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Abstract This paper introduces an R package QTLEMM that implements commonly used and popular
statistical methods for QTL mapping and QTL hotspot detection. For QTL mapping, QTLEMM offers
a suite of functions for simulating data, computing significance thresholds, and estimating QTL
parameters using single-QTL or multiple-QTL methods in diverse experimental populations. These
methods encompass linear regression, permutation tests, Gaussian stochastic process, normal mixture
models, and truncated normal mixture models. Moreover, QTLEMM accommodates both complete
genotyping and selective genotyping data, and enables the fitting and comparison of different models
in the analysis. For QTL hotspot detection, QTLEMM devises the statistical framework that can handle
both individual-level and summarized data, mitigate the underestimation of hotspot thresholds, and
also identify various types of hotspots at a very low computational cost. QTLEMM provides numerical
and graphical results, and can facilitate the discovery of more significant results in the analysis of
quantitative traits in biological studies.

1 Introduction

Many biologically and economically important traits in organisms are quantitative rather than qualita-
tive. These include traditional traits (such as yields and quality in rice, weight and body fat percentage
in animals, and diabetes and hypertension in humans) and molecular traits (such as gene expression
and protein levels). Quantitative traits typically exhibit continuous variation in a population, so
there is no easy way to categorize them. They are likely to be affected by numerous genes each with
modest effects and easily affected by environmental factors (Falconer and Mackay, 1996). Conse-
quently, traditional methods such as the Mendelian segregation ratio analysis, mean and variance
analyses, covariance studies, and the examination of familial correlations are very difficult to detect
the individual genes contributing to these traits. The genes responsible for quantitative traits are
referred to as quantitative trait loci (QTL). For a long time, researchers have tried to obtain individual
QTL information for exploring the genetic mechanisms underlying quantitative traits and further
to manipulate them for improving the traits. With the availability of fine-scale genetic marker data
along the genomes for various organisms, it has become possible to systematically map for and detect
individual QTL (QTL mapping) by using more sophisticated statistical methods. Understanding
the genetic mechanisms of quantitative traits using QTL mapping remains a major challenge and
considerable issue in broad areas of biological studies (Chen et al., 2021; Kumar et al., 2024; Meng
et al., 2024; Mackay and Anholt, 2024).

Statistical methods for QTL mapping have been well established (Lander and Botstein, 1989;
Haley and Knott, 1992; Zeng, 1993; Jansen, 1993; Zeng, 1994; Xu and Atchley, 1995; Kao et al., 1999;
Kao, 2000; Sen and Churchill, 2001; Broman et al., 2003; Kao and Zeng, 2002; Kao, 2004, 2006; Li
et al., 2008; Kao and Zeng, 2009, 2010; Kao and Ho, 2012; Lee et al., 2014; Wang et al., 2016). These
methods analyze the marker and trait data from well-designed experimental populations to estimate
the QTL parameters, including the numbers, positions, various gene effects (additive, dominance, and
interactive), variance components, heritabilities, etc. The experimental populations include the most
commonly used populations, such as the backcross and F2 populations, and other more advanced
populations, such as recombinant inbred (RI) populations, advanced intercross (AI) populations,
intermated recombinant inbred (IRI) populations, and immortalized F2 populations (Kao and Zeng,
2009). The statistical methods are applied to analyze the QTL mapping data and tackle the several
central issues, including the estimation of QTL parameters, determination of threshold values and
selective genotyping, in the QTL mapping studies. These study has provided important insights into
the genetic mechanisms governing quantitative traits in various organisms, such as rice, maize, alfalfa,
Atlantic salmon, trout, etc. (Vaughan et al., 2007; Chen et al., 2021; Kumar et al., 2024; Meng et al., 2024;
Mackay and Anholt, 2024).

QTL hotspots, characterized by genomic locations enriched in QTL, represent a common and
notable feature when collecting numerous QTL for various traits in various biological studies (Chardon
et al., 2004; West et al., 2007; Breitling et al., 2008; Wu et al., 2008; Yang et al., 2019; Meng et al., 2024).
These hotspots are significant and appealing due to their high informativeness and potential harboring
for genes related to quantitative traits. Presently, both the genetical genomics experiments with
individual-level data and public QTL databases with summarized QTL data (see context) can provide
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the data sets with numerous QTL for hotspot analysis. Statistical methods using either type of data
for detecting QTL hotspots have been proposed, and they are mainly based on the permutation test
approach (Wu et al., 2008; Li et al., 2010; Breitling et al., 2008; Neto et al., 2012; Yang et al., 2019; Wu
et al., 2021). Among these methods, the statistical framework outlined by Yang et al. (2019) and Wu
et al. (2021) has the notable features of being able to handle both types of data, addresses the several
challenges and save computational cost in the process of QTL hotspot detection (see context).

