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ABSTRACT

In the data collection of the QTL experiments using recombinant inbred (RI) populations, when
individuals are genotyped for markers in a population, the trait values (phenotypes) can be obtained from
the genotyped individuals (from the same population) or from some progeny of the genotyped
individuals (from the different populations). Let Fu be the genotyped population and Fv (v $ u) be
the phenotyped population. The experimental designs that both marker genotypes and phenotypes
are recorded on the same populations can be denoted as (Fu/Fv , u ¼ v) designs and that genotypes
and phenotypes are obtained from the different populations can be denoted as (Fu/Fv , v . u)
designs. Although most of the QTL mapping experiments have been conducted on the backcross
and F2(F2/F2) designs, the other (Fu/Fv , v $ u) designs are also very popular. The great benefits of
using the other (Fu/Fv , v $ u) designs in QTL mapping include reducing cost and environmental
variance by phenotyping several progeny for the genotyped individuals and taking advantages of the
changes in population structures of other RI populations. Current QTL mapping methods including
those for the (Fu/Fv , u ¼ v) designs, mostly for the backcross or F2/F2 design, and for the F2/F3 de-
sign based on a one-QTL model are inadequate for the investigation of the mapping properties in the
(Fu/Fv , u # v) designs, and they can be problematic due to ignoring their differences in population
structures. In this article, a statistical method considering the differences in population structures
between different RI populations is proposed on the basis of a multiple-QTL model to map for QTL in
different (Fu/Fv , v $ u) designs. In addition, the QTL mapping properties of the proposed and
approximate methods in different designs are discussed. Simulations were performed to evaluate the
performance of the proposed and approximate methods. The proposed method is proven to be able to
correct the problems of the approximate and current methods for improving the resolution of genetic
architecture of quantitative traits and can serve as an effective tool to explore the QTL mapping study in
the system of RI populations.

MOST biologically important traits show contin-
uous variations and have poor heritability. Tra-

ditional study of quantitative genetics based on the
phenotype evaluation to investigate quantitative trait
loci (QTL) controlling these traits is difficult and
limited. Recently, the advent of fine-scale molecular
markers has provided researchers with an efficient tool
for the detection of the underlying QTL. Most QTL
detection experiments for producing marker geno-
types and phenotypic traits in species have been con-
ducted with populations derived from crosses between
inbred lines, e.g., backcross, advanced backcross, F2, re-
combinant inbred (RI) populations, intermated recom-
binant inbred (IRI) populations, advanced intercross
(AI) populations, advanced backcross populations, dou-
ble haploid (DH) populations, and NC Design III, etc.
(Comstock and Robinson 1952; Stuber et al. 1992;
Beavis et al. 1994; Veldboom et al. 1994; Darvasi and

Soller 1995; Austin and Lee 1996; Liu et al. 1996;
Chapman et al. 2003; Winkler et al. 2003; Complex

Trait Consortium 2004; Broman 2005). These dif-
ferent populations may show different properties in
QTL mapping as they have different population struc-
tures, such as homozygosity, genotypic frequencies, and
linkage disequilibrium (Weir 1996, Chap. 5). In prin-
ciple, the use of the information about genotypes and
phenotypes of individuals in these populations has be-
come a key approach to detect the underlying QTL for
the understanding of the genetic basis and the improve-
ment of important traits in genetic study.

In the data collection of these QTL experiments,
when individuals are genotyped for markers in a pop-
ulation, the trait values (phenotypes) can be recorded
on the genotyped individuals (on the same population)
or on some progeny of the genotyped individuals (on
the progeny population). Fisch et al. (1996) illustrated
the situations of data collection by Fu/Fv, where Fu

is the genotyped population and Fv (v $ u) is the phe-
notyped population, in the system of RI populations1Author e-mail: chkao@stat.sinica.edu.tw
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(see recombinant inbred populations for the popu-
lation structure of RI populations). For example, F2/F2

denotes the typical F2 design, where genotypes and phe-
notypes are obtained from the same individuals in the F2

population, and F2/F4 denotes the design to genotype
F2 individuals and phenotype their progeny in the F4

population. Although the (Fu/Fv , u ¼ v) designs are
typical (Doerge et al. 1997; Lynch and Walsh 1998,
Chap. 15), the (Fu/Fv , u , v) designs are also very
popular and important for QTL detection in the genetic
analysis of complex traits. For example, the F3/F3, F2/
F3, F2/F4, F4/F4, F5/F5, and F6/F7 designs have been
used to detect QTL in maize by Stuber et al. (1992),
Beavis et al. (1994), Veldboom et al. (1994), Austin and
Lee (1996), Mihaljevic et al. (2004, 2005), Zhang and
Xu (2004), and Sala et al. (2006) and the F4/F6 design
was used to study QTL in soybean by Chapman et al.
(2003). There are some benefits of using the (Fu/Fv,
u , v) with multiple phenotyping individuals and (Fu/
Fu, u , 2) designs. For example, the cost can be econom-
ical for not genotyping the progeny for markers, the
environmental variance can be reduced by phenotyping
multiple progeny for trait measurement, and homozy-
gotes can be accumulated so that QTL mapping may be
improved (Cowen 1988; Lander and Botstein 1989;
Knapp and Bridges 1990; Edwards et al. 1992; Austin

and Lee 1996).
Traditional QTL mapping methods developed to date

mostly assume that both marker genotypes and pheno-
typic traits are obtained from the same population [the
(Fu/Fv , u¼ v) designs], and they especially focus on the
F2/F2 and backcross designs (Lander and Botstein

1989; Jensen 1993; Zeng 1994; Satagopan et al. 1996;
Kao et al. 1999; Nakamichi et al. 2001; Sen and
Churchill 2001; Kao and Zeng 2002; Yi et al. 2003;
Carlborg and Haley 2004; Zou et al. 2004). Some
researchers have applied these traditional (approxi-
mate) methods to QTL mapping study by regarding
the traits (trait means) of progeny as the traits of
genotyped individuals, i.e., by treating (Fu/Fv , u , v)
designs as (Fu/Fv, u¼ v) designs, in the analysis (Stuber

et al. 1992; Beavis et al. 1994; Veldboom et al. 1994;
Austin and Lee 1996; Chapman et al. 2003; Zhang and
Xu 2004). Such application implicitly ignores the fact
that the traits are controlled by the progeny (Fv)
genomes, not by their ancestral (Fu) genomes, and that
the segregation of heterozygotes will vary their popula-
tion structures. Consequently, the power of QTL de-
tection may be affected and the estimates of QTL effects
can be biased by the approximate methods as shown in
Zhang and Xu (2004) and in this article. Statistical
methods are generally lacking or inadequate for the
(Fu/Fv , u , v) designs. Fisch et al. (1996) suggested to
propose an adequate model for the (Fu/Fv, u # v)
designs, and Zhang and Xu (2004) considered the
nature of segregation to propose a one-QTL model for
the F2/F3 design in QTL mapping. As shown in this

article, the one-QTL model by Zhang and Xu (2004)
and the approximate method may have confounding
problems in the estimation of QTL parameters and lose
power of QTL detection. Ideally, we would like to extend
the one-QTL model to a multiple-QTL model and the
F2/F3 design to the more general (Fu/Fv , u # v) designs
for more practical and broad use in a way that mul-
tiple QTL and their possible epistasis can be considered
in the model to correct the problems and the benefit
of other RI populations as mentioned can be utilized
to further improve and study QTL mapping. In this
article, a statistical method considering the differences
in population structures between different RI popula-
tions is developed on the basis of a more complete
multiple-QTL model for the more general (Fu/Fv , u #

v) designs. In addition, the QTL mapping properties
of the proposed and approximate methods in the
different (Fu/Fv, u # v) designs are also derived and
discussed. A simulation study was performed for evalu-
ating the relative efficiencies of different (Fu/Fv, u # v)
designs and comparing the performance of the pro-
posed and current methods in these designs. The
proposed method is capable of improving the resolu-
tion of the genetic architecture of quantitative traits and
can serve as a tool to study QTL mapping in the (Fu/Fv ,
u # v) designs.

RECOMBINANT INBRED POPULATIONS

Assume that two parental inbred lines, P1 and P2,
differ substantially in the quantitative trait of interest
and are fixed for alternative alleles at QTL and markers.
A cross between the parental lines produces an F1

population with all the same heterozygous individuals.
If the F1 individuals are selfed or intermated, it produces
an F2 population. In the F2 population, the genotypic
frequencies of P1 homozygote, heterozygote, and P2

homozygote are 1
4,

1
2, and 1

4, respectively (the heterozy-
gosity is 0.5), if one locus is considered. The frequency
of recombinants (r) between any two loci in the F2

population is equivalent to the recombination fraction
(c). If the F2 individuals are further selfed for t � 2
generations, it produces a so-called RI Ft population.
For t/‘, the derived population is called recombinant
inbred lines (RILs). In an Ft population, the frequencies
of P1 homozygote, heterozygote, and P2 homozygote in
a locus are expected to be ð1=2Þ � ð1=2tÞ, 1=2t�1, and
ð1=2Þ�ð1=2tÞ, respectively (the heterozygosity is 1=2t�1),
and the frequency of recombinants between two loci,
denoted as rt, is increasing as t is increasing and can be
obtained according to Haldane and Waddington

(1931). Haldane and Waddington showed that r‘ ¼
c= 1 1 2cð Þ.

