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ABSTRACT The selective genotyping approach, where only individuals from the high and low extremes of the trait distribution are
selected for genotyping and the remaining individuals are not genotyped, has been known as a cost-saving strategy to reduce
genotyping work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping. We propose a novel and
simple statistical method based on the normal mixture model for selective genotyping when both genotyped and ungenotyped
individuals are fitted in the model for QTL analysis. Compared to the existing methods, the main feature of our model is that we first
provide a simple way for obtaining the distribution of QTL genotypes for the ungenotyped individuals and then use it, rather than the
population distribution of QTL genotypes as in the existing methods, to fit the ungenotyped individuals in model construction. Another
feature is that the proposed method is developed on the basis of a multiple-QTL model and has a simple estimation procedure similar
to that for complete genotyping. As a result, the proposed method has the ability to provide better QTL resolution, analyze QTL
epistasis, and tackle multiple QTL problem under selective genotyping. In addition, a truncated normal mixture model based on
a multiple-QTL model is developed when only the genotyped individuals are considered in the analysis, so that the two different types
of models can be compared and investigated in selective genotyping. The issue in determining threshold values for selective
genotyping in QTL mapping is also discussed. Simulation studies are performed to evaluate the proposed methods, compare the
different models, and study the QTL mapping properties in selective genotyping. The results show that the proposed method can
provide greater QTL detection power and facilitate QTL mapping for selective genotyping. Also, selective genotyping using larger
genotyping proportions may provide roughly equivalent power to complete genotyping and that using smaller genotyping proportions
has difficulties doing so. The R code of our proposed method is available on http://www.stat.sinica.edu.tw/chkao/.

THE data in the QTL mapping study are usually composed
of two parts, phenotypic trait values and marker geno-

types, in the individuals, and the cost of producing data
includes both phenotyping and genotyping costs. The cost
ratio of the phenotyping to genotyping may vary signifi-
cantly depending on the traits and species in studies. For
a fixed budget and time frame in the study, both costs must
be considered and properly allocated to make the study
optimally cost effective. If the total cost is not of primary
concern in QTL experiments, all individuals in the entire
sample will be genotyped and phenotyped for QTL analysis.

However, QTL experiments are usually conducted under
a limited budget, and researchers may not be allowed to
genotype and phenotype a large amount of individuals for
QTL analysis. It is hence necessary to make a reasonable and
effective allocation for the genotyping and phenotyping costs in
the experiment. The selective genotyping approach has been
known as a cost-effective strategy for reducing genotyping
work and still has the ability to maintain efficiency in QTL
detection (Lebowitz et al. 1987; Lander and Botstein 1989).
This approach is intended to select individuals with extreme
(high and low) phenotypic values for genotyping and keep the
remaining individuals ungenotyped in the entire sample. Later,
several statistical methods have been proposed to study QTL
mapping under selective genotyping (Darvasi and Soller 1992;
Muranty and Goffinet 1997; Henshall and Goddard 1999; Xu
and Vogl 2000; Manichaikul et al. 2007). They again con-
firmed that selective genotyping can achieve reasonable power
and precision in detecting QTL as compared to complete

Copyright © 2014 by the Genetics Society of America
doi: 10.1534/genetics.114.168385
Manuscript received July 15, 2014; accepted for publication September 16, 2014;
published Early Online September 22, 2014.
1Corresponding author: Institute of Statistical Science, Academia Sinica, National
Taiwan University, Taipei 115529, Taiwan, Republic of China.
E-mail: chkao@stat.sinica.edu.tw

Genetics, Vol. 198, 1685–1698 December 2014 1685

http://www.stat.sinica.edu.tw/chkao/
mailto:chkao@stat.sinica.edu.tw


genotyping but at the expense of moderate increase in the
number of phenotyped individuals. As a larger number
of individuals must be phenotyped first, before the required
number of extreme individuals can be collected for genotyp-
ing, selective genotyping will be most suitable for the cases
in which the phenotyping cost is relatively inexpensive com-
pared with the genotyping cost. Many economically and bi-
ologically important traits, such as flowering time, fruit size
and shape, crop (meat) yield or quality, growth in height
and weight, plant stress and disease resistance, survival
time, blood pressure, and body mass index in human, can
be obtained at relatively low cost, and QTL mapping of these
traits by using selective genotyping can be managed to be
more cost effective than that by using complete genotyping.
Consequently, although genotyping cost has been dropping
recently, selective genotyping has been still widely em-
ployed in QTL mapping for improving these traits and un-
derstanding their genetic basis in several plant and animal
species (Abdel-Haleem et al. 2011; Lu et al. 2013; Miller
et al. 2013; Fontanesi et al. 2014;). The keyword search
using Google Scholar also reveals that selective genotyping
remains popular and is more frequently used in genetics
studies in recent years. The reasons may be that as marker
genotyping becomes cheaper, more researchers are attracted
to the QTL mapping analysis, but still face the situation of
insufficient budgets to fully cover the expense of complete
genotyping, and selective genotyping can become an alter-
native, cost-effective choice that allows maintenance of sim-
ilar efficiency to complete genotyping in QTL mapping.