Statistical QTL mapping software packages such as MapMaker/QTL (Lincoln et al., 1993), WinQTL-
Cart (Wang, 2000), R/qtl (Broman et al., 2003), QTLNetwork (Yang et al., 2008), QTL.gCIMapping.GUI
(Zhang et al., 2020) have been developed and documented in the literature. Among them, R/qtl
is a notably free and powerful R package that provides a broad range of methods, which include
single-marker analysis, interval mapping (Lander and Botstein, 1989), regression interval mapping
(Haley and Knott, 1992), multiple QTL mapping (Jansen, 1993), composite interval mapping (Zeng,
1994) for a wide variety of experimental populations for QTL mapping (see context). Permutation
test (Churchill and Doerge, 1994) is used to determine significance thresholds for QTL mapping in
R/qtl. Here, We introduce an R package QTLEMM (QTL EM algorithm mapping) that implements
commonly used and popular statistical methods for both QTL mapping and QTL hotspot detection.
For QTL mapping analysis, in addition to providing the methods in R/qtl, QTLEMM also offers
multiple interval mapping (Kao et al., 1999) to fit multiple QTL directly in the model for a wide
range of experimental populations (see context). Furthermore, QTLEMM can also perform novel
tasks such as simulating and handling the complete or selective genotyping data, computing the
significance threshold values based on Gaussian stochastic process, and providing the asymptotic
variance-covariance matrix for the QTL estimates (Kao and Zeng, 1997; Kao and Ho, 2012; Lee et al.,
2014, see context). For QTL hotspot detection, QTLEMM offers the statistical framework by Yang
et al. (2019) and Wu et al. (2021) to conduct the analysis of QTL hotspot detection. We provide a
comprehensive overview of the primary R functions in the QTLEMM package. Results from analyses
are presented through numerical and graphical outputs, facilitating interpretation and visualization of
findings. The QTLEMM package provides researchers with statistical tools to find more significant
results in exploring the network among expression of genes, QTL hotspots, and quantitative traits in
genes, genomes, and genetics studies.

2 Statistical Methods

Identifying individual QTL (QTL mapping) is a crucial endeavor aimed at understanding the genetic
basis and architecture of quantitative traits, thereby facilitating the trait manipulation and improve-
ment. Since the specific locations of QTLs are unknown prior to mapping and they could potentially
be located anywhere along the genome, the primary objectives of statistical methods are centered
around searching for individual QTLs and subsequently fitting them all into statistical model for the
estimation of QTL parameters.

2.1 QTL mapping models

Lander and Botstein (1989) were the first to propose a QTL mapping procedure known as interval
mapping, which systematically searches the entire genome for QTLs. The interval mapping approach
utilizes one marker interval (one flanking marker pair) at a time to establish a putative QTL at a
specific position. It models the relationship between a quantitative trait and the putative QTL at that
position, subsequently testing for the presence of the QTL. For a putative QTL, denoted as Q, at a
specific fixed position x along the genome, the statistical model for individual i with a phenotypic trait
value yi can be expressed as follows:

yi = Gi + εi (1)

where Gi represents the genotypic value contributed by the QTL genotype, and εi is a residual assumed
to follow a normal distribution with mean 0 and variance σ2. For the individuals in a population
derived from two inbred lines, such as the F2 population, the genotypes of their Q can be one of the
three possible genotypes, P1 homozygote (QQ), heterozygote (Qq) or P2 homozygote (qq). Several
different genetic models have been proposed to characterize the relationship between genotypic values
and gene effects (Cockerham, 1954; Van Der Veen, 1959; Weir and Cockerham, 1977; Kao and Zeng,
2002). According to Cockerham’s model (Kao and Zeng, 2002), the relationship between the three
genotypic values and the QTL effects can be modeled as GQQ = µ + a − d/2, GQq = µ + d/2 and
Gqq = µ − a − d/2, respectively, where a and d represent the additive and dominance effects of the
QTL, respectively. We then can construct an equivalent model of equation 1 for individual i as follows:
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yi = µ + axi + dzi + εi (2)

where (xi, zi) = (1,−1/2), (0, 1/2) or (−1,−1/2) if the QTL genotype of individual i is QQ, Qq
or qq. Equation 2 builds the relationship between the genotypic values and QTL genotypes. If the
putative QTL is located at the marker, the model is a regression model. However, if the putative
QTL is positioned at x within the marker interval (M,N), the genotypes of the QTL are not directly
observable and must be inferred from its flanking markers M and N. In this scenario, the statistical
model typically becomes a normal mixture model and is called interval mapping (IM) model. Given
data with n individuals, the likelihood function of the IM model for θ =

(
µ, a, d, σ2) can be expressed

as follows:

L (θ|Y, X) =
n

∏
i=1

 3

∑
j=1

pij × f
(

yi|µj, σ2
) (3)

where f
(

yi|µj, σ2
)

represents a normal probability density function with mean µj and variance σ2.
The µj’s correspond to the genotypic values of the three different QTL genotypes (µ1 = GQQ,µ2 =
GQq,µ3 = Gqq), while pij’s denote the mixing proportions (conditional probabilities) of the three QTL
genotypes inferred from the two flanking markers (refer to Kao and Zeng, 2009, for obtaining pij’s
in various experimental populations). By treating the normal mixture model as an incomplete-data
problem, the EM algorithm (Dempster et al., 1977) can be readily implemented to obtain the maximum
likelihood estimates (MLE) of the parameters. Subsequently, a likelihood ratio test (LRT) can be
performed to test the null hypothesis of no QTL (H0 : a = 0 and d = 0) at the position x. With a
fine-scale genetic marker map throughout the genome, the IM model can be conducted at all positions
covered by markers to produce a continuous LRT statistic profile along chromosomes. By setting a
predetermined LRT threshold, the position with the significantly largest LRT statistic in a chromosome
region is considered the estimated QTL location. This method enables the systematic search and
identification of QTLs at the genome-wide level, thereby facilitating the estimation of QTL parameters.
However, since the search process for QTL needs to be performed at every position of the genome,
the iterative expectation-maximization (EM) algorithm can become computationally expensive for
QTL mapping (Haley and Knott, 1992; Kao, 2000). Haley and Knott (1992) introduced regression
interval mapping (REG IM) as an approximation to the IM model, aimed at reducing computational
costs. In REG IM, the quantitative trait value is regressed on the conditional expected genotypic
value, providing a computationally efficient alternative to IM (Haley and Knott, 1992), although the
approximation may not be satisfactory in all cases (Kao, 2000; Sen and Churchill, 2001).