Genetic model: In a RI population, any individual can
have three possible QTL genotypes, QQ, Qq, and qq, if
only one QTL, say Q, is considered. Let the genotypic
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value, Gi, of an individual i have the following relation
with the genetic parameters as

Gi ¼
m 1 a � d=2 for QQ

m 1 d=2 for Qq

m� a � d=2 for qq; ð1Þ

8><
>:

where m is the intercept, and a and d are the additive and
dominance effects according to Cockerham’s model
(Kao and Zeng 2002). If multiple, say m, QTL are con-
sidered, the extension of the one-QTL genetic model
in Equation 1 to a multiple-QTL model with epistasis
is straightforward (Kao and Zeng 2002). If an individual
i produces k progeny, the mean genotypic value of the
k progeny, Gi , is

Gi ¼ m 1
K2 � K0

k
a 1

K1 � K2 � K0

2k
d; ð2Þ

where K2, K1, and K0 denote the numbers of progeny
with QQ, Qq, and qq genotypes among the k progeny,
respectively. If the genotype of the individual i is QQ
(qq), all the k progeny have the same QQ (qq) genotype,
i.e., K2¼ k (K0¼ k), and the mean genotypic value is m 1

a� d/2 (m� a� d/2). If the genotype of the individual i
is Qq, the possible genotype of the progeny can be QQ,
Qq, or qq, and the mean genotypic value depends on K2,
K1, and K0. The possible allocations of (K2, K1, K0) have
(k 1 1)(k 1 2)/2 combinations and follow a trinomial
distribution with k trials and cell probabilities ð1=2Þ�
ð1=2t�1Þ, ð1=2t�2Þ, and ð1=2Þ � ð1=2t�1Þ. The number of
possible mean genotypic values corresponds to the num-
ber of possible allocations of (K2, K1, K0). Let g 1, g 2, . . . ,
g ðk11Þðk12Þ=2 denote the (k 1 1)(k 1 2)/2 genotypic
means. For simplicity, the mean genotypic value in
Equation 2 is expressed as

Gi ¼ m 1 axi 1 dzi ; ð3Þ

where

xi ¼
K2 � K0

k
and zi ¼

K1 � K2 � K0

2k

are to characterize the status of the additive and dom-
inance effects in the genotypic means. Under the ex-
pression of Equation 3, the extension of the model for
mean genotypic value from one QTL to multiple QTL is
straightforward. For m QTL without epistasis, the ge-
netic model can be written as

Gi ¼ m 1
Xm

j¼1

ajxij 1
Xm

j¼1

dj zij ; ð4Þ

where xij’s and zij’s are the coded variables for Qj’s, j¼ 1,
2, . . . , m, and are defined similarly as xi and zj in Equa-
tion 3. The extension of this model to consider epistasis

is straightforward by introducing the cross-product
terms as the terms of epistasis.

Variance components: When m QTL with complete
marginal and epistatic effects are considered together,
the genetic variances of a quantitative trait can be de-
composed into 2m2 variances and 2m4 � m2 covariances
in a RI population. Taking m ¼ 2 as an example, there
are 8 genetic variances and 28 genetic covariances. If
the two QTL are unlinked, the genetic variance in an Ft

population can be found as

V
½t�

G ¼ 1� 1

2ðt�1Þ

� �
a2

1 1
1

2ðt�1Þ 1� 1

2ðt�1Þ

� �
d2

1 1 1� 1

2ðt�1Þ

� �
a2

2

1
1

2ðt�1Þ 1� 1

2ðt�1Þ

� �
d2

2

1 1� 1

2ðt�1Þ

� �2

i2
aa 1

1

4
1� 1

2ðt�1Þ

� �
i2
ad 1

1

4
1� 1

2ðt�1Þ

� �
i2
da

1
1

16
1� 1� 1

2ðt�2Þ

� �4� �
i2
dd � 1� 1

2ðt�1Þ

� �
1� 1

2ðt�2Þ

� �
a1iad

� 1� 1

2ðt�1Þ

� �
1� 1

2ðt�2Þ

� �
a2ida

� 1

4
� 1

2t � 2
1

2
� 1

2ðt�1Þ

� �3� �
d1idd

� 1

4
� 1

2t � 2
1

2
� 1

2ðt�1Þ

� �3� �
d2idd ; ð5Þ

where iaa, iad, ida, and idd are the additive-by-additive,
additive-by-dominance,dominance-by-additive,anddom-
inance-by-dominance epistatic effects, respectively, under
the setting of the digenic model of Equation 1. Some
of the covariances are zeros. For t ¼ 2, there is no ge-
netic covariance and the genetic variance reduces to
eight independent components a2

1=2 1 d2
1=4 1 a2

2=2 1

d2
2=4 1 i2

aa=4 1 i2
ad=8 1 i2

da=8 1 i2
dd=16. As t is increasing,

the additive variances are increasing due to the accu-
mulation of homozygotes, and the dominance variances
are decreasing for the loss of heterozygotes. For ex-
ample, the additive and dominance variance compo-
nents are 3

4a
2
1 (3

4a
2
2) and 3

16d
2
1 ( 3

16d
2
2 ) for the F3 population,

and these components are 7
8a

2
1 (7

8a
2
2) and 7

64d
2
1 ( 7

64d
2
2 ) for

the F4 population. These two components approach a2
1

and zero for t/‘. This shows that the RI Ft, t . 2,
populations can benefit the estimation of additive ef-
fects by cumulating the homozygotes, but may hurt the
estimation of dominance effects due to the loss of het-
erozygotes. Also, the epistatic variances involving ad-
ditive effects (iaa, iad, and ida) are increasing, and the
dominance-by-dominance variance is decreasing. For
example, the epistatic variances involving the additive
effects are 9

16i
2
aa (49

64i
2
aa), 3

16i
2
ad ( 7

32i
2
ad), and 3

16i
2
da ( 7

32i
2
da), and

the dominance-by-dominance variance is 15
256i

2
dd ( 175

4096i
2
dd)

in the F3 (F4) population. The four variance compo-
nents approach i2

aa , i2
ad=4, i2

da=4, and zero, respectively, as
t/‘. Also, the covariances between genetic effects
become present in the Ft, t . 2, populations, and they
will cause confounding problems in estimation for the
one-QTL approach or if epistasis is present and ignored
in QTL mapping.

Multiple-Interval Mapping for RI Populations 1375



THE STATISTICAL METHODS

Data structure: Consider a sample of size n from a
(Fu/Fv , u , v) design or a (Fu/Fv, u ¼ v) design. The n
individuals from the Fu population are genotyped for
markers (Xi, i ¼ 1, 2, . . . , n). If the sample is from the
(Fu/Fv , u ¼ v) design, the n genotyped individuals are
phenotyped to obtain the n trait values (yi’s, i¼ 1, 2, . . . ,
n). If the sample is from the (Fu/Fv , u , v) design, each
of the n genotyped individuals produces k progeny in
the Fv generation for phenotyping, and their traits (yij’s,
j ¼ 1, 2, . . . , k) or trait means (yi’s) are recorded. For
QTL mapping using the data from (Fu/Fv , u , v)
designs, both the traditional (approximate) and the
proposed QTL mapping methods have been used and
are discussed here. When applying the traditional
methods to (Fu/Fv , u , v) designs, one assumes that
the mean trait is controlled by the QTL in the Fu

individuals, referred to as Q[u]’s hereafter, rather than by
the QTL in the Fv progeny, referred to as Q[v]’s hereafter
(Q[u] and Q[v] have the same dimension). As a result, the
problems, such as bias in estimation and loss in power of
QTL detection, will occur in QTL mapping for the
traditional methods. The proposed method intends to
connect the trait of the Fv progeny with Q[v]’s using the
marker information in the Fu individuals; hence it can
correct the problems to improve QTL mapping in the
(Fu/Fv , u , v) designs as shown below.

The proposed method: Without loss of generality in
inferring QTL mapping in the (Fu/Fv , u # v) designs,
consider that the sample is obtained from a (Fu/Fv , u ,

v) design and the trait means (yi’s) measured on the Fv

progeny are used in the analysis. The proposed method
attempts to relate the mean traits with the mean
genotypic values at Q[v] using the marker information
of the Fu individuals so that the genetic structure of the
Fv population can be taken into account in modeling. If
a quantitative trait is controlled by m nonepistatic QTL,
yi can be related to the m QTL by the model

yi ¼ m 1
Xm

j¼1

ajxij* 1
Xm

j¼1

dj zij* 1 ei ; ð6Þ

where xij*’s and zij*’s, j ¼ 1, 2, . . . , m, are the coded
variables associated with the additive and dominance
effects at Q ½v�j ’s, j ¼ 1, 2, . . . , m, in the genotypic means,
and they have the same definitions as xi* and zi* in
Equation 4. The residual error ei is assumed to follow a
normal distribution with mean zero and variance s2. As
multiple (m) intervals are used to infer the multiple
QTL, this model is a multiple-interval mapping-based
(MIM-based) method (Kao et al. 1999) for the (Fu/Fv,
u , v) designs. A single-QTL model for the F2/F3 design
was first proposed by Zhang and Xu (2004).