In general, the statistical methods of QTL mapping for
selective genotyping can be grouped into two major types
according to whether their models take the ungenotyped
individuals (ungenotyping data) into account in the analy-
sis. Methods of the first type use only the genotyped
individuals (genotyping data) and exclude the ungenotyp-
ing data to develop statistical models for QTL analysis
(Darvasi and Soller 1992; Henshall and Goddard 1999; Xu
and Vogl 2000). Darvasi and Soller (1992) calculated the
trait means of the QTL genotypes from the selected tails and
constructed a t-test for their difference to determine linkage
between a marker and a QTL in the backcross population.
Henshall and Goddard (1999) used a logistic regression ap-
proach to the analysis of selective genotyping data by treat-
ing phenotypes as independent variables and genotypes as
dependent variables for QTL mapping. Xu and Vogl (2000)
developed a truncated normal mixture model for the inter-
val mapping procedure under the framework of selective
genotyping in QTL detection. Methods of the second type
consider both genotyped and ungenotyped individuals (full
data) from selective genotyping for QTL analysis (Muranty
and Goffinet 1997; Ronin et al. 1998; Xu and Vogl 2000). By
analyzing full data, Muranty and Goffinet (1997) adopted
a normal mixture model to detect QTL under selective
genotyping in the backcross population. Ronin et al. (1998)
proposed a mixture model for the study of interval mapping
of two QTL under selective genotyping. Xu and Vogl (2000)

also used a normal mixture model to tackle the issue of QTL
mapping under selective genotyping in the F2 population. In
their normal mixture models, the mixing proportions for
different QTL genotypes of the genotyped individuals are
determined by the flanking markers as usual, and those of
the ungenotyped individuals are assigned by the population
frequencies (e.g., 1/2 and 1/2 in the backcross, and 1/4, 1/2,
and 1/4 in the F2 population for a single-QTL model). When
comparing the two types of methods in selective genotyping,
Xu and Vogl (2000) suggested that whenever possible, the
analyses on full data are preferred over those on genotyping
data, since the formers tend to provide improved estimations
and greater test statistics for QTL parameters.

In this article, we develop a novel and simple statistical
method on the basis of a normal mixture model to analyze
full data from selective genotyping for QTL detection.
Compared to the existing methods (Muranty and Goffinet
1997; Ronin et al. 1998; Xu and Vogl 2000), the main nov-
elties of our proposed method are twofold. The first novelty
is that we obtain the proportions of QTL genotypes in the
ungenotyped individuals by deducting the expected QTL
frequencies in the genotyped individuals from their popula-
tion frequencies. Then these proportions instead of the pop-
ulation QTL frequencies, as in the existing methods, are
used to model the ungenotyped individuals in model con-
struction, so that the proposed model can fit better to the
data and yield better performance in selective genotyping.
The second novelty is that our proposed model is developed
on the basis of a multiple-QTL model, as has been done in
QTL mapping for complete genotyping (Kao et al. 1999).
The multiple-QTL model approach can take multiple QTL
into account to control more genetic variation for improving
QTL detection. As a result, with the novelties, our proposed
method can provide better resolution, analyze epistasis, and
tackle multiple QTL problems in QTL mapping under selec-
tive genotyping. In addition, a truncated normal mixture
model based on the multiple-QTL model is developed when
only genotyping data are used in the analysis. We then com-
pare the differences in QTL mapping between the two types
of selective genotyping methods and investigate their prop-
erties under the multiple-QTL framework, as their notable
differences blurred in the single-QTL framework may appear
in the multiple-QTL framework. The threshold values of
selective genotyping for different models are also investi-
gated. Simulation studies are conducted to evaluate the pro-
posed method, compare different models, and study their
properties in QTL mapping under selective genotyping.

The Statistical Methods for Selective Genotyping

In selective genotyping, the selected individuals for genotyp-
ing are those with high or low trait values in the two extremes,
and the remaining unselected individuals are those with
average trait values in the middle. Therefore, the full data
generated from selective genotyping can be split into two
parts: genotyping data containing phenotypically extreme
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individuals with marker genotypes and ungenotyping data
containing intermediate individuals without marker genotypes.
As described in the Introduction, statistical QTL mapping
methods for analyzing selective genotyping data can either
take full data or take just genotyping data into account in their
models for QTL detection. When considering full data in the
analysis, it is important to know that the genotypic frequencies
of QTL in the ungenotyping (or genotyping) data are no longer
the same as those in the full data, and they will depend on the
underlying QTL parameters and population structures. With
such facts, we obtain the frequencies of QTL genotypes in the
ungenotyped individuals and use them, rather than the
population frequencies of QTL genotypes as in the existing
methods, to model the ungenotyped individuals and then to
propose a new normal mixture model for QTL mapping when
full data are used in the analysis. As opposed to our proposed
method, the existing methods using normal mixture model will
hereinafter be called population frequency-based (PFB) meth-
ods. Furthermore, we also develop a truncated normal mixture
model for QTL mapping when only genotyping data are used in
the analysis. Both types of models are developed on the basis of
a multiple-QTL approach, so that they can be compared under
multiple-QTL analyses and be used to deal with the multiple-
QTL problem. In the following, we first investigate the genotypic
distributions in the genotyped and ungenotyped individuals,
then present the truncated model, and finally outline our
proposed method for selective genotyping.

Genotypic distributions in the genotyped and
ungenotyped individuals

In the F2 population, a QTL, Q, under consideration has
three possible genotypes, QQ, Qq, and qq with expected
frequencies 1/4, 1/2, and 1/4, respectively. Their genotypic
values, G2, G1, and G0, can be related to genotypic mean
(m), additive effect (a), and dominance effect (d) by

G ¼
0
@G2

G1
G0

1
A ¼

0
@ 1

1
1

1
Amþ

0
BBBBBBB@

1 2
1
2

0
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CCCCCCCA
�
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d

�
¼ 13   mþ DE;

(1)

where D is known as the genetic design matrix for charac-
terizing the genetic effects of QTL in the vector E. Under
such settings, the trait value of an individual, yi, affected by
Q may have three possible distributions, i.e., yi|QQ � N(m1,
s2), yi|Qq � N(m2, s2), or yi|qq � N(m3, s2), where m1, m2,
and m3 are the corresponding genotypic values. If a selective
genotyping approach with genotyping proportion u (u/2
from each tail) is conducted on a sample with size N, N 3
u individuals from the two tails will have both trait and
marker information, and N 3 (1 2 u) individuals from the
middle will have only trait information. Let TR and TL be the
right and left truncated points so that P( yi , TL) = P( yi .