The approach of IM model focuses on one putative QTL at a time within the model. However, it
may introduce bias in the identification and estimation of QTLs when multiple QTLs are present in
the same linkage group (Lander and Botstein, 1989; Haley and Knott, 1992; Zeng, 1994). To address
this issue, composite interval mapping (CIM, Zeng, 1994) and multiple QTL mapping (MQM) model
(Jansen, 1993), which combines interval mapping with multiple regression analysis, was proposed.
During the test for a putative QTL, they both involve using other markers as covariates to mitigate the
interference of other QTLs and reduce residual variance, thereby improving the accuracy of the test.
The QTLEMM package provides the IM, REG IM, CIM and MQM models for the interval mapping
QTL analysis.

To further enhance QTL mapping, Kao et al. (1999) introduced the multiple interval mapping
(MIM) approach. The MIM approach aims to leverage multiple marker intervals concurrently to
incorporate multiple putative QTLs into the model for QTL mapping. For instance, considering m
putative QTLs, Q1, Q2,..., and Qm, located at given positions within m separate marker intervals,
(M1,N1), (M2,N2),..., and (Mm,Nm), respectively, the statistical model fitted these m putative QTLs can
be expressed as follows:

yi = µ +
m

∑
j=1

(
ajxij + djzij

)
+ εi (4)

For m putative QTLs in the model, there are 3m possible QTL genotypes, and the likelihood of the
model for θ =

(
µ, a1, d1, a2, d2, ..., am, dm, σ2) becomes a mixture of 3m normal

L (θ|Y, X) =
n

∏
i=1

 3m

∑
j=1

pij × f
(

yi|µj, σ2
) (5)

under the normal assumption, where pij’s are the conditional probabilities of the 3m possible QTL
genotypes given the flanking marker genotypes. The statistical model (equation 4) with normal mixture
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likelihood (equation 5) is called MIM model. The general formulas by Kao and Zeng (1997), formulated
based on the EM algorithm, can be used to estimate the parameters of the MIM model. To avoid using
the iterative EM algorithm, alternative approximate methods considering multiple QTLs in the model
include REG IM (Haley and Knott, 1992) and multiple imputation by Sen and Churchill (2001). While
the two approximate methods offer faster computational speeds, their differences compared to the
MIM model in the QTL analysis can be significant in certain situations, as discussed by Kao (2000)
and Sen and Churchill (2001), and demonstrated through empirical examples (not shown). The R/qtl
package provides these two approximate methods for QTL mapping. Subsequently, Kao (2004), Kao
(2006) and Kao and Zeng (2009) extended the MIM model to a wide range of advanced populations for
QTL mapping, considering specific genome structures present in advanced populations. In addition,
Lee et al. (2014) further developed the MIM model for the selective genotyping design, a topic we
discuss below. The MIM approach indeed offers enhanced precision and power in QTL mapping.
Also, it enables the analysis and estimation of epistasis between QTL, more accurate prediction of
genotypic values of individuals, and estimation of heritabilities of quantitative traits. The QTLEMM
package provides the MIM model and the REG IM method (considering multiple QTLs) to deal with
the situations of multiple QTLs in the QTL mapping analysis.

2.1.2 Determination of threshold values

In the interval mapping procedure, a series of null hypotheses, both correlated and uncorrelated, are
tested using LRT statistics across all genomic positions. Given the multiplicity of tests, controlling
genome-wide error rates is crucial when determining threshold values for claiming significant QTL
detection. It has been recognized that various factors, such as the number and size of intervals, popu-
lation genome structures, and marker density, are involved and should be considered in determining
the threshold value of QTL detection. To address this challenge, several analytical, empirical, and
numerical approaches have been proposed to obtain the threshold values. These include methods
like Bonferroni adjustment, Ornstein-Uhlenbeck process, numerical simulation, permutation test, and
Gaussian process. Each offers unique insights and advantages in obtaining threshold values tailored
to the specific characteristics of the QTL mapping study (Lander and Botstein, 1989; Churchill and
Doerge, 1994; Rebai et al., 1994; Piepho, 2001; Zou, 2004; Chang et al., 2009; Guo, 2011; Kao and Ho,
2012). While numerical methods like permutation tests or numerical simulations may be computation-
ally intensive, analytical methods offer a more efficient alternative with lower computational costs.
However, analytical methods often rely on certain assumptions, such as normality, which may not
always hold true in practice (Rebai et al., 1994; Piepho, 2001; Kao and Ho, 2012). The Gaussian process
approaches by Chang et al. (2009), Guo (2011) and Kao and Ho (2012) can stand out as particularly
efficient, as we found that it is approximately 7700 times faster than the permutation method in
obtaining thresholds. This significant feature in computational speed makes the Gaussian process
method a highly practical and attractive option as far as the computational efficiency is concerned in
determining the threshold values for QTL detection.

