01 � P00)
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2 appendix a are replaced with statistical parameters, they
can be expressed as the following equations.
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(Weir 1996),
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� (AB � 2D)a 2

� {(�P22 � P20 � P12 � P10 � P02 � P00)�
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APPENDIX C
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The variance components contributed by two genes
each with two alleles in a population are shown (see� B
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2 covariances of different genetic parameters. With inbreed-
ing, the genetic variance becomes even more complicated
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}. (B9) and is provided by Weir and Cockerham (1977).