TR) = u/2. For N large enough, the expected genotypic fre-
quencies in the ungenotyped individuals are wj 3 [F((TR 2
mj)/s) 2 F((TL 2 mj)/s)], j = 1, 2, 3, where F(�) denotes
a standard normal cumulative distribution function, and w1 =
1/4, w2 = 1/2, and w3 = 1/4 are the expected genotypic
frequencies in the whole population. Then, the proportions
of the three QTL genotypes in the ungenoytyped individuals
can be straightforwardly obtained by

kj ¼
wj
�
F
�
t2j

�
2F

�
t1j

��
P3

k¼1wk½Fðt2kÞ2Fðt1kÞ�
; j ¼ 1; 2; 3; (2)

where t1j ¼ ðTL 2mjÞ=s and t2j ¼ ðTR 2mjÞ=s. As kj’s are
functions of truncated points (TL and TR), genetic parame-
ters (m, a, d, and s), and population frequencies (wj’s), the
values of kj’s depend on the factors such as genotyping pro-
portions, heritability, sizes and modes of QTL actions, and
population structure. For example, if a = d = 1, h2 = 0.5,
and u = 0.5 (P(yi , TL) = P(yi . TR) = 0.25), the two
truncated points are TL ffi 20.785 and TR ffi 0.873. The
genotypic frequencies of QQ, Qq, and qq are about 0.017
(0.083), 0.034 (0.166), and 0.199 (0.001) among the
genotyped individuals in the left (right) extreme, about
0.150, 0.299, and 0.051 among the ungenotyped individuals,
respectively. Then, k1 = 0.299 (ffi0.150/0.5), k2 = 0.599
(ffi0.299/0.5), and k3 = 0.101 (ffi0.051/0.5), respectively,
by Equation 2. Similarly, these genotypic proportions are
0.069 (0.332), 0.137 (0.665) , and 0.794 (0.003) for yi ,
TL (yi . TR), respectively. Essentially, it is worth noting that
the expected proportions of the three QTL genotypes in the
genotyped and ungenotyped samples are no longer wj’s like
those in the whole sample.

Equation 2 can be easily extended to the multiple-QTL case
for obtaining the genotypic proportions in the ungenotyped
population. For example, in the case of two QTL, Q1 and
Q2, there are nine possible QTL genotypes, Q1Q1Q2Q2,
Q1Q1Q2q2, Q1Q1q2q2, Q1q1Q2Q2, Q1q1Q2q2, Q1q1q2q2,
q1q1Q2Q2, q1q1Q2q2, q1q1q2q2, respectively. Their expected
population frequencies are w1 = (1 2 r)2/4, w2 = r(1 2 r)/
2, w3 = r2/4, w4 = r(12 r)/2, w5 = (12 r)2/2 + r2/2, w6 =
r(1 2 r)/2, w7 = r2/4, w8 = r(1 2 r)/2, w9 = (1 2 r)2/4,
respectively, where r is the recombination fraction between
the two QTL. For r = 0.3, the values of wj’s are �0.123,
0.105, 0.023, 0.105, 0.290, 0.105, 0.023, 0.105, and 0.123,
respectively. If the two QTL have effects (a1 = 3, d1 = 1,
a2 = 1, iaa = 2) and h2 = 0.5, the values of kj’s among the
ungenotyped individuals are �0.040, 0.109, 0.028, 0.129,
0.377, 0.130, 0.029, 0.059 and 0.100, respectively, for u =
0.5. If the two QTL are unlinked (r = 0.5), the values of wj’s
are �0.063, 0.125, 0.063, 0.125, 0.250, 0.125, 0.063,
0.125, and 0.063, respectively, and the values of kj’s are
0.043, 0.124, 0.067, 0.131, 0.270, 0.133, 0.067, 0.106,
and 0.059, respectively. The differences between kj’s and wi’s
may be minor, but can be significant for some genotypes. In
general, greater genotyping proportions, higher heritability,
and tighter linkage will cause larger differences between the
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values of wj’s and kj’s. Our proposed QTL mapping method for
selective genotyping intends to use kj’s rather than wj’s to
model the relationship between the trait values and unobserv-
able genotypes in the ungenotyped individuals.

The genetic model for multiple QTL, say m QTL, can be
easily obtained from Equation 1 by augmenting the dimen-
sions of the genetic design matrix according to their effects
under consideration. Then, on the basis of the genetic
model, the statistical model for fitting these m QTL, Q1,
Q2, . . ., Qm, without epistasis at given positions within the
m separate marker intervals, (M1,N1), (M2,N2), . . ., (Mm,
Nm), can be written as

yi ¼ mþ
Xm
k¼1

�
akx*ik þ dkz*ik

	
þ ei; i ¼ 1; 2;⋯; n; (3)

where x*ik’s and z*ik’s are coded variables for the additive and
dominance effects, ak’s and dk’s, for Qk’s, k = 1, 2, . . ., m, yi
is the quantitative trait value of the ith individual, and ei is
a random error and assumed to follow N(0, s2). Note that
x*ik and z*ik associated with ak and dk are coded as (1, 21/2),
(0, 1/2), and (21, 21/2) for genotypes QkQk, Qkqk, and
qkqk, respectively, and the above model can be easily ex-
tended to the model with epistasis by introducing the product
terms as the terms for epistasis. Under complete genotyping,
the likelihood function of the statistical model for the param-
eters Q is a mixture of 3m normals as

LðQjY ;XÞ ¼
Yn
i¼1

X3m

j¼1

pijf
�
yijmj;s

2
	
; (4)

where f(yi|mj, s2) is a normal p.d.f. with mean mj and var-
iance s2, mj’s correspond to the genotypic values of the 3m

QTL genotypes, and pij’s are the mixing proportions inferred
from their flanking marker genotypes. If the statistical model
is applied to analyze the data from selective genotyping, the
likelihood will be different and depend on whether all indi-
viduals or just genotyping individuals are considered in the
model as described below.