Chang et al. showed that the asymptotic distribution of the score test statistics, denoted as u(xi)
for i = 1, 2, ..., k, at all the k sequential positions in the genome, follows a Gaussian stochastic process.
Furthermore, as the squared score statistic u2(x) is asymptotically equivalent to the LRT statistic (Cox
and Hinkley, 1979; Chang et al., 2009), the distribution of the supremum of u2(x) along the genome
under the null hypothesis can be used to assess the threshold value of the LRT statistic in QTL mapping.
Based upon this concept, Guo (2011) and Kao and Ho (2012) extended Chang et al.’s methodology by
deriving more general score test statistics and Gaussian processes tailored for evaluating threshold
values in the backcross, F2, RI Ft and AI Ft populations. These advancements provide researchers
with statistical tools to determine the significance thresholds for QTL mapping analyses in diverse
experimental populations. In the scenario of the F2 population, each of the k positions is linked with
two score test statistics: one for the additive effect and the other for the dominance effect. Let U
represent a vector whose components are the score test statistics at the k genomic positions. Therefore,
the vector U has length of 2k. The asymptotic distribution of U follows a Gaussian stochastic process,
denoted as U ∼ N(µ, Σ), which is a multivariate normal distribution with a probability density
function given by:

p (U; µ, Σ) =
1

(2π)
n
2 |Σ|

1
2

exp
(
−1

2
(U − µ)T Σ−1 (U − µ)

)
(6)

Here µ = 0 represents the mean of the distribution, indicating that the score test statistics are centered
around zero. The variance-covariance matrix Σ captures the variability and correlations among the
score test statistics across different genomic positions. The structure of Σ is intricately linked to the
population genome structure and is typically well-defined in experimental populations. The elements
of Σ are determined based on the genotypic distributions of one, two, three, and four genes of the
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population. In backcross and F2 populations, whose genomes have the Markovian structure under
the Haldane map function (Haldane, 1919), the genotypic distributions of three and four genes can
be derived from the genotypic frequencies of pairwise genes. However, in advanced populations,
the genomes no longer adhere to the Markovian property and are more complex. Consequently,
obtaining the genotypic distributions of two, three, and four genes directly becomes challenging in
such populations. Indeed, the transition equations proposed by Haldane and Waddington (1931),
Geiringer (1944), and Kao and Zeng (2010) provide valuable tools for deriving genotypic frequencies
of two, three, and four genes, facilitating the construction of the variance-covariance matrix. These
equations offer insights into the genotypic distribution of a wide variety of experimental populations,
enabling a deeper understanding of variance-covariance structures between genes. The general
frameworks of the score test statistics and Gaussian processes introduced by Guo (2011) and Kao and
Ho (2012) can be used to obtain the threshold values of QTL mapping for genomes with different sizes
and marker densities in the backcross, F2, RI Ft and AI Ft populations. Importantly, these methods
have very low computational costs, making them practical for large-scale analyses. In practice, when
given a specific significance level and genome size, threshold values should be adjusted to account
for denser marker maps and more advanced populations. This adjustment ensures that the statistical
analysis appropriately controls for multiple testing and accounts for the complexities inherent in
different genetic backgrounds and experimental designs. The QTLEMM package implements the
Gaussian processes derived by Guo (2011) and Kao and Ho (2012) for computing significant thresholds
of QTL mapping.

2.1.3 Selective genotyping

The cost of conducting QTL mapping experiments includes both phenotyping and genotyping ex-
penses. In situations where budget constraints are not a primary concern, researchers usually choose
complete genotyping, wherein all individuals in the sample undergo both genotyping and pheno-
typing procedures. However, despite recent reductions in genotyping costs, researchers frequently
encounter insufficient budgets that prevent them from fully covering the expenses of complete geno-
typing. In situations where budgets are insufficient, researchers may explore alternative cost-saving
approaches. Selective genotyping has been known as a cost-saving strategy to reduce genotyping work
and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping (Lebowitz
et al., 1987; Lander and Botstein, 1989; Xu and Vogl, 2000; Lee et al., 2014). This method involves
selecting individuals from the high and low extremes of the trait distribution for genotyping, while
leaving the remaining individuals ungenotyped within the entire sample. By focusing genotyping on
individuals with extreme trait values, researchers can still capture most of the genetic variation in the
sample to maintain efficiency. Overall, selective genotyping allows researchers to balance between
budget constraints and mapping efficiency in QTL detection analysis.