As QTL could be located in the marker intervals, the
genotypic means (xi

*’s and zi
*’s) for the m QTL are

unobservable and need to be inferred from the flanking
marker genotype of the Fu individual. For k progeny,

there are [(k 1 1)(k 1 2)/2]m genotypic means (pos-
sible values for xi*’s and zi*’s) for m QTL. Given a sample
with size n, the likelihood function of the model in
Equation 6 for u ¼ (a1, d1, a2, d2, . . . , am, dm, s2) is

Lðu jY;XÞ ¼
Yn
i¼1

X½ðk11Þðk12Þ=2�m

j¼1

pij N g j ;
s2

k

� �" #
; ð7Þ

where g j ’s are the [(k 1 1)(k 1 2)/2]m genotypic means,
and the mixing proportions, pij’s, are the conditional
probabilities of the corresponding genotypic means
given the marker genotype. The density of each in-
dividual is a mixture of [(k 1 1)(k 1 2)/2]m possible
normals with different means, g j ’s, and mixing propor-
tions, pij’s. Note that the mixing proportions in the
likelihoods can be obtained by Equation 9 and need
not to be estimated at the tested positions. The EM algo-
rithm (Dempster et al. 1977) is used for the estimation
of the parameters in Equations 7 by treating the trait
means and markers, yi’s and Xi’s, as observed data and the
coded variables of mean genotypic values, xij

*’s and zij
*’s,

as missing data.
The EM algorithm and maximum-likelihood esti-

mate: The coded variables, xij* and zij*, associated with
the additive and dominance effects in the mean geno-
typic values of Q ½v�j are determined by Kj 2, Kj1, and Kj0.
Therefore, inferring the distribution of xij* and zij* is
equivalent to inferring the distribution of Kj 2, Kj1, and
Kj0. To infer the distribution of Kj 2, Kj1, and Kj0 using
the marker information from the Fu individuals, one
may first infer the distribution of the Q ½u�j genotype
given the marker information and then infer the
distribution of Kj 2, Kj1, and Kj0 given the QTL genotype
of Q ½u�j . That is,

ProbðKj2;Kj1;Kj0 jXiÞ
¼ ProbðQ ½u�j jXiÞ3 ProbðKj2;Kj1;Kj0 jQ ½u�j ;XiÞ: ð8Þ

For the flanking marker interval, Ij, in the RI popula-
tions, there are nine possible flanking marker geno-
types. Given each of the nine marker genotypes, the
conditional probabilities of the QTL genotypes Q jQ j,
Q jqj, and qjqj for the within Q ½u�j are different in different
RI populations, and they depend on their population
structure. If an F2 population (u ¼ 2) is genotyped
for markers, these conditional probabilities of Q ½2�j geno-
types given the nine flanking marker genotypes have
been provided by several researchers (see, e.g., Table 2 of
Kao and Zeng 1997). If an Fu, u . 2, population is
genotyped, the conditional probabilities are similar to
those for the F2 population with rt substituted for r2 (see
Haldane and Waddington 1931, for the derivation of
rt). Due to segregation, Q ½v�j and Q ½u�j may have the same
or different genotypes. If Q ½u�j is Q jQ j (qjqj), Q ½v�j of each
progeny is sure to be Q jQ j (qjqj). That is, ProbðKj2 ¼ k;
Kj1 ¼ 0;Kj0 ¼ 0 jQ ½u�j ¼Q jQ jÞ¼1 ½ProbðKj2 ¼ 0;Kj1 ¼ 0;
Kj0 ¼ k jQ ½u�j ¼ qjqjÞ ¼ 1�. If Q ½u�j is Q jqj, Q[v] among the
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k progeny can be Q jQ j, Q jqj, or qjqj, and it will follow a
multinomial distribution (see Genetic model); i.e.,

ProbðKj2 ¼ k2;Kj1 ¼ k1;Kj0 ¼ k0 jQ ½u�j ¼ Q jqj ;XiÞ
¼ pðk2; k1; k0Þ

¼ k!

k2!k1!k0!

1

2
� 1

2v�u11

� �k2 1

2v�u

� �k1 1

2
� 1

2v�u11

� �k0

:

Taking all three genotypes of Q ½u�j into consideration, it
is straightforward to obtain

ProbðKj2 ¼ k2;Kj1 ¼ k1;Kj0 ¼ k0 jXiÞ

¼
X

Q
½u�
j ¼Q j Q j ;Q j qj ;qj qj

ProbðKj2 ¼ k2;Kj1 ¼ k1;Kj0 ¼ k0 jQ ½u�
j ;XiÞ

3 ProbðQ ½u�j jXiÞ:

The possible number of allocations for each set of Kj 2,
Kj1, and Kj0 is (k 1 1)(k 1 2)/2. If all the m QTL are
considered at a time, there are 9m possible flanking
marker genotypes, and, for each marker genotype,
there are totally [(k 1 1)(k 1 2)/2]m possible allocations
for Kj 2’s, Kj1’s, and Kj0’s, j ¼ 1, 2, . . . , m (genotypic
means). The joint distribution of Kj 2’s, Kj1’s, and Kj0’s,
j ¼ 1, 2, . . . , m, is simply the product of the m individual
multinomial distributions:

ProbðK12;K11;K10;K22;K21;K20; . . . ;Km2;Km1;Km0 jXiÞ

¼
Ym
j¼1

ProbðKj2;Kj1;Kj0 jXiÞ: ð9Þ

Under such a setting, the proposed model can be
statistically formulated as a two-stage hierarchical model
for the use of the EM algorithm. First the random
variables xij*’s and zij*’s, j¼ 1, 2, . . . , m, are sampled from
a multinomial experiment

ðxi1* ; zi1* ; xi2* ; zi2* ; . . . ; xim* ; zim* Þ
� hiðxi*; zi*; xi2* ; zi2* ; . . . ; xim* ; zim* jXiÞ
¼ ProbðK12;K11;K10;K22;K21;K20; . . . ;

Km2;Km1;Km0 jXiÞ

to determine the genotypic mean Gi , and then a normal
variable for that genotypic mean is generated from

yi j ðu;Xi ; xi1* ; zi2* ; xi2* ; zi2* ; . . . ; xim* ; zim* Þ � N ðGi ;s
2=kÞ;

where Gi ¼ m 1 a1xi1* 1 d1zi2* 1 a2xi2* 1 d2zi2* 1 � � � 1

amxim* 1 dmzim* , belonging to one of g j ’s, j ¼ 1, 2, . . . ,
[(k 1 1)(k 1 2)/2]m, to produce the mean trait value,
yi . Following the definition of the EM algorithm, the
complete-data likelihood function can be written as

Lðu jYcomÞ ¼
Yn
i¼1

Y½ðk11Þðk12Þ=2�m

j¼1

pijN gj ;
s2

k

� �� �I ðGi¼g j Þ
;

ð10Þ

where Ycom contains the missing and observed data to
denote the complete data. Note that the mixing pro-
portions, pij’s, are not for estimation and can be de-
termined by Equation 9. Following the definition of the
EM algorithm. In the E-step, the conditional expected
complete-data log-likelihood with respect to the condi-
tional distribution of missing data given observed data
and the current estimated parameter is computed. The
M-step is to find u to maximize the conditional expected
complete-data log-likelihood. The maximization will
become complicated as k or m increases. Although the
derivations of the solutions in the M-step are compli-
cated (not shown), these solutions can be regularized
together in the form of the general formulas by Kao

and Zeng (1997). The general formulas were originally
devised to obtain the maximum-likelihood estimate
(MLE) for the backcross and F2/F2 designs by con-
structing a genetic design matrix D to systematize the
solutions into tidy formulations, and the elements in
the D matrix are the coded variables associated with the
genetic effects in all the possible genotypic values. For
the (Fu/Fv, u , v) designs, the complicated solutions in
the maximization step after regularization have the
same forms of general formulas by assigning the coded
variables associated with the genetic effects in the geno-
typic means to the elements of D. For example, when
considering m ¼ 1 and k ¼ 3, there are two coded
variables, one for the additive effect and another for the
dominance effect, and 10 possible genotypic means. The
solutions are equivalent to the general formulas by con-
structing D with dimension 10 3 2 as

D9 ¼
1 2

3
1
3

1
3 �1

3 0 0 �1
3 �2

3 �1

�1
2 �1

6 �1
2

1
6 �1

2 �1
6 �1

2
1
6 �1

6 �1
2

" #
;

where the first column with elements 1 and �1
2 corre-

sponds to the coded variables, xi* and zi*, in the first
genotypic mean, g 1 ¼ m 1 a � d=2, for all the progeny
with Q[v] ¼ QQ (K2 ¼ 3, K1 ¼ 0, K0 ¼ 0), and the second
row with elements 2