Model to analyze only genotyping data

Under selective genotyping, suppose that, among the n indi-
viduals, ns individuals with extreme trait values (ns/2 each
from the upper and lower extremes) are selected for marker
genotyping, and the remaining nu (nu = n 2 ns) individuals
are not genotyped. If only the genotyped individuals from
the two extremes are utilized in the analysis, data of this sort
are called centrally truncated data and the methods of ana-
lyzing truncated data can be applied to the analyses (Cohen
1991). Xu and Vogl (2000) incorporated the truncated
model into the mixture structure of interval mapping frame-
work to propose a truncated normal mixture model for QTL
analysis. They pointed out that the maximization of the
truncated normal mixture likelihood is a challenging task,
and they used an EM algorithm to obtain the maximum
likelihood estimates (MLE) of the QTL parameters for the

model. An investigation of detection of a single QTL under
selective genotyping was performed in their analysis. Here,
we provide an alternative version of the EM algorithm for
obtaining the MLE of the truncated normal mixture model
and use it to address more complicated issues involving
mapping multiple QTL and analyzing their epistasis. For ns
genotyped individuals, the likelihood function for Q is

LðQjY ;XÞ ¼
Yns

i¼1

X3m

j¼1

pij
f
�
yijmj;s

2
	

Uj
; (5)

where pij’s are the conditional probabilities of QTL geno-
types given marker genotypes, f(yi|mj, s2) is the normal
density with mean mj and variance s2, and

Uj ¼
Z TL

2N
f
�
yijmj;s

2
	
dyi þ

Z N

TR

f
�
yijmj;s

2
	
dyi

¼ F
�
t1j

�þ 12F
�
t2j

�
is the cumulative density with genotypic values greater
than TR and lower than TL. Statistically, the normal density
f( yi|mj, s2) is standardized by Uj to become a truncated nor-
mal density f(yi|mj, s2)/Uj. The details of the EM algorithm
for obtaining the MLE of the parameters in the truncated
normal mixture likelihood are described in Appendix. In sum-
mary, the (t + 1)th iteration of the EM step is given below.

E-step: Update the posterior probabilities of the 3m QTL
genotypes,

pij ¼
pijf

�
yijmj;s

2
	.

UjP3m

k¼1pik fðyijmk;s
2Þ=Uk

for j = 1, 2, . . ., 3m, i = 1, 2, . . ., ns.
M-step: Find the estimates to maximize the conditional log-

likelihood (see Appendix). Equivalently, we can obtain the
estimates from the following equations. For m, the QTL
effects, and s2, the equations are

mðtþ1Þ ¼ 1
ns

h
19ns

�
Y2PðtÞDEðtþ1Þ

	
þ RðtÞ

m

i
; (6)

Eðtþ1Þ ¼ rðtÞ 2MðtÞEðtÞ þ RðtÞ
E ; (7)

s2ðtþ1Þ ¼ 1

ns 2RðtÞ
s2


�
Y2mðtþ1Þ1ns

	
9
�
Y2mðtþ1Þ1ns

	

2 2
�
Y2mðtþ1Þ1ns

	
9PðtÞDEðtþ1Þ

þ Eðtþ1Þ9VðtÞEðtþ1Þ
o
;

(8)

where P ¼ fpijgns 3 3m contains the posterior probabilities of
QTL genotypes for the ns genotyped individuals, E is a
k 3 1 column vector whose elements denote the QTL
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effects (e.g., E231 = [a d]9 for a single-QTL model con-
sidering the additive and dominance effects),

r ¼ ðY2m1ns Þ9P  Di

19ns
PðDi#DiÞ k3 1

;  M ¼ 19ns
P
�
Di#Dj

�
19ns

PðDi#DiÞ
3 dði 6¼ jÞ

( )
k3 k

;

)(

Rm ¼
h
19ns

PA
i
s;  RE ¼ A

(
19ns

PðDi#AÞs
19ns

PðDi#DiÞ
A

)
k3 1

;  Rs2 ¼ 19ns
PB;

and V ¼ f19nsPðDi#DjÞgk3 k. In the above expressions, Rm,
RE, and Rs2 are the correction terms to mainly account
for the truncated normal distributions, Di is a k 3 1 col-
umn vector in the genetic model that associate with the
corresponding QTL effect in the ith element of E, and d is
an indicator variable. Also,

A ¼
(

f
�
t1j

�
2f

�
t2j

�
F
�
t1j

�þ 12F
�
t2j

�
)

3m 31

 and 

B ¼
(
t1jf

�
t1j

�
2t2jf

�
t2j

�
F
�
t1j

�þ 12F
�
t2j

�
)

3m 31

;

where f(�) denotes the normal density function from the
derivatives of log Uj (see Appendix) and are key components
in Rm, RE, and Rs2 . The E and M steps are iterated until
convergence. The converged values of m, E, and s2 are the
MLEs. We intended to express the solutions of the parame-
ters (Equations 6–8) in the general formulas format designed
for complete genotyping (Kao and Zeng 1997), so that the
two sets of equations can be compared and investigated un-
der complete and selective genotyping. When all individuals
are genotyped for markers and included in the analysis, the
correction terms in Equations 6–8 vanish, and the equations
reduce to the same equations for complete genotyping.

Model to analyze full data

If all the n individuals, including the ns genotyping individ-
uals and nu ungenotyping individuals, are fitted into the
statistical model (Equation 3) for QTL analysis, the model
likelihood can be written as

LðQjY ;XÞ ¼
Yns

i¼1

X3m

j¼1

pijf
�
yijmj;s

2
	
3

Ynu

i¼1

X3m

j¼1

qjf
�
yijmj;s

2
	
;