Suppose that the sample consists of n individuals, out of which ns individuals with extreme
trait values (ns/2 each from the upper and lower extremes) are selected for marker genotyping. The
remaining nu = n − ns individuals are not genotyped. Statistical QTL mapping methods for analyzing
selective genotyping data can either consider all the n individuals (full data) or consider just the ns
genotyping individuals (genotyping data) in their models for QTL detection. If only the genotyping
data are utilized in the analysis, data of this sort are called centrally truncated data. Xu and Vogl
(2000) and Lee et al. (2014) introduced the truncated model within the mixture framework of interval
mapping procedure, presenting a truncated normal mixture model for QTL analysis. For ns genotyped
individuals, the likelihood function for θ in the m QTL model can be expressed as follows:

L (θ|Y, X) =
ns

∏
i=1

 3m

∑
j=1

pij ×
f
(

yi|µj, σ2
)

Uj

 (7)

where

Uj =
∫ TL

−∞
f
(

yi|µj, σ2
)

dyi +
∫ ∞

TR

f
(

yi|µj, σ2
)

dyi (8)

is the cumulative density with trait values greater than TR (right truncated point) and lower than
TL (left truncated point), such that P (yi > TR) = P (yi < TL) = ns/2n. Further details on the EM
algorithm for obtaining the MLE of the parameters in the truncated normal mixture model are provided
in Lee et al. (2014). If the full data are fitted into the statistical model for QTL analysis, the model
likelihood can be expressed as follows:
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L (θ|Y, X) =
ns

∏
i=1

 3m

∑
j=1

pij × f
(

yi|µj, σ2
)×

nu

∏
i=1

 3m

∑
j=1

qj × f
(

yi|µj, σ2
) (9)

where the first term represents the likelihood for the ns genotyped individuals, while the second term
accounts for the nu ungenotyped individuals.

In equation 9, note that pij’s are derived from the conditional probabilities of the QTL genotypes
given their flanking marker genotypes, and qj’s represent the proportions of QTL genotypes in the
ungenotyped individuals (Lee et al., 2014). In the parameter estimation, the same EM algorithm
employed for complete genotyping (Kao and Zeng, 1997) can be directly applied to obtain the MLE.
Studies have indicated that the analysis utilizing full data by the model in equation 9 outperforms
that utilizing only genotyping data by the model in equation 7 because additional information from
the ungenotyped individuals is incorporated into the analysis (Xu and Vogl, 2000; Lee et al., 2014).
Additionally, selective genotyping using larger genotyping proportions, such as ns/n = 0.5, may
maintain roughly equivalent power to complete genotyping, whereas using smaller genotyping
proportions presents difficulties in achieving the same level of power (Lee et al., 2014). These current
selective genotyping methods mainly focus on the backcross and F2 populations. Herein, we have
substantially extended and modified the MIM models in equations 7 and 9 for selective genotyping
in other advanced populations by considering their specific population genome structures. The
QTLEMM package provides the MIM models to deal with the selective genotyping data (full or
genotyping data) from the F2 population and the more advanced populations.

2.2 QTL hotspot detection

Genome-wide QTL hotspot detection typically requires datasets containing numerous QTLs to proceed
with the analysis. Currently, genetical genomics experiments and public QTL databases serve as two
feasible sources of such data. These two data sources have different structures. Genetical genomics
experiments provide individual-level data, including original marker genotypes and numerous
molecular traits for each individual, enabling the detection of thousands of QTLs in a single experiment.
On the other hand, public databases such as GRAMENE, Q-TARO, Rice TOGO browser, PeanutBase,
and MaizeGDB curate thousands of summarized QTL data. These databases curate the information
from numerous independent QTL experiments across various traditional traits, and contain detected
QTL, trait names, and reference sources but lack individual-level data. Utilizing both individual-
level data from genetical genomics experiments or summarized QTL data from public databases,
several statistical methods, primarily based on permutation tests, have been proposed to detect QTL
hotspots. West et al. (2007), Wu et al. (2008), Li et al. (2010), Breitling et al. (2008) and Neto et al.
(2012) have developed statistical methods to detect QTL hotspots for genetical genomics experiments.
These methods for detecting QTL hotspots may suffer from several problems, including ignoring the
correlation structure among traits, neglecting the magnitude of LOD scores of the QTLs, or incurring
a very high computational cost. These problems often lead to the detection of excessive spurious
hotspots, failure to discover biologically interesting hotspots composed of a small to moderate number
of QTLs with strong LOD scores, and computational intractability, respectively, during the detection
process. Solving these problems is crucial for improving the accuracy and efficiency of QTL hotspot
detection.

The statistical framework developed by Yang et al. (2019) and Wu et al. (2021) introduces novel
methods to deal with the problems encountered in the approaches of West et al. (2007), Wu et al. (2008),
Li et al. (2010), Breitling et al. (2008), and Neto et al. (2012). in QTL hotspot detection. Notably, the
framework can accommodate both individual-level data from genetical genomics experiments and
summarized data from public QTL databases to detect QTL hotspots. By employing trait grouping
and top γn,α profile, where γn,α is the EQF threshold for assessing at least n spurious hotspots at
level α, the framework can also address the several challenges, including handling the correlation
structure among traits, identifying different types of hotspots, and reducing computational burden, at
a time for QTL hotspot detection. In trait grouping, the framework utilizes estimated QTL positions
instead of phenotypic or genetic correlations among traits to make inference about the tightly linked
and/or pleiotropic traits for trait grouping, accounting for the correlation structure among traits.
Subsequently, the permutation algorithm introduced by Yang et al. (2019) is applied to randomly
shift the tightly linked and/or pleiotropic QTL together along the genome within each trait group.
This process can obtain a series of EQF (expected QTL frequency) thresholds, γn,α’s, to facilitate the
detection of QTL hotspots during the analysis. The top γn,α threshold is defined as the highest EQF
threshold (corresponding to the smallest n) necessary for a bin to qualify as significant for a QTL
hotspot within the EQF matrix. In a specific EQF architecture, the top γn,α threshold of a hotspot can
be used to assess its significance status relative to others. When assessing a specific hotspot, we can
derive several, let’s say m, top γn,α thresholds for the m EQF architectures established using m different
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LOD thresholds. The pattern of the n values within the set of m top γn,α thresholds can outline the
dynamic significance status of a hotspot across various EQF architectures. For each hotspot, we profile
the top γn,α thresholds and use the profile to outline the LOD-score pattern across the different LOD
thresholds. The top γn,α profile can then serve to characterize the types of hotspots with varying sizes
and LOD-score distributions, enabling the assessment of small and moderate hotspots with strong
LOD scores. The QTLEMM package offers the statistical framework by Yang et al. (2019) and Wu et al.
(2021) to detect QTL hotspots.