3 and �1
6 is for the coded variables in

the second genotypic mean, g 2 ¼ m 1 2a=3� d=6, for
the progeny, two with QQ and one with Qq (K2¼ 2, K1¼
1, K0 ¼ 0). The remaining eight rows are for the other
possible genotypic means, g 3, g 4, . . . , g 10, correspond-
ing with the allocations of different genotypes among
progeny. For m QTL in the model, there are [(k 1 1)(k
1 2)/2]m possible genotypic means and 2m parameters
(ignoring epistasis), and the genetic design matrix has a
dimension of [(k 1 1)(k 1 2)/2]m 3 2m. Each row of D
is assigned to the values of the coded variables for the m
QTL in each genotypic mean. The construction of the
genetic design matrix for different m and k as well as
for considering epistasis is straightforward, although
the dimension expands dramatically as m or k becomes
large. The E- and M-steps are iterated until convergence,
and the converged values of the parameters are the
MLE.
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The problems if epistasis is present and ignored:
Many current methods ignore epistasis in the analysis of
QTL for simplicity. It is important to check the problems
if epistasis is present and ignored and in addition to
solve the problems in QTL mapping. Without loss of
generality, consider that the quantitative trait is con-
trolled by two unlinked epistatic QTL, Q A and Q B. If the
trait value is regressed on Q A (Q B), the estimates of the
additive and dominance effects can be found to be

aA ¼ a1 �
1

2
1� 1

2ðu�2Þ

� �
iad and dA ¼ d1 �

1

2
1� 1

2ðu�2Þ

� �
idd

ð11Þ

in the Fu/Fu designs, where a1 (d1) is the additive
(dominance) effect of Q A, and iad and idd are their
epistatic effects (Equations 11 can be obtained from
Equations A2 and A3 by setting u ¼ v in the appendix).
It shows that the estimate of the aA can be confounded
by a1 and iad, and dA is confounded by d1 and idd. Also, it
is important to note that the epistatic effect iaa is not
confounding in the estimation of the marginal effects.
Therefore, in the F2/F2 design, aA¼ a1 and dA¼ d1, and
there is no confounding problem as the model has the
orthogonal property in this design. In the (Fu/Fu, u . 2)
designs, the problem of confounding occurs. For exam-
ple, aA ¼ a1 � 1

4iad and dA ¼ d1 � 1
4idd in the F3/F3 design,

aA ¼ a1 � 3
8iad and dA ¼ d1 � 3

8idd in the F4/F4 design,
and aA ¼ a1 � 7

16iad and dA ¼ d1 � 7
16idd in the F5/F5

design. The fractions associated with the confounding
epistatic effects are 1

4,
3
8, and 7

16 in the F3/F3, F4/F4, and
F5/F5 designs, respectively, and the confounding prob-
lem is found to become more serious in the later RI
populations. This fraction approaches 1

2 for the designs
with large u. For large u, the dominance component
may become diminished and hard to estimate, and the
additive component plays the major role in estimation,
due to the loss of heterozygotes and increase of homo-
zygotes in the later Fu populations. But, for the early Fu

populations, say the F2, F3, and F4 populations, the dom-
inance components may not be negligible and should
be considered in the model. In addition, ignoring epis-
tasis can inflate the sampling variances of QTL effects
and will reduce the power of QTL detection. Among the
epistatic variance components, the component contrib-
uted by iaa is relatively larger than the components by
other epistatic effects. According to Equation 5, the com-
ponents contributed by iaa are 1

4i
2
aa , 9

16i
2
aa , and 49

64i
2
aa in the

F2/F2, F3/F3, and F4/F4 populations, respectively. This
component becomes greater for the later RI popula-
tions and approaches i2

aa for u / ‘. The above implies
that QTL mapping could be problematic, such as
biasing the estimation of QTL parameters and reducing
the power of QTL detection, if epistasis is ignored in
QTL analysis. By taking epistasis into account, the var-
iance components contributed by the epistatic effects
can be controlled to enhance the power of QTL de-

tection and the confounding problem can be avoided to
improve QTL detection.

The traditional (approximate) method and its prob-
lems: The approximate method is to model the rela-
tion between the mean trait of the Fv progeny and the
QTL in their ancestral Fu individuals, Q[u]’s. It implicitly
assumes that the traits measured on the Fv progeny are
controlled by the genomes of the Fu individuals, rather
than by those of the progeny. This assumption overlooks
the differences between population structures, as the
genotypic frequencies, heterozygosity, and linkage dis-
equilibrium between the genotyped (ancestral) and
phenotyped (progeny) populations are different. Con-
sequently, some problems, such as less power and bias in
estimation, will occur (see the appendix). By the ap-
proximate method, the estimate of the additive effect is
confounded by the additive effect a1 and the epistatic
effect iad, and the estimate of the dominance effect is
confounded by d1 and idd. The confounding depends on
u and v. For example, ba¼ a1� iad/4 and bd¼ d1/2� idd/
8 in the F2/F3 design, ba ¼ a1 � 3

8iad and bd ¼
d1=4� 3

32idd in the F2/F4 design, ba ¼ a1 � 3iad/8 and
bd ¼ d1/2 � 3idd/16 in the F3/F4 design, and ba ¼ a1 �
7iad/16 and bd¼ d1/4� 7idd/64 in the F3/F5 design (see
the appendix). The estimated additive effect is an un-
biased estimate of a1, and the estimated dominance
effect is only a fraction of d1. Using the approximate
method, the confounding of iad and idd in the estimation
of additive and dominance effects becomes more severe
for the designs with a larger difference between u and v;
moreover, the confounding problems remain unsolved
if epistasis is taken into account (see the appendix). In
addition to the confounding problem in estimation, the
uncontrolled genetic variance will become a part of the
genetic residual, causing loss of power in QTL de-
tection. In general, the application of the approximate
method to the QTL mapping in the (Fu/Fv, u , v)
designs has the problems of confounding, estimating
dominance effects, and controlling the genetic vari-
ances. To avoid the problems and to increase the power,
it is desirable to consider the genome structure in the Fv

population by using the proposed method for QTL
mapping in the systems of the (Fu/Fv , u , v) designs.

SIMULATION STUDIES

Simulations were performed to achieve three pur-
poses: (1) to verify the derived mapping properties of
the proposed and current methods, (2) to compare the
performance of the proposed and current methods in
different (Fu/Fv , v # v) designs, and (3) to evaluate the
relative mapping efficiency of different experimental
designs. Two 100-cM chromosomes each with 11 equally
spaced markers and one QTL were simulated. The two
unlinked epistatic QTL, Q A and Q B, are assumed to be
located at 25 cM on their chromosomes. The additive
effects of Q A and Q B are assumed to be a1¼ 2 and a2¼ 2,
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respectively, and there is no dominance effect. Their
additive-by-dominance effect is assumed to be iad ¼ 2,
and the other three epistatic effects are assumed to be
zero. With these parameter settings, the marginal effects
of the two QTL contribute 44.44% and 44.44% to the
total genetic variance, respectively, and epistasis con-
tributes 11.11% to the total genetic variance in the F2/F2

design. The environmental variance is assumed to be
85.5 (the heritability, h2, is 0.05 in the F2/F2 design).
Also, according to Equation 11, when ignoring epista-
sis in the estimation of a1 and a2, the estimate of a1

will be confounded by iad, and the estimate of a2 will not
be confounded. The QTL, Q A, will be referred to as
the confounded QTL, and Q B will be referred to as the
unconfounded QTL. The sample size is 200, and the
number of replicates is 100. The simulations include
three parts. The first part is for the (Fu/Fv , u ¼ v)
designs. Six such designs, F2/F2, F3/F3, F4/F4, F5/F5,
F6/F6, and F10/F10, are simulated. The second part is
for the F2/F3 designs, and four different numbers of
phenotyping progeny, k¼ 1, k¼ 3, k¼ 5, and k¼ 10, are
assumed. The third part considers designs with other
genotyping and phenotyping populations, including
the F2/F4, F3/F4, F3/F5, and F4/F5 designs. The number
of progeny for phenotyping is assumed to be k ¼ 5. In
each part, a stepwise selection procedure (Kao et al. 1999;
Zeng et al. 1999) is adopted to detect QTL. Both the
proposed and approximate interval mapping (IM)-based
(one-QTL) and MIM-based (multiple-QTL) methods
are used in the analysis. The critical value for claiming
significance was chosen as x2

k ;0:05=20, where k is the num-
ber of parameters in testing (see discussion). The sim-
ulation results are shown in Tables 1–3.