(9)

where the first and second terms on the right-hand side are
the likelihoods for the ns genotyped and for the nu ungen-
otyped individuals, respectively. Both likelihoods are normal
mixture densities as the QTL genotypes are not observed. In
the likelihood for the ns genotyped individuals, the mixing
proportions, pij’s, of a genotyped individual i are obtained

from the conditional probabilities of the QTL genotypes
given its flanking marker genotype. In the likelihood for the
nu ungenotyped individuals, each different individual mixture
density will be given to the same mixing proportions qj’s.
Since there is no marker available to infer qj’s, ideally, we
would use kj’s (Equation 2), i.e., the proportions of QTL
genotypes in the ungenotyped individuals (see Genotypic dis-
tributions in the genotyped and ungenotyped individuals), to
serve as the role of qj’s in the likelihood from the ungeno-
typed individuals. However, the values of kj’s depend on
the unknown QTL parameters, which will complicate the
maximum-likelihood estimation if used directly. To avoid the
complication, the PFB methods use wj’s as qj’s in their models,
e.g., q1 = w1 = 1/4, q2 = w2 = 1/2, and q3 = w3 = 1/4 form=
1 in the F2 model. Here, we propose the quantities

aj ¼
wj2bjP3m

k¼1ðwk2bkÞ
;  j ¼ 1; 2;⋯; 3m; (10)

for the approximation of kj’s and use aj’s as qj’s in our pro-
posed method. In aj, bj is given as

bj ¼
Pns

i¼1pij
n

;

which sums up the conditional probabilities of a QTL
genotype (indexed by j) over the ns genotyped individuals
(indexed by i) and then divides the sum by n. Therefore, bj

is the expected frequency of a QTL genotype among the ge-
notyped individuals in the whole sample. By subtracting bj from
its corresponding population frequency wj, i.e., (wj 2 bj), we
can obtain the expected frequency of a QTL genotype among
the ungenotyped individuals in the whole sample. The pro-
posed quantities aj’s in Equation 10 reweigh these subtracted
quantities, so that they are summed up to one and can serve as
the proportions of QTL genotypes in the ungenotyped individuals
for the use of qj’s in Equation 9. Equation 10 can be better un-
derstood by the following example: In the F2 population (w1 =
0.25, w2 = 0.5, and w3 = 0.25), if only one QTL coincident
with a marker is considered, the expected genotypic frequen-
cies are equivalent to the observed frequencies in the geno-
typed individuals. Under u = 0.5, assume that the observed
genotypic frequencies are 0.1, 0.2, and 0.2, respectively, in
the genotyped individuals, then b1 = 0.1, b2 = 0.2, and b3 =
0.2. Consequently, we can have a1 = 0.3, a2 = 0.6, and a3 =
0.1 by Equation 10. In practice, QTL are usually not coinci-
dent with markers, and the expected genotypic frequencies
pij’s will be used in obtaining bj’s and then aj’s. On very rare
occasions, a negative value may occur in wj 2 bj, and a zero
value is suggested as a replacement. Equivalently, we propose

aj ¼
max

n
0;wj2bj

o
P3m

k¼1maxf0;wk 2bkg
;  j ¼ 1; 2;⋯; 3m; (11)

for practical use of the mixing proportions qj’s in Equation 9.
Our proposed model in Equation 9 has two features. First, it

QTL Mapping Under Selective Genotyping 1689



is as simple as the PFB methods in that the mixing propor-
tions are fixed and need not be estimated, so that the esti-
mation procedures are similar to those of the QTL mapping
model under complete genotyping. In the parameter estima-
tion, the EM algorithm for complete genotyping (Kao and
Zeng 1997) can be directly applied to obtain the MLE for our
proposed model. In E step, we update the posterior proba-
bilities of QTL genotypes for the ns genotyped individuals
and nu ungenotyped individuals,

psij ¼
pij   f

�
yijmj;s

2
	

P3m

k¼1pik   f ðyijmk;s
2Þ  and puij ¼

qj   f
�
yijmj;s

2
	

P3m

k¼1qk   f ðyijmk;s
2Þ;

respectively, at the current estimates of the parameters. In M
step, the solutions of the parameters, m, s2, and QTL effects
have the same formulations as Equations 6–8 except that the
correction terms, Rm, RE, and Rs2 , vanish. Certainly, the
posterior probability matrix must be adjusted to
P ¼ ½fpsijgns 3 3m fpuijgnu 3 3m �9 according to the numbers of
genotyped and ungenotyped individuals. The E and M steps
are iterated until convergence. The converged values of esti-
mates are the MLEs. Second, because aj’s are estimates of
the proportions of QTL genotypes in the ungenotyped indi-
viduals, our proposed model using aj’s as mixing proportions
will fit better to the ungenotyped individuals when compared
to the PFB method using wj’s. As a result, the proposed
method can be more powerful in QTL detection under selec-
tive genotyping as is validated in the simulation study.

Simulation Result

Simulations were performed to evaluate the performance of
our proposed method and to compare it with the currently
used methods in QTL mapping under selective genotyping.
Assume that a quantitative trait of interest is controlled by
two unlinked epistatic QTL, QA and QB, in the F2 population.
The two QTL are placed at 52 and 93 cM of two 150-cM
chromosomes. Assume QA has additive (a1) and dominance
effects (d1), and QB has only additive effect (a2). Epistasis
between QTL is assumed to be present only for the additive
by additive effect (iaa). Further, assume four scenarios, (a1 = 3,
d1 = 1, a2 = 1, iaa = 2), (a1 = 2, d1 = 1, a2 = 1, iaa = 2),
(a1 = 1, d1 = 1, a2 = 1, iaa = 2), and (a1 = 21, d1 = 1, a2 =
1, iaa = 2), for the four present effects, which can reflect the
relative sizes of the two QTL and epistasis. For (a1 = 3,
d1 = 1, a2 = 1, iaa = 2), QA and QB contribute 76 and 8%
to the total genetic variance (VQ A=VG   ¼   76% and
VQ B=VG   ¼   8%), and epistasis contributes 16% to the total
genetic variance (VI/VG = 16%). Similarly, (VQ A=VG   ¼   60%,
VQ B=VG   ¼   13:3%, VI=VG   ¼   26:7%) for (a1=2, d1= 1, a2=
1, iaa = 2), (VQ A=VG   ¼   33:3%, VQ B=VG   ¼   22:2%,
VI=VG   ¼   44:4%) for both (a1 = 1, d1 = 1, a2 = 1, iaa = 2)
and (a1 = 21, d1 = 1, a2 = 1, iaa = 2). For each scenario of
the effect setting, two kinds of marker maps, 5 and 15 cM, two
heritabilities of the quantitative trait, 0.1 and 0.2, and two