3 Using QTLEMM for QTL mapping analysis

The functions for the QTL mapping analysis in the QTLEMM package are capable of handling the
data from backcross, F2, AI, RI, IRI and immortalized F2 populations. For each population, the package
considers both complete genotyping data and selective genotyping data for the QTL mapping analysis.
The functions within the package enable the utilization of several methods including linear regression,
IM, REG IM, CIM and MQM and MIM models for QTL mapping analysis, and they are outlined in
Table 1. The progeny() function generates simulated trait and genotype data for diverse experimental
populations. These data are then input into the IM.search() function to search the genome for
potential QTLs. Additionally, the MIM.search() function can search for an additional QTL given
other identified QTLs. The best position can be further obtained by using the MIM.points() function.
Subsequently, the D.make() and Q.make() functions are employed to create the genetic design matrix
of the QTL effects and the conditional probability matrix of the QTL genotypes, respectively. These
two matrices are then utilized in the EM.MIM() function to estimate the parameters in the MIM model.
Figure 1 is the flow chart of using the above functions for the QTL mapping analysis. Below, we
demonstrate the application of these QTL mapping functions using both simulated and real examples.

3.1 Inputs

The QTL mapping data typically consist of two components: phenotypic trait values and marker
genotypes observed in the individuals under study. To initiate QTL mapping analysis using the
QTLEMM package, four essential arguments are required: markers (marker), genotypes (geno),
phenotypes (y) and QTL (QTL). The marker argument is a k × 2 matrix containing marker information,
where k is the number of markers. In the marker argument, the first column labels the chromosomes
where the markers are located, while the second column indicates the marker positions in Morgan
(M) or centimorgan (cM). Table 2 provides an example of the marker argument, displaying that the
first three markers of the first chromosome are positioned at 0, 24, and 40 cM, respectively. The QTL
argument is a q × 2 matrix containing QTL information, where q is the number of QTLs. Its format
is the same as that of the marker argument. The geno argument is an n × k matrix containing the
marker genotypes of n individuals. Genotypes for P1 homozygote (MM), heterozygote (Mm) and
P2 homozygote (mm) are encoded as 2, 1 and 0, respectively, while missing genotypes are coded as
NA. Table 3‘ provides an example of the geno matrix, where each row represents the genotypes of
the k markers of an individual. The y argument is an n × 1 vector containing the trait values of n
individuals.

3.2 Simulation examples

Below a simulation example is presented to demonstrate the usage of the QTLEMM package. Initially,
it is necessary to install and load the QTLEMM package and set an arbitrary random number seed,
such as 8000, for data simulation in the R environment. Below are the codes.

> install.packages("QTLEMM")
> library(QTLEMM)
> set.seed(8000)
> options(digits = 3)

3.2.1 Data generation

The progeny() function can simulate marker genotype and phenotype (trait) data from experimental
populations for QTL mapping analysis. This function accepts several key arguments: the E.vector
argument represents the effects of the QTL; the ng argument specifies the generation number; the
h2 argument sets the heritability; the size argument contains the sample size; the type argument
is used to specify the population type, which includes backcross (type="BC"), advanced intercross
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Table 1: List of the functions for QTL mapping in the QTLEMM package

Function Description

Major function
EM.MIM() MIM to estimate the parameters.
EM.MIMv() MIM to estimate the parameters and their variances.
IM.search() IM to search for the possible QTL.
MIM.search() MIM to search for one additional QTL given the identified QTLs in

the model.
MIM.points() MIM to fine tune the QTL parameters by a multidimensional search

around the regions of the identified QTL in the model.

Minor function
progeny() Generate the simulated phenotype and genotype data.
D.make() Generate the genetic design matrix.
Q.make() Generate the conditional probability matrix.
LRTthre() The LRT threshold for QTL detection based on Gaussian stochastic

process.

Figure 1: Flowchart of using the QTL mapping functions in the QTLEMM package.