Table 1 shows the results of the first part of the sim-
ulation. When the IM-based method is used to detect
QTL, one can consider one (additive or dominance)
effect or two effects in the search. The model consider-
ing dominance effect only did not detect any QTL, and
the performance of the two-effect model is inferior as
compared to that of the additive-effect model. Table 1
presents the QTL mapping result of the model consid-
ering the additive effect only. The powers for detecting
the confounded Q A are 30, 14, 17, 18, 11, and 17% in
the F2/F2, F3/F3, F4/F4, F5/F5, F6/F6, and F10/F10

designs, respectively, and the powers for detecting the
unconfounded Q B are 33, 39, 44, 50, 53, and 54% in
the six different designs, respectively (critical value
x2

1;0:05=20 ¼ 9:14). As compared to the QTL detection
in the F2/F2 design, the confounded Q A was detected
with decreasing power, and the unconfounded Q B was
detected with increasing power by using the later RI
populations. The reasons are that the estimation of
the additive effect of Q A is confounded by iad due to
ignoring epistasis and such confounding becomes more
severe in the F3, F4, F5, F6, and F10 populations and
that the estimation of the additive effect of Q B is not
confounded so that the power can be increased due to

the accumulation of homozygotes in the later RI popu-
lations (Equation 11). The estimated additive effects of
the confounded Q A by the IM method are 2.13 (SD
1.40), 1.43 (SD 01.25), 1.40 (SD 1.11), 1.10 (SD 1.24),
1.08 (SD 1.17), and 1.02 (SD 1.25), respectively, in the
six designs (the predicted confounded estimates by the
IM method are 2.0, 1.5, 1.25, 1.125, 1.0625, and 1.00394,
respectively, according to Equation 11). Except for the
F2/F2 design, the estimates of a1 by the IM method are
poorly estimated and very far away from the true value a1

¼ 2 due to the confounding of iad¼ 2. The confounding
problem is more severe for the confounded Q A in the
designs using the later RI populations if epistasis is
ignored. The estimated effects of the unconfounded
Q B are 2.20 (SD 1.46), 2.09 (SD 1.06), 2.06 (SD 0.88),
2.07 (SD 0.97), 2.23 (SD 0.65), and 2.14 (SD 0.75),
respectively. These estimates by the IM method are very
close to the true value a2 ¼ 2 as expected, because they
are not confounded. The advantages of the MIM
method include that the detected QTL can be fitted
into the model for further QTL search and the epistasis
between QTL can be considered. When the MIM
method considers only one QTL in the model (m ¼
1), the mapping results are identical to those of the IM
method. If the detected Q A (Q B) is fitted into the MIM
model (m ¼ 2 without epistasis) in the search for other
QTL, both the powers of detecting Q A and Q B increase
1–6%. For example, the powers increase from 6% (1%)
to 45% (15%) by using the MIM method without
epistasis in the F3/F3 design. If epistasis is taken into
account in the search, four different types of epistatic
effects can be considered in the model. Among the four
possible epistatic effects, only the model taking iad into
account improves QTL detection, and the models
fitting other epistasis become inferior as a higher critical
value is used for claiming significance (critical value
x2

2;0:05=20 ¼ 11:98). By considering epistasis, the values of
the average partial LRT statistic increase by 1–2 and the
powers of detecting Q A and Q B also increase as
compared to the MIM method without epistasis. For
example, the powers of detecting Q A and Q B increase
4% (5%) and 7% (7%) to 35% (20%) and 41% (52%) in
the F2/F2 (F3/F3) design after taking epistasis into
account. The increase in powers of detecting Q A for
the other designs is less notable. Also, by considering
epistasis, the confounding problem in the estimation of
a1 seems to be relieved by considering iad in the model.
The means of the estimated a1 are 2.06 (SD 1.33), 1.74
(SD 1.26), 1.63 (SD 1.74), 1.51 (SD 2.11), 1.52 ( SD 2.22)
and 1.04 (SD 2.42) in the designs, respectively, and the
means of the estimated iad are 1.33 (SD 2.63), 1.50 (SD
3.01), 0.78 (SD 3.42), 1.15 (SD 4.39), 0.97 (SD 4.67),
and 0.10 (SD 4.76), respectively. These estimates of a1

and iad in the later RI populations seem to be un-
satisfactory, especially for the F10/F10 design, but they
can be improved by increasing the sample size or as the
heritability becomes higher (not shown) or by using the
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(Fu/Fv , u , v) designs with multiple phenotyping
progeny (Table 3). The poor estimation of iad in the
F10/F10 design may be attributed to the lack of hetero-
zygotes. In the estimation of the QTL position, the
means of the estimated positions of Q A are 33.88 (SD
25.32), 39.62 (SD 27.43), 39.06 (SD 26.99), 42.58 (SD
29.25), 38.64 (SD 27.58), and 44.24 (SD 28.43), re-
spectively, in the six different designs, and the means for
Q B are 37.81 (SD 26.86), 33.78 (SD 21.60), 30.34 (SD
17.84), 32.37 (SD 22.16), 30.63 (SD 16.20), and 32.76
(SD 19.42), respectively. The estimated QTL positions
are found to be biased toward the center of chromo-
somes. The position of unconfounded Q B (confounded
Q A) seems to be estimated with greater (reduced) accu-

racy as the later RIL populations are used in the design.
The above results shows that the use of the RI popula-
tion after F2 can improve the estimation of parameters
and power of detection of the unconfounded Q B, but it
is difficult to improve the resolution of the confounded
Q A as compared to the use of the F2/F2 design.

Table 2 shows the QTL mapping results using the
F2/F3 designs with different numbers of phenotyping
progeny. If there is only 1 progeny (k¼ 1) for trait mea-
surement, the IM and MIM (with or without epistasis)
methods have less power to detect Q A and Q B as com-
pared to the powers in the F2/F2 or F3/F3 designs. For
example, the powers of detecting Q B (Q A) by the pro-
posed MIM method are 32% (12%) in the F2/F3 design

TABLE 1

Simulation results of using different QTL mapping methods under different (Fu/Fv, u ¼ v) designs

Q A Q B

Method Design Posi ¼ 25 a1 ¼ 2 LRT Power (%) Posi ¼ 25 a2 ¼ 2 LRT Power (%) iad ¼ 2 s2 ¼ 85.5 LRT

IM F2 33.11 2.13 7.09 30 37.81 2.20 7.67 33
(24.07) (1.40) (4.84) (26.86) (1.46) (5.19)

F3 42.35 1.43 5.66 14 33.78 2.09 8.64 39
(31.10) (1.25) (4.11) (21.60) (1.06) (4.74)

F4 38.73 1.40 5.74 17 30.34 2.06 9.27 44
(26.19) (1.11) (3.7) (17.84) (0.88) (5.18)

F5 42.35 1.10 5.26 18 32.37 2.07 9.96 50
(30.26) (1.24) (3.84) (22.16) (0.97) (5.39)

F6 43.04 1.08 4.95 11 30.63 2.23 10.25 53
(28.33) (1.1) (3.27) (16.20) (0.65) (5.39)

F10 43.52 1.02 5.25 17 32.76 2.14 10.16 54
(27.0) (1.25) (3.52) (19.43) (0.75) (5.41)

MIM (without
epistasis)

F2 32.20 2.09 7.31 31 39.81 2.20 7.94 33 81.04 14.98
(24.05) (1.45) (5.08) (26.86) (1.43) (5.52) (10.39) (7.44)

F3 42.96 1.40 5.92 15 33.78 2.12 9.02 45 3.04 14.56
(30.45) (1.30) (4.15) (21.60) (1.06) (4.90) (9.72) (6.42)

F4 37.40 1.47 5.98 20 30.34 2.06 9.57 46 82.90 15.25
(26.71) (1.00) (3.69) (17.84) (0.89) (5.49) (4.86) (6.17)

F5 39.84 1.16 5.28 18 32.37 2.06 10.09 50 83.88 15.24
(28.29) (1.15) (3.79) (22.16) (0.98) (5.51) (10.21) (6.05)

F6 41.60 1.09 5.08 14 30.63 2.23 10.47 56 84.88 15.33
(28.02) (1.14) (3.48) (16.20) (0.65) (5.57) (8.67) (6.60)

F10 44.04 1.02 5.39 18 32.76 2.14 10.42 58 83.26 15.54
(28.30) (1.24) (3.61) (19.42) (0.75) (5.46) (9.53) (5.81)

MIM (with
epistasis)

F2 33.88 2.06 9.17 35 37.81 2.20 10.32 41 1.33 80.23 16.24
(25.32) (1.33) (5.10) (26.86) (1.44) (5.82) (2.63) (10.44) (7.22)

F3 39.62 1.74 8.30 20 33.78 2.10 11.90 52 1.50 81.75 16.94
(27.43) (1.26) (4.39) (21.60) (1.05) (5.72) (3.01) (9.74) (6.73)

F4 39.06 1.63 7.87 20 30.34 2.08 11.89 56 0.78 81.83 17.14
(26.99) (1.74) (4.06) (17.84) (0.88) (5.53) (3.42) (7.67) (6.02)

F5 42.58 1.51 7.61 18 32.37 2.04 12.39 52 1.15 82.77 16.98
(29.25) (2.11) (3.79) (22.16) (0.97) (6.17) (4.39) (10.24) (6.14)

F6 38.61 1.52 6.61 15 30.63 2.23 12.61 60 0.97 83.76 16.87
(27.58) (2.22) (3.77) (16.20) (0.65) (6.10) (4.67) (8.63) (6.80)