levels of selective genotyping proportions, 50 and 20%, are
considered. The sample size is 200 for selective proportion
50% (the 100/200 design), and it is 500 for selective pro-
portion 20% (the 100/500 design). Three models, the PFB
model, the proposed model, and truncated model (Xu and
Vogl 2000), are used for selective genotyping analysis. Also,
the results of complete genotyping in the 100/100, 200/200,
and 500/500 designs are presented for comparison. The
number of simulated replicate is 1000. A stepwise selection
procedure (Kao et al. 1999) was adopted to detect QTL and
analyze epistasis. Threshold value of QTL mapping for selec-
tive genotyping has been found to be similar to that for com-
plete genotyping (Muranty and Goffinet 1997; Manichaikul
et al. 2007). We have further confirmed that the threshold
values for selective genotyping are similar among the three
different methods and among the two different designs based
on 10,000 simulation replicates (results not shown). Here,
the approximate threshold values for complete genotyping
obtained by Gaussian stochastic process (Kao and Ho 2012)
are used as those for selective genotyping. The obtained val-
ues at 5% level are 9.18 (9.80) and 12.34 (13.35) for one and
two degrees of freedom in the 15-cM (5-cM) marker map,
respectively.

To shorten the article, the results for the scenario of
(a1 = 3, d1 = 1, a2 = 1, iaa = 2) are reported in detail
regarding the power and estimation (Table 1, Table 2, Table
3, and Table 4), and the results of the other scenarios are
reported only for power (Table 5). For the (a1 = 3, d1 = 1,
a2 = 1, iaa = 2) scenario, the analyses using the one-QTL
model of the three selective genotyping methods are first
applied to QTL detection. Under the one-QTL model, the
three methods have similar performance in detection power
and parameter estimation of QTL effects and positions
(results not shown). The powers of the three methods to
detect the larger QTL, QA, are all close to 100%. And their
powers to detect the smaller QTL, QB, in the 15- and 5-cM
marker maps are �16% and �18% under the 100/200 de-
sign and are �24% and 27% under the 100/500 design.
Further analyses using the multiple-QTL model are then
followed for all the complete and selective genotyping meth-
ods. Table 1 and Table 2 show the results of QTL mapping
under complete genotyping (with the 100/100 and 200/200
designs) and selective genotyping (with the 100/200 de-
sign) when epistasis is ignored and considered in the
5- and 15-cM marker maps. In general, for all methods and
designs, greater power in detection and better quality in
estimation can be achieved when the marker map is denser
and epistasis is taken into account. The results for consider-
ing epistasis in the analyses are described here. In the com-
plete genotyping 100/100 design, the powers of detecting
QA and QB are 93.4% (90.3%) and 23.0% (19.6%), respec-
tively, in the 5-cM (15-cM) marker map. In the complete
genotyping 200/200 design, they are 100% (99.9%) and
56.1% (50.7%), respectively, in the 5-cM (15-cM) marker
map. In the selective genotyping 100/200 design, the
powers of detecting QA and QB by the PFB method are
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99.8% (99.4%) and 43.6% (38.5%), the powers by the trun-
cated model are 100% (99.5%) and 43.6% (38.1%), and the
powers by the proposed method are 99.7% (99.5%) and
56.0% (49.8%) in the 5-cM (15-cM) marker map, respec-
tively. It shows that the proposed method is more powerful
in QTL detection than the PFB method and truncated model
and that the proposed method in the 100/200 design has
the ability to provide similar power to complete genotyping
under the two marker maps. All methods for selective
genotyping methods provide similar precision and accuracy
in the estimation of QTL positions. For example, in the 5-cM
marker map, the means of the estimated QA and QB posi-
tions by the PFB method, truncated model, and proposed
method are at 52.2 cM (SD 7.0 cM) and 89.9 cM (SD 26.7
cM), 52.3 cM (SD 7.2 cM) and 89.8 cM (SD 27.4 cM), and
52.2 cM (SD 7.0 cM) and 89.0 cM (SD 28.5 cM), respec-
tively. In the estimation of the QTL effects, the three meth-
ods generally perform well, as their means of the estimated
effects are all very close to the true value. For example, in
the 5-cM marker map, the means of the two estimated ad-
ditive effects are 3.02 (SD 0.57) and 1.04 (SD 0.75) by the
PFB method. The means are 3.21 (SD 0.71) and 1.09 (SD
0.82) by the truncated model, and the means are 3.20 (SD
0.64) and 1.00 (SD 0.81) by the proposed method. The
epistatic effect between QTL can be also estimated well in
selective genotyping. The means of estimated epistatic
effects are 2.01 (SD 1.15), 2.14 (SD 1.35), and 2.24 (SD
1.36), respectively. In complete genotyping, their means are
1.89 (SD 1.68) and 2.06 (SD 0.98) for the 100/100 and
200/200 designs, respectively.

Table 3 and Table 4 show the results of QTL mapping
under complete genotyping (with the 100/100 and 500/500
designs) and selective genotyping (with the 100/500 de-
sign) when epistasis is ignored and considered in the
5- and 15-cMmarker maps. Again, for all methods and designs,
greater power in detection and better quality in estimation
can be achieved in the dense marker maps and after taking
epistasis into account. Their results for considering epistasis
in the analyses are described here. Except for the cases in
the 100/100 design, the powers to detect the larger QA are
all 100%. The powers to detect the small QB vary in value. In
complete genotyping 500/500 design, the powers to detect
QB are 96.5 and 93.1% in 5- and 15-cM marker maps. In
selective genotyping 100/500 design, the powers of detect-
ing QB are 69.9 and 62.7% by the PFB method, and they are
59.3 and 55.0% by the truncated model in 5- and 15-cM
marker maps. By the proposed method, the powers of
detecting QB are 80.9 and 75.0%, respectively. The proposed
method provides greater powers to detect QB as compared
to the PFB method and the truncated model. Also, the
powers in 100/500 design provided by the three methods
are all significantly lower than that in the 500/500 design. It
may tell us that selective genotyping in the 100/500 design
has difficulties maintaining equivalent power to complete
genotyping (see Conclusion and Discussion for the reason).
In parameter estimation, the three methods for selectiveTa
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genotyping methods all perform well and provide similar
precision and accuracy for the estimates (see Table 3 and
Table 4).