Table 2: The format example of marker/QTL information data

chromosome position_cM

1 0
1 24
1 40
... ...
12 72

12 126
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Table 3: The format example of genotype data

marker1 marker2 marker3 marker4 marker5 ... markerk

ind1 2 1 1 2 0 ... 2
ind2 2 1 0 0 1 ... 1
ind3 2 2 NA 1 1 ... 0
ind4 0 0 1 0 NA ... 2
... ... ... ... ... ... ... ...

indn 1 1 0 0 1 ... 0

population (type="AI"), and recombinant inbred population (type="RI"). Now consider the scenario
that a simulated dataset consists of 200 F2 individuals with three chromosomes, each with eleven
10-cM equally spaced markers. Three QTLs are positioned at [1,23] (the 23 cM of the 1st chromosome),
[1,77] and [2,55], respectively, and their effects are assumed to be -10, 12, and 8, respectively. The 1st

and 3rd QTLs have an additive-by-additive effect of 1. The heritability is set at 0.5. Below are the
commands used to generate such a dataset. The command of defining the QTL effects is as follows:

> eff <- c("a1" = -10, "a2" = 12, "a3" = 8, "a1:a3" = 1)

If other effects, such as dominance effect of 3 for the 2nd QTL and additive-by-dominance effect of 2
for the 1st and 2nd QTLs, are considered, the arguments in the command is d2=3 and a2:d1=2. Please
refer to the QTLEMM document in CRAN for more detailed instructions. The commands for setting
the specified positions of QTLs and markers are as follows:

> marker <- cbind(rep(1:3,each = 11), rep(seq(0, 100, 10), 3))
> QTL <- cbind(c(1, 1, 2), c(23, 77, 55))

Then, the progeny() function can use the above commands to generate the QTL mapping data of 200
F2 individuals with heritability 0.5.

> testdata <- progeny(QTL, marker, type = "RI", ng = 2, E.vector = eff, h2 = 0.5,
size = 200)

> names(testdata)
[1] "phe" "E.vector" "marker.prog" "QTL.prog" "genetic.value" "VG" "VE"

> y <- testdata$phe
> geno <- testdata$marker.prog

The progeny() function outputs a dataset into the file named testdata. This file contains four parts:
phenotypes (phe), QTL effects (E.vector), marker genotypes (marker.prog), and QTL genotypes
(QTL.prog). The markers and trait values of the 200 individuals in the testdata file are further
extracted and organized into the geno matrix and y vector for QTL mapping analysis.

3.2.2 Interval mapping

The IM.search() function is designed to implement the IM model for the QTL mapping analysis. Its
arguments include: the type argument specifies the population type (BC, AI, and RI population); the
ng argument represents the generation number; the speed argument determines the walking speed of
the IM analysis (in cM); the d.eff argument indicates if the dominant effect will be considered or not
(for AI or RI); the QTLdist argument specifies the minimum distance (in cM) between the detected
QTL; the plot.all and plot.chr arguments indicate whether plots of the LRT statistic profile will be
generated or not. Below are the codes of using the IM.search() function to perform the IM analysis
on the simulated dataset without considering any dominance effect.

> IMtest <- IM.search(marker, geno, y, type = "RI", ng = 2, speed = 1, d.eff = FALSE,
QTLdist = 15, plot.all = TRUE, plot.chr = FALSE, console = FALSE)

> names(IMtest)
[1] "effect" "LRT.threshold" "detect.QTL" "model" "inputdata"

> IMtest$LRT.threshold
95%
9.62
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Figure 2: The graphical output generated by the IM.search() function. The upper plot shows the
profile of LRT statistics, while the lower plot exhibits the profile of effects. The red line represents the
threshold value of 9.62 obtained by using Gaussian process.

The outputs of the IM.search() function (IMtest) include: estimated effects at all positions (effect);
LRT threshold (LRT.threshold) obtained using Gaussian process; numerical results of the detected
QTLs (detect.QTL); graphical outputs. The IM.search() function can also perform the REG IM model
for the QTL mapping analysis by setting the argument method=”REG” (default method=”EM”). Figure 2
is the graphical output of the IM.search() function. It illustrates the profiles of the LRT statistics and
effects across the three chromosomes. The LRT profile shows three significant peaks, indicating three
QTLs are detected, on two of the three chromosomes. The LRT threshold for assessing the significance
of QTL detection is 9.62 by using Gaussian stochastic process (9.91 by using the permutation test) for
this dataset. The numerical results of the detected QTLs can be listed using the following commands.

> detQTL <- IMtest$detect.QTL
> detQTL

chr cM a1 LRT R2
14 1 14 -7.00 24.1 0.1064
77 1 77 8.03 29.6 0.1324
153 2 53 6.14 17.3 0.0787

The IM analysis concludes that the three QTLs are detected at [1,14], [1,77] and [2,53] with effects of
-7.00, 8.03 and 6.14, respectively. They contribute approximately 10.64%, 13.24%, and 7.87% of the trait
variation, respectively.

3.2.3 Multiple interval mapping

The analysis of the IM model can be further improved using the MIM approach by jointly fitting the
three QTL into the model so as to obtain more precise and accurate estimates of QTL parameters. The
EM.MIM() function is designed to perform the MIM model analysis. Before conducting the EM.MIM()
function, two matrices, the genetic design matrix (D.matrix) and the conditional probability matrix
(cp.matrix), must be constructed first. The D.make() and Q.make() functions are utilized to generate
the two matrices, respectively. The commands in the D.make(), Q.make() and EM.MIM() functions for
the MIM model fitting the three QTL at [1,14], [1,77] and [2,53] with an additive by additive effect
(between the QTLs at [1,14] and [2,53]) are given below respectively.