F10 44.24 1.04 6.57 18 32.76 2.13 11.87 59 0.10 82.25 16.73
(28.43) (2.42) (3.75) (19.42) (0.75) (6.18) (4.76) (9.60) (6.13)

A total of 100 replicates, each with sample size 200, were analyzed with two unlinked epistatic QTL, Q A and Q B, controlling the
trait variation. The heritability is 0.05 in the F2 population. The critical value for the methods of IM and MIM without epistasis is
x2

1;0:05=20 ¼ 9:14, and the value for MIM with epistasis is x2
2;0:05=20 ¼ 11:98. Posi, position.
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TABLE 2

Simulation results of using different QTL mapping methods under the F2/F3 design with different numbers of phenotyping
progeny

Q A Q B

Design Method Posi ¼ 25 a1 ¼ 2 LRT Power (%) Posi ¼ 25 a2 ¼ 2 LRT Power (%) iad ¼ 2 s2 ¼ 85.5 LRT

F2/F3 k ¼ 1 IM e 43.07 1.43 4.69 11 37.73 2.06 6.80 26
(29.46) (1.53) (3.06) (27.41) (1.46) (4.21)

a 43.55 1.45 4.67 10 36.78 2.05 6.71 24
(29.77) (1.51) (3.06) (26.44) (1.44) (4.08)

MIMa e 43.06 1.46 4.90 12 37.73 2.08 7.07 27 81.63 11.70
(30.34) (1.52) (3018) (27.41) (1.46) (4.48) (9.99) (5.69)

a 43.00 1.48 4.84 11 36.78 2.06 6.94 25 84.42 11.58
(29.91) (1.50) (3.26) (26.44) (1.45) (4.36) (9.90) (5.52)

MIMb e 43.06 1.62 6.72 12 37.73 2.03 9.43 32 1.25 77.70 13.52
(29.23) (2.01) (3.39) (27.41) (1.44) (5.04) (5.48) (10.22) (5.93)

a 42.58 1.37 6.66 17 36.78 2.05 9.34 33 0.73 83.58 13.37
(28.42) (4.42) (3.51) (26.44) (1.46) (5.16) (2.94) (9.90) (5.85)

F2/F3 k ¼ 3 IM e 30.12 1.56 8.31 37 28.16 2.04 13.89 79
(19.09) (0.25) (4.29) (14.47) (0.49) (5.90)

a 29.68 1.57 8.30 37 26.78 2.08 13.79 79
(18.71) (0.58) (4.30) (13.52) (0.19) (5.89)

MIMa e 32.22 1.51 8.77 40 28.16 2.09 14.44 80 83.95 22.66
(22.61) (0.68) (4.66) (14.47) (0.49) (6.15) (10.62) (4.21)

a 31.16 1.51 8.75 39 26.78 2.08 14.34 79 85.90 22.54
(20.97) (0.68) (4.65) (13.52) (0.48) (6.15) (10.59) (7.20)

MIMb e 29.60 1.82 10.42 46 28.16 2.09 15.68 83 1.48 82.2 24.31
(22.43) (1.04) (4.44) (14.47) (0.49) (6.81) (2.96) (10.59) (4.13)

a 28.74 1.45 10.42 47 26.78 2.09 16.42 82 0.78 85.01 24.21
(21.36) (0.76) (4.39) (13.52) (0.49) (6.64) (1.49) (10.52) (7.10)

F2/F3 k ¼ 5 IM e 28.64 1.56 12.33 67 25.22 2.02 20.22 91
(16.09) (0.49) (5.89) (8.25) (0.47) (8.90)

a 28.56 1.56 12.31 67 25.25 2.01 20.13 91
(16.07) (0.48) (5.87) (8.23) (0.16) (8.86)

MIMa e 27.12 1.51 12.92 70 25.22 2.00 21.06 92 85.99 33.14
(13.04) (0.49) (6.06) (8.25) (0.45) (9.09) (10.53) (9.67)

a 27.04 1.52 12.97 70 25.25 2.00 20.98 92 87.68 33.14
(12.90) (0.49) (6.08) (8.23) (0.45) (9.01) (10.52) (9.66)

MIMb e 27.54 1.96 14.94 73 25.22 2.01 22.31 93 1.91 84.25 35.16
(15.82) (0.68) (6.40) (8.25) (0345) (9.92) (2.18) (10.34) (10.07)

a 27.10 1.48 15.00 72 25.25 2.01 23.54 93 0.98 84.25 35.16
(16.03) (0.49) (6.46) (8.23) (0.45) (9.79) (1.10) (10.36) (10.12)

F2/F3 k ¼ 10 IM e 26.03 1.53 19.65 93 25.53 2.02 35.8 100
(8.42) (0.40) (8.42) (4.49) (0.35) (11.62)

a 26.21 1.54 19.64 93 25.52 2.01 35.65 100
(8.31) (0.42) (8.03) (4.50) (0.35) (11.58)

MIMa e 26.2 1.49 22.29 99 25.53 1.99 38.64 100 85.38 58.09
(8.27) (0.29) (7.93) (4.49) (0.33) (12.26) (9.24) (13.84)

a 26.14 1.49 22.35 99 25.52 1.99 38.25 100 54.01 58.00
(8.34) (0.29) (7.92) (4.50) (0.33) (12.22) (0.92) (13.81)

MIMb e 27.04 1.89 24.67 99 25.53 2.00 40.15 100 1.62 83.74 60.47
(10.42) (0.46) (8.14) (4.49) (0.34) (12.70) (1.38) (8.83) (13.87)

a 27.30 1.49 24.73 99 25.52 2.00 41.25 100 0.81 85.37 60.38
(10.39) (0.31) (8.13) (4.50) (0.34) (12.49) (0.69) (0.89) (13.83)

A total of 100 replicates, each with sample size 200, were analyzed with two unlinked epistatic QTL, Q A and Q B, controlling the
trait variation. The heritability is 0.05 in the F2 population. The critical value for the methods of IM and MIM without epistasis is
x2

1;0:05=20 ¼ 9:14, and the value for MIM with epistasis is x2
2;0:05=20 ¼ 11:98. Posi, position. k, the number of phenotyping progeny. e,

proposed (exact) method. a, approximate method.
a Without epistasis.
b With epistasis.
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TABLE 3

Simulation results of using different QTL mapping methods under different (Fu/Fv, u , v) designs with five phenotyping progeny

Q A Q B

Design Method Posi ¼ 25 a1 ¼ 2 LRT Power (%) Posi ¼ 25 a2 ¼ 2 LRT Power (%) iad ¼ 2 s2 ¼ 85.5 LRT

F2/F4 k ¼ 5 IM e 30.54 1.37 9.63 47 25.23 2.02 20.38 92
(20.14) (0.44) (5.93) (9.33) (0.43) (8.20)

a 30.37 1.37 9.62 47 25.58 2.00 20.24 92
(20.24) (0.44) (5.91) (9.51) (0.43) (8.12)

MIMa e 29.94 1.30 10.37 50 25.23 2.01 21.39 93 84.15 30.75
(20.06) (0.55) (6.48) (9.33) (0.44) (8.93) (10.35) (10.47)

a 29.72 1.31 10.38 48 25.58 2.00 21.30 93 86.58 30.63
(19.44) (0.53) (6.46) (9.51) (0.44) (8.89) (10.21) (10.39)

MIMb e 29.02 1.80 11.77 52 25.23 2.01 22.12 94 1.36 82.25 32.15
(19.96) (1.71) (6.43) (9.33) (0.44) (9.47) (4.36) (10.45) (10.59)

a 29.42 1.30 11.73 50 25.58 2.00 22.82 93 0.34 85.87 31.98
(19.84) (0.54) (6.42) (9.51) (0.44) (9.12) (1.11) (10.16) (10.47)

F3/F4 k ¼ 5 IM e 27.05 1.33 13.12 68 24.79 2.04 29.35 99
(13.44) (0.41) (7.63) (4.63) (0.36) (9.91)

a 27.02 1.33 13.12 68 24.75 2.03 29.25 99
(13.48) (0.41) (7.64) (4.68) (0.36) (9.89)

MIMa e 26.64 1.28 13.93 75 24.79 2.01 30.49 99 83.67 43.29
(14.33) (0.39) (7.24) (4.63) (0.35) (10.15) (8.65) (11.72)

a 26.72 1.28 13.98 75 24.75 2.01 30.42 99 74.49 43.23
(14.29) (0.39) (7.24) (4.68) (0.36) (10.16) (8.63) (11.73)

MIMb e 25.60 1.92 16.53 84 24.79 2.01 32.44 99 1.81 81.78 45.89
(14.04) (0.87) (7.10) (4.63) (0.36) (10.85) (2.41) (8.53) (11.67)

a 25.78 1.48 16.63 84 24.75 2.01 33.40 99 0.94 82.98 45.88
(14.04) (0.43) (7.14) (4.68) (0.36) (10.69) (1.22) (8.46) (11.72)