Table 5 presents the detection powers obtained by com-
plete genotyping and different selective genotyping methods
in the four settings under the cases of different designs,
heritabilities, and marker maps. In general, the proposed
method is more powerful than the PFB method and the
truncated model, especially, for detecting QB in the (a1 =
3, d1 = 1, a2 = 1, iaa = 2) setting. For example, for h2 = 0.2
in the 100/200 (100/500) design, the powers of detecting
QB by our proposed method are of 0.560 (0.809) and 0.498
(0.750), under 5- and 15-cM marker maps. The powers of
detecting QB by the PFB method are 0.436 (0.699) and
0.385 (0.627), respectively, and the powers of detecting
QB by the truncated model are 0.436 (0.593) and 0.381
(0.550), respectively. Besides, in most cases, the (proposed)
model fitting full data is more powerful than the truncated
model fitting only the genotyped data, which is more evi-
dent in the 100/500 design. For example, in the (a1 = 21,
d1 = 1, a2 = 1, iaa = 2) setting of the 100/500 design, the
powers to detect QA and QB by the proposed (PFB) method
are 0.948 (0.933) and 0.865 (0.833), and the powers by the
truncated model are 0.896 and 0.750 under h2 = 0.1 and
the 5-cM marker map. Also, the detecting powers obtained
by the proposed method in the 100/200 design are roughly
close to those obtained by complete genotyping in the 200/
200 design. For example, in the case of h2 = 0.1 and the
5-cM marker map in the 100/200 design (200/200 design),
the powers to detect QA and QB are 0.765 and 0.123 (0.817
and 0.103), 0.722 and 0.280 (0.775 and 0.249), 0.659 and
0.510 (0.699 and 0.536), and 0.667 and 0.506 (0.696 and
0.528), respectively, in the (a1 = 3, d1 = 1, a2 = 1, iaa = 2),
(a1 = 2, d1 = 1, a2 = 1, iaa = 2), (a1 = 1, d1 = 1, a2 = 1, iaa =
2), and (a1 = 21, d1 = 1, a2 = 1, iaa = 2) settings. Similar
trends can be observed in the other cases in the 100/200
design as compared to the results from their 200/200 design
(the slightly higher power with selective genotyping may be
due to simulation error). It shows that our proposed method
(in 100/200 design) has a better ability to maintain the
similar power to complete genotyping (in 200/200 design)
than the other two models (in the 100/200 design). Never-
theless, depending on the (relative) sizes of the QTL, the
detecting powers obtained by the selective genotyping
methods in the 100/500 design are obviously lower than
those obtained by complete genotyping in the 500/500 de-
sign (see Table 5).

Conclusion and Discussion

The approach of selective genotyping has been widely used
for the detection and validation of QTL in genetic studies
(Lander and Botstein 1989; Manichaikul et al. 2007; Vikram
et al. 2012; Lu et al. 2013; Fontanesi et al. 2014). Statistical
QTL mapping methods developed for selective genotyping
can consider either full data or only genotyping data in theTa
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QTL analysis (Xu and Vogl 2000). When only the genotyp-
ing data are used in the analysis, the truncated mixture
model can be applied to the QTL analysis. If the full data are
considered in the analysis, the mixture model can be readily
implemented to the QTL detection. In this article, we pro-
posed a novel mixture model on the basis of the multiple-
QTL model for selective genotyping when full data are
included in the analysis. Our proposed model attempts to
use the proportions of QTL genotypes in the ungenotyped
individuals, rather than the population proportions of QTL
genotypes as in the PFB model, to fit the ungenotyped
individuals in model construction. Consequently, as shown
in this article, the proposed method has the ability to pro-
vide better resolution for QTL detection, to analyze epistasis,
and to deal with multiple QTL problems in selective geno-
typing. In addition, we provide a version of the multiple-
QTL approach for the truncated mixture model, so that
QTL mapping under selective genotyping can be compared
and investigated among the different models in multiple
QTL conditions. Simulation results show that our proposed
method is more powerful than the PFB and truncated meth-
ods. Notably, under the 100/200 design, our selective
genotyping method can produce roughly equivalent power
to complete genotyping (the 200/200 design), and the PFB
methods may have difficulty doing so. Under the 100/500
design, selective genotyping has difficulty matching com-
plete genotyping (the 500/500 design) in QTL detection
power, because the linkage information about QTL from
the genotyped individuals is inadequate relative to that from
the entire sample. Also, the analysis using full data, such as
by using our proposed method, performs better than that
using only genotyping data, because additional information
from the ungenotyped individuals is incorporated into the
analysis (Xu and Vogl 2000).

In the selective genotyping experiment, the individuals
with intermediate trait values (in the central part of the trait
distribution) contain less information about QTL than the
extreme individuals (Lander and Botstein 1989) and are not
genotyped for markers. When fitting them into the model,
there is no marker to infer the genotypic distributions of the
underlying QTL. As a result, the PFB methods use (fixed)
genotypic distribution of QTL in the population as their ge-
notypic distributions to model the ungenotyped individuals
(Muranty and Goffinet 1997; Xu and Vogl 2000). However,
the genotypic distribution of the QTL in these ungenotyped
individuals will differ from that in the population and
depends on several known and unknown factors. The known
factors include the population structure and selection inten-
sity. The unknown factors contain the modes (additive, dom-
inance, epistasis) of QTL action, size of QTL, linkage strength
between QTL. That is to say, the distribution of QTL genotype
in the ungenotyped individuals is informative about these
factors. On the contrary, the genotypic distribution of QTL
in the population is not so informative about the factors in
modeling the ungenotyped individuals, as it is equivalent to
that in the ungenotyped individuals only under the null thatTa
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there is no QTL. Therefore, it is possible to gain advantage
and fit better to the data from selective genotyping if a method
can use the distribution of QTL genotypes in the ungenotyped
individuals to model the trait values of the ungenotyped indi-
viduals in model construction. Apparently, such a consideration
is ignored by the PFB methods, but is taken into account in our
proposed model (Equation 9). Hence, our proposed method
can further improve QTL mapping under selective genotyping.
The empirical threshold values for selective genotyping and
complete genotyping have been found to be similar (Muranty
and Goffinet 1997; Manichaikul et al. 2007). We have further
identified that the proposed, PFB, and truncated models have
similar empirical threshold values, which may be because they
are all constructed by assuming the same population genomic
structure.