F3/F5 k ¼ 5 IM e 28.45 1.14 10.69 62 24.91 1.99 28.59 99
(16.47) (0.53) (6.33) (4.98) (0.37) (10.12)

a 28.47 1.14 10.69 61 24.95 1.99 28.53 99
(16.45) (0.53) (6.35) (5.04) (0.37) (10.10)

MIMa e 27.74 1.11 11.64 67 24.91 1.98 29.79 100 83.19 40.23
(17.13) (0.50) (6.54) (4.98) (0.37) (10.90) (9.60) (12.46)

a 27.76 1.11 11.66 68 24.95 1.98 29.67 100 84.31 40.19
(17.10) (0.50) (6.56) (5.04) (0.37) (10.90) (9.53) (12.47)

MIMb e 28.88 1.49 13.17 71 24.99 1.98 30.72 100 0.97 81.75 41.76
(18.90) (1.93) (6.74) (4.98) (0.37) (11.20) (4.08) (9.54) (12.56)

a 28.38 1.17 13.36 71 24.95 1.98 31.84 100 0.34 83.35 41.89
(18.38) (0.63) (6.67) (5.04) (0.37) (10.98) (1.23) (9.42) (12.44)

F4/F5 k ¼ 5 IM e 27.27 1.20 11.76 59 26.82 1.96 30.73 99
(12.16) (0.33) (6.09) (4.27) (0.38) (11.22)

a 27.28 1.20 11.76 59 26.83 1.96 30.67 99
(12.14) (0.33) (6.08) (4.27) (0.38) (11.19)

MIMa e 26.96 1.17 13.28 70 26.82 1.95 32.53 99 85.6 44.01
(11.08) (0.36) (6.99) (4.27) (0.39) (12.28) (10.73) (13.64)

a 27.18 1.17 13.30 69 26.83 1.96 32.53 99 85.95 43.97
(11.13) (0.36) (7.00) (4.27) (0.39) (12.29) (10.72) (13.64)

MIMb e 26.86 1.86 15.18 75 26.82 1.95 33.37 99 1.65 84.07 45.90
(10.93) (1.12) (7.23) (4.27) (0.39) (12.85) (2.58) (10.49) (13.66)

a 26.94 1.47 15.28 75 26.83 1.95 34.59 99 0.87 84.68 45.95
(10.92) (0.56) (7.30) (4.27) (0.39) (12.41) (1.35) (10.51) (13.68)

A total of 100 replicates, each with sample size 200, were analyzed with two unlinked epistatic QTL, Q A and Q B, controlling the
trait variation. The heritability is 0.05 in the F2 population. The critical value for the methods of IM and MIM without epistasis is
x2

1;0:05=20 ¼ 9:14, and the value for MIM with epistasis is x2
2;0:05=20 ¼ 11:98. Posi, position. k, the number of phenotyping progeny. e,

proposed (exact) method. a, approximate method.
a Without epistasis.
b With epistasis.

1382 C.-H. Kao



with k ¼ 1, and they are 41% (35%) and 52% (20%) in
the F2/F2 and F3/F3 designs. By increasing the number
of phenotyping progeny, the powers of detecting Q A

and Q B are enhanced. By using 3 (k¼ 3), 5 (k¼ 5), and
10 (k ¼ 10) progeny for phenotyping, the powers of
detecting the unconfounded Q B increase to 83, 93, and
100%, respectively, and the powers of detecting the
confounded Q A become 46, 73, and 99%, respectively.
As compared to the results of the IM method in the
F2/F2 and F3/F3 designs, the use of three progeny for
phenotyping can greatly enhanced the power of detect-
ing the unconfounded Q B from 33% (or 39%) to 79%,
but it does not greatly increase the power of detecting
the confounded Q A [the powers of detecting Q A in the
F2/F2, F3/F3, and (F2/F3, k ¼ 3) designs are 30, 14, and
37%, respectively]. The use of more progeny for pheno-
typing also improves the estimation of QTL effects and
positions. For example, by using the proposed MIM
method with epistasis, the means of the estimated Q B

(Q A) positions are 37.73 cM with SD 27.41 cM (43.06 cM
with SD 29.23 cM) and 25.22 cM with SD 8.25 cM (27.54
cM with SD 15.82 cM) for k¼ 1 and k¼ 5. The estimated
a1, a2, and iad are 1.62 (SD 2.01), 2.03 (SD 1.44), and
1.25 (SD 5.48) for k ¼ 1, and they are 1.96 (SD 0.68),
2.01 (SD 0.45), and 1.91 (SD 2.18) for k¼ 5. In addition,
if epistasis is not taken into account or the approximate
method is used, there will always be confounding
problems in estimation as shown in Table 2. For
example, the means of the estimated a1 and iad by the
approximate MIM method are 1.48 (predicted value
a1� iad/4¼ 1.5) with SD 0.49 and 0.98 (predicted value
iad/2 ¼ 1.0) with SD 1.10 for k ¼ 5. By using 10 progeny
for phenotyping, both Q A and Q B can almost be de-
tected with power 1 and with good precision and accu-
racy. In general, the estimation becomes improved as
more progeny are used for phenotyping. The perfor-
mance of the MIM method is also better than that of the
IM method as expected.

Table 3 shows the QTL mapping results of using the
(Fu/Fv , v . u . 2) designs with k¼ 5. The means of the
estimated additive effects by the proposed IM and MIM
without epistasis are 1.33 (SD 0.41) and 1.28 (SD 0.39),
respectively, in the F3/F4 design, and they are 1.20 (SD
0.33) and 1.17 (SD 0.36), respectively, in the F4/F5

design (the predicted estimated a1’s by Equation 11 are
1.25 and 1.125 in the two designs). By taking epistasis
into account, the confounding problem can be solved
by the proposed method. The means of the estimated a1

by considering epistasis are 1.92 (SD 0.87) and 1.86 (SD
1.12) in the two designs, respectively. The means of the
estimated iad’s are 1.81 (SD 2.41) and 1.65 (SD 2.58),
respectively. On the contrary, the approximate methods
always have the confounding problem whether or not
epistasis is taken into account. For example, the means
of the estimated additive effects by the approximate
MIM with epistasis are 1.48 (SD 0.43) and 1.47 (SD 0.56)
for the two designs, respectively (the predicted a1 by

the approximate method is 1.5). The powers of QTL de-
tection are also increasing and the estimation of QTL
positions is also improved by using the MIM approach
and by taking epistasis into account. For example, the
power increases from 68% (59%) by the IM method to
84% (75%) by the MIM method in the F3/F4 (F4/F5)
design, and the mean of the estimated position of the
confounded Q A is improved from 27.05 with SD 13.44
(27.27 with SD 12.16) to 25.60 with SD 14.04 (26.86 with
SD 10.93). In addition, the use of the F2/F4 and F3/F5

designs does not provide a better resolution of the con-
founded Q A when compared to the use of F2/F3 and
F3/F4 designs as expected. For example, the powers of
detecting Q A by the proposed MIM method are 52 and
71%, respectively, in the two designs, and the means of
the estimated positions are 29.02 cM (SD 19.96 cM) and
28.88 cM (SD 18.90 cM), respectively. Across all differ-
ent designs with k ¼ 5, the unconfounded Q B can be
well detected with high power and great accuracy and
precision as compared to the confounded Q A.

DISCUSSION

The data required in QTL mapping analysis are
usually composed of two parts, phenotypic trait values
and marker genotypes. In data collection using the
designs of RI populations, the trait values can be ob-
tained from the same genotyped population by using
the (Fu/Fv, u ¼ v) designs or from the progeny of the
genotyped population using the (Fu/Fv , u , v) designs.
The great benefit of using the (Fu/Fv, u , v) designs in
QTL mapping is not only through reducing the cost
and environmental variance by phenotyping several
progeny for each genotyped individual (Lander and
Botstein 1989; Knapp and Bridges 1990), but also
likely through taking advantage of the changes in pop-
ulation structures between different RI populations. Dif-
ferent RI populations have different homozygosities,
genotypic frequencies, and proportions of recombinant
genotypes. The increase of homozygosity may help the
estimation of additive effects due to the accumulation of
homozygotes, but it will hinder the estimation of dom-
inance effects due to the loss of heterozygotes. Also, in
modeling, the orthogonal property of the genetic model,
which holds in the F2 population, will be lost in the other
later RI populations as the genotypic frequencies have
changed. Then, the confounding problem in the QTL
estimation may occur if epistasis is present and ignored.
Such a confounding problem cannot be relieved by en-
larging the sample size or increasing heritability or using
the approximate methods, and it becomes more severe
for the later populations (see Equations 11 and Table 1).
Therefore, the use of the later RI populations can greatly
benefit the detection of unconfounded QTL with ad-
ditive effects, but it may deter the detection of con-
founded QTL and the QTL with large dominance effects
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as compared to the QTL mapping using the F2 popula-
tion. By taking epistasis into account, the confounding
problem can be alleviated by the proposed method. The
approximate method, however, always has the con-
founding problems. In addition, the (Fu/Fv , u , v) de-
signs also allow for phenotyping more progeny for each
genotyped individual to reduce environmental variance
so that the resolution of QTL can be further enhanced.
The resolution of the unconfounded QTL can be easily
improved, but more progeny are needed to improve the
resolution of the confounded QTL as compared to the
Fu/Fu designs (comparing the results of Table 1 with
those of Tables 2 and 3).