It is challenging to analytically explore how the differ-
ence between QTL effects is affecting the efficiency of
selective genotyping (relative to complete genotyping).
Ronin et al. (1998) showed that the power of separating
two linked QTL with different direction of effects is higher
than that with the same direction under selective geno-
typing, which is also validated by Kao and Zeng (2010) in
complete genotyping. Sen et al. (2009) found that when one
or more QTL have large effects, the effectiveness can be
unpredictable in their information analysis. This implies that
selective genotyping may show better efficiency in QTL map-
ping under some combinations of QTL parameters than un-
der others, which is validated in our simulation study.
Selective genotyping might be most convenient and suitable
for the cases in which only one trait is targeted for selection
and being analyzed in QTL mapping (Darvasi 1997). The
multiple-trait analysis by including the targeted trait and
its correlated traits in the model at a time can also improve
the power of QTL detection due to taking into account the
correlated structure of traits (Jiang and Zeng 1995; Muranty
et al. 1997; Ronin et al. 1998). When multiple traits are
targeted for selective genotyping experiments, extreme indi-
viduals in one trait may not be the extreme individuals in
the others, and the issues of which traits should be selected
and of defining the criteria of selection have been important
and discussed by several researchers (Lin and Ritland 1997;
Muranty and Goffinet 1997; Muranty et al. 1997; Xu and
Vogl 2000). Muranty et al. (1997) suggested using a selec-
tion index combining all trait values to select the extreme
individuals and then treated their index values as new single
trait values in the analysis. Our method can be readily
implemented to analyze the index values for multiple-trait
analysis. For directly taking multiple traits into account in
the analyses, the multivariate versions of the PFB model
fitting one and two QTL have been developed by Muranty
et al. (1997) and Ronin et al. (1998), respectively, and the
multivariate version for the truncated normal mixture model
for fitting one QTL has been proposed by Xu and Vogl
(2000). The multivariate version of our proposed model
for directly analyzing multiple traits has not yet been con-
sidered here and can be pursued on the foundation ofTa
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multivariate normal mixture model laid by Jiang and Zeng
(1995), Muranty et al. (1997), Ronin et al. (1998), and Xu
and Vogl (2000) in future studies.
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Appendix
When applying the model in Equation 3 to analyze genotyping data from selective genotyping, the likelihood function is
a mixture of truncated normals with different means and mixing proportions. By treating the truncated normal mixture
model as an incomplete-data problem (Little and Rubin 1987), we can apply the EM algorithm to obtain the MLEs of QTL
parameters. Let t1j ¼ ðTL 2mjÞ=s and t2j ¼ ðTR 2mjÞ=s be the left and right truncation points after standardizing by their
means and standard deviations. Then, we have

Uj ¼
Z t1j

2N
fðxÞdx þ

Z N

t2j

fðxÞdx ¼ F
�
t1j

�þ 12F
�
t2j

�
;

where f(�) and F(�) denote standard normal p.d.f. and c.d.f., respectively. For illustration, we take an additive model for m
QTL in the model as an example. The EM algorithm for obtaining the MLE of the parameters in the likelihood (Equation 5) is
described as below. In E step, the conditional expected complete-data log-likelihood

Q
�
QjQðtÞ

	
¼

Xns

i¼1

X3m

j¼1

log

0
@f

�
yijmj;s

2
	

Uj
pij

1
Ap

ðtÞ
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h
log f

�
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2
	
2 log
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	i

p
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ij
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log f
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þ log

�
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	i

p
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ij 2

Xns

i¼1

X3m
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log
�
Uj
�
p
ðtÞ
ij

is computed, where pij’s are the posterior probabilities of QTL genotype. The last term in the right-hand side is a correction
term for truncation.

The M step is to find Q(t+1) that maximize the conditional expected log-likelihood Q(Q|Q(t)). We first obtain the
derivatives of log Uj with respect to each parameter as follows. For the effect, say ai, associated with the ith column of
the genetic design matrix D (Di), the derivative is

@

@ai
log

�
Uj
� ¼ @
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where Dij is the ij-entry of design matrix D. For m and s2, the derivatives are
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respectively. For simplicity in the following derivations, we define

Aj ¼
f
�
t1j

�
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�
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�
F
�
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�
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�  and Bj ¼ t1jf
�
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�
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�
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�
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�
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�
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� ;  j ¼ 1; 2;⋯; 3m:

The partial derivatives of Q(Q|Q(t)) with respect of each parameters are described below, For one of the QTL effect, say a1,
the derivative is

@

@a1
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;

where # denotes the element-by-element product of the two same-order matrices, P ¼ fpijgns 33m , A ¼ ðA1;A2;⋯;A3mÞ9.
The derivatives for other effects have the similar expressions. For m and s2, the derivatives are
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where B ¼ ðB1;B2;⋯;B3mÞ9 and
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0
BB@
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CCA:

The solutions of the above partial derivatives can be obtained in close forms. For the effect a1,
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1 ¼

�
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�
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:

The solutions for the other effects have similar expressions and can be easily formulated accordingly by operating their
corresponding column vectors in D. These solutions for the effects can be arranged together and expressed in matrix form as
Equation 7. The solutions for m and s2 are
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h
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:

It is worth pointing out that if other possible effects are considered in the model, the solutions can be still formulated as
Equation 7.
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