In statistical modeling, the relation between the phe-
notype and the underlying QTL genotype is relatively
simple and can be modeled by a 3m normal mixture
model for the (Fu/Fv , u ¼ v) designs. However, for the
(Fu/Fv , u , v) designs, when the phenotypic means of
the k progeny from the genotyped individuals are used
in QTL mapping, the relationship between the pheno-
typic means and the involved QTL genotypes becomes
increasingly complicated and should be modeled by a
[(k 1 1)(k 1 2)/2]m normal mixture model as discussed
here. Such complication in statistical modeling arises
mainly from the segregation of heterozygote into homo-
zygotes and heterozygote and from the numerous pos-
sible combinations of different genotypes among the k
progeny. Genetically, segregation will vary the homozy-
gosity and linkage disequilibrium in different RI pop-
ulations. It is possible to utilize different experimental
designs of these RI populations to benefit QTL map-
ping by taking advantage of their specific population
structures. To achieve this purpose, for QTL mapping in
the (Fu/Fv, u , v) design, the proposed method is
designed to take the population structures of phenotyp-
ing populations into account by modeling the relation-
ship between the phenotypic means and the underlying
QTL in the same populations. Then, the likelihood of
the proposed method is a mixture of [(k 1 1)(k 1 2)/
2]m normals with the number of mixture components
and mixing proportions adjusted for the phenotyping
population. The approximate method, however, ig-
nores the fact of segregation and differences in pop-
ulation structure between different RI populations, and
it relates the phenotypic traits of the progeny with the
QTL in their ancestral populations. Therefore, the like-
lihood of the approximate method is always a mixture of
3m normals with constant mixing proportions derived
from the genotyped population. Consequently, the
approximate method may have the problems of con-
founding and estimating the dominance effect, and the
proposed method can avoid the problems to improve
the QTL mapping in (Fu/Fv , u , v) designs as shown in
this article. In addition, it is straightforward to modify
the proposed method for the (Fu/Fv, u , v) designs
with each individual progeny trait (yij’s, i ¼ 1, 2, . . . , n,
j ¼ 1, 2, . . . , k) recorded. The mapping results by the

approaches of using traits and trait means are similar,
but the approach of using individual traits can be more
computationally economical for its relatively simple like-
lihood (with a mixture of 3m normals).

The proposed method has a much more complicated
mixture likelihood, and the mixture likelihood will have
different numbers of components with different weights
(mixing proportions) for different designs. Therefore,
the determination of the critical value for the proposed
method is challenging in the (Fu/Fv , u # v) designs.
It is well known that the critical value cannot be simply
chosen from a x2-distribution because of violation of the
standard conditions of asymptotic theory for mixture
models (Self and Liang 1987; Feng and McCulloch

1994) and that the determination of the critical values
for claiming QTL detection may depend on the factors,
such as heritability, marker density, size of the genomes,
number of (linked or unlinked) QTL, and the direction
of QTL effects ( Jensen 1993; Zeng et al. 1999; Zou et al.
2004). Several methods, such as the method by Piepho

(2001), the permutation tests (Churchill and Doerge

1994), residual bootstrapping (Zeng et al. 1999), and
the resampling method by Zou et al. (2004), have been
proposed to determine the values, but they generally
require additional assumptions, such as a dense map
with equally spaced markers, or are applicable only to
some standard designs, such as a backcross or F2 design
(the Fu/Fv , u¼ v design), or are restricted to the model
with a 2- (3-) normal mixture (see Zou et al. 2004 for
the discussion). In addition, the concept of the false
discovery rate (Benjamini and Hochberg 1995) has
been introduced to deal with the problem of statistical
significance by the control of type II rather than type I
errors in QTL mapping. As the proposed method con-
siders a more complicated mixture of ([(k 1 1)(k 1 2)/
2]m) normals with different numbers of components
and mixing proportions varying with m, k, u, and v,
and the different population structures may also affect
the critical values, the issue of determining the critical
values in the (Fu/Fv , u # v) designs will become even
more complicated and still needs to be unraveled. Here,
Bonferroni argument based on x2-distribution (Lander

and Botstein 1989) is used to choose the critical values
before the complicated issue is solved. Further research
on the theoretical basis of determining the critical value
is of great value to QTL mapping in the (Fu/Fv , u # v)
designs.

The RI populations have been very important and
popular in the study of QTL for a long time (Haldane

and Waddington 1931; Stuber et al. 1992; Beavis et al.
1994; Veldboom et al. 1994; Darvasi and Soller 1995;
Austin and Lee 1996; Liu et al. 1996; Belknap 1998;
Chapman et al. 2003; Complex Trait Consortium

2004; Broman 2005). As compared to the F2 popu-
lation, the population structures in the later RI pop-
ulations have some precious properties, such as larger
additive genetic variance, higher homozygosity, and
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more recombinants. These properties may benefit the
QTL resolution and should be well utilized in the study
of QTL mapping. With the ability to consider the
changes in population structures of different popula-
tions, the proposed method can serve as an effective tool
to map for QTL in specific designs and evaluate the
efficiency of QTL mapping among different experi-
mental designs under the system of RI populations.
Other important issues of QTL mapping by using the
(Fu/Fv , u # v) designs include the consideration of
endosperm traits (Wu et al. 2002; Xu et al. 2003; Kao

2004) and the extension of the methods from the system
of RI populations to the system of IRI populations. The
IRI populations, which are derived by randomly mat-
ing for some generations after F2 and then followed by
cycles of selfing, have the advantages of producing more
recombinants as compared to the RI populations, and
they can benefit the analysis of quantitative traits (Liu

et al. 1996; Winkler et al. 2003). It is critical to provide
adequate statistical methods for these designs by con-
sidering their specific population structures to explore
their properties in the QTL mapping study.
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APPENDIX

If m QTL without epistasis are considered, the model
of the traditional method for the mean trait, yi , of the k
Fv progeny from each of the n genotyped Fu individuals
and the QTL can be written as

yi ¼ m 1
Xm

j¼1

bajwaij
* 1

Xm

j¼1

bdj wdij
* 1 ei ; ðA1Þ

where waij
* ’s and wdij

* ’s, j ¼ 1, 2, . . . , m, are the coded
variables for the genotype of Q ½u�j ’s, j ¼ 1, 2, . . . , m, and
they are coded as (1, �1

2), (0, 1
2), and (�1, �1

2) for Q jQ j,
Q jqj, and qjqj, respectively. The mean residual error ei

has a mean of zero and variance s2/k, where s2 is the
residual variance of the trait on the basis of a single
individual. As Q[u] may not be coincident with marker

and could be Q jQ j, Q jqj, or qjqj, the likelihood of the
model is a mixture of 3m normals. In parameter esti-
mation, the general formulas by Kao and Zeng (1997)
derived on the basis of the EM algorithm (Dempster

et al. 1977) can be used for obtaining their MLE.
To show the problems of less power and bias in esti-

mation for the approximate method, without loss of
generality, again assume that the quantitative trait value
yi is affected by two unlinked epistatic QTL, Q A and Q B.
The variances of wa1

* , wd1
* , wa2

* , wd2
* , wa1

* 3 wa2
* , wa1

* 3 wd2
* ,

wa2
* 3 wd1

* , and wd1
* 3 wd2

* can be found to be 1 � (1
2)

u�1,
(1

2)
u�1[1 � (1

2)
u�1], 1 � (1

2)
u�1, (1

2)
u�1[1 � (1

2)
u�1], [1 �

(1
2)

u�1]2, 1
4 � (1

2)
(u11), 1

4 � (1
2)

(u11), and 1
16 � [1

2 � (1
2)

(u�1)]4,
respectively. The covariances between wa1

* (wd1
*) and the

coded variables in Equation 6 are needed in the deri-
vation. The covariances between wa1

* and x1 and between
wa1

* and wad are 1 � (1
2)

u�1 and [1
2 � (1

2)
u][(1

2)
v�2 � 1],

respectively. The covariances between wd1
* and z1 and

between wa1
* and wdd are (1

2)
v�1[1 � (1

2)
u�1] and (1

2)
v[1 �

(1
2)

v�2][(1
2)

(u�1) � 1], respectively. Therefore, when yi is
regressed on Q A with additive and dominance effects,
the estimates of the additive and dominance effects by
the approximate method can be found to be

ba ¼ a1 �
1

2
1� 1

2ðv�2Þ

� �
iad ðA2Þ

and

bd ¼
1

2ðv�uÞd1 �
1

2ðv�u11Þ 1� 1

2ðv�2Þ

� �
idd ðA3Þ

in the (Fu/Fv , u , v) design. It shows that the ba is
confounded by the the additive effect a1 and the
epistatic effect iad, and bd is confounded by d1 and idd.
When multiple QTL and their epistasis are considered
in the model, the estimates of their effects can be also
derived. It can be found that the approximate methods
also have the confounding problems.
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