> dQTL <- detQTL[,1:2]
> D.matrix <- D.make(nQTL = 3, type = "RI", a = TRUE, d = 0, aa = c(1, 3))

The first argument of the D.make() function is the number of QTL in the MIM model and is nQTL=3 in
this case; the second argument specifies the population type and is type="RI"; the arguments a and d
indicate if additive or dominance effects will be considered and they are a=TRUE and d=0 since only the
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additive effects are considered; the arguments aa, dd, and ad specify the epistatic effects between QTLs
and is aa=c(1,3) since the additive by additive effect between the 1st and 3rd QTLs is considered. The
dimension of D.matrix matrix for this three-QTL MIM model is 27 × 4, and the elements of first six
rows are shown below.

> dim(D.matrix)
[1] 27 4

> head(D.matrix)
a1 a2 a3 a1:a3

222 1 1 1 1
221 1 1 0 0
220 1 1 -1 -1
212 1 0 1 1
211 1 0 0 0
210 1 0 -1 -1

The arguments in the Q.make() function for generating the conditional probability matrix of the
three-QTL MIM model in this case are shown below. The dimension of the cp.matrix matrix for this
three-QTL MIM model is 200 × 27.

> cp.matrix <- Q.make(dQTL, marker, geno, type = "RI", ng = 2)$cp.matrix
> dim(cp.matrix)
[1] 200 27

Three inputs are required for driving the EM.MIM() function to perform the MIM analysis: the
genetic design matrix (D.matrix); the conditional probability matrix (cp.matrix); the phenotypic
values (y). The outputs from the EM.MIM() function include a vector containing the estimated QTL
effects (E.vector), the mean (beta), the residue variance (variance), the posterior probabilities matrix
(PI.matrix), the log likelihood value (log.likelihood), the LRT statistics (LRT), the coefficient of
determination (R2), the estimated trait values (y.hat), and the iteration time (iteration.time) as
shown below.

> MIMtest <- EM.MIM(D.matrix = D.matrix, cp.matrix = cp.matrix, y = y, console = FALSE)
> names(MIMtest)
[1] "QTL" "E.vector" "beta" "variance" "PI.matrix" "log.likelihood" "LRT" "R2"
[9] "y.hat" "yu.hat" "iteration.number" "model"

> MIMtest$E.vector
a1 a2 a3 a1:a3

-9.61 10.29 6.35 1.66

> c(MIMtest$log.likelihood, MIMtest$LRT, MIMtest$R2)
[1] -772.192 145.114 0.411

The log likelihood of the MIM model fitting the three QTL with epistasis is approximately -772.
The estimated QTL effects are approximately -9.61, 10.29 and 6.35 (true values being -10, 12, and
8), respectively, and the estimated epistatic effect is approximately 1.66. The estimated heritability
(R2) is 0.411, while the true heritability is 0.50. The above MIM-related functions can also perform
the REG IM model (multiple QTL version) by setting the argument method=”REG”. Besides using the
original marker and trait data, note especially that all the MIM-related functions can utilize the results
from the analysis of IM or MIM functions, such as the IM.search(), MIM.search(), and MIM.points()
functions, as input to conduct the analysis. Also, the marker and trait data and the detected QTL
information in the previous analysis can be used in the subsequent analysis. Below are the codes of
using the results from the IM analysis (IMtest) to conduct the EM.MIM() function..

> MIMtest_ <- EM.MIM(D.matrix = D.matrix, IMresult = IMtest, console = FALSE)
> MIMtest_$E.vector

a1 a2 a3 a1:a3
-9.61 10.29 6.35 1.66

The EM.MIMv() function can provide the asymptotic variance-covariance matrix of the QTL esti-
mates. The inputs in the EM.MIMv() function include: QTL information about the QTL effects and
positions (QTL); marker information (marker); genotypes (geno); genetic design matrix (D.matrix);
conditional probability matrix (cp.matrix); phenotypic values (y). If the argument cp.matrix is set to
NULL, the conditional probability matrix is constructed from the input QTL information and marker
information. If the estimated QTL positions coincide with markers, the asymptotic variance-covariance
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matrix is not available. Below are the arguments of the EM.MIMv() function using the marker and trait
data to produce the variance-covariance matrix for the MIM model fitting the three detected QTLs at
[1,14], [1,77], and [2,53].

> MIMv <- EM.MIMv(dQTL, marker, geno, D.matrix, cp.matrix = NULL, y, console = FALSE)
> # MIMv <- EM.MIMv(D.matrix = D.matrix, IMresult = IMtest, console = FALSE)
> names(MIMv)
[1] "E.vector" "beta" "variance" "PI.matrix" "log.likelihood" "LRT" "R2" "y.hat"
[9] "iteration.number" "avc.matrix" "EMvar"

The avc.matrix is the asymptotic variance-covariance matrix, and the EMvar contains the asymptotic
variances of the estimates. They are listed below.

> round(MIMv$avc.matrix, 3)
QTL1 QTL2 QTL3 a1 a2 a3 a1:a3 variance X1

QTL1 0.015 0.017 0.013 -0.003 0.000 0.014 0.076 -0.073 -0.003
QTL2 0.017 0.004 -0.006 -0.023 0.021 -0.003 0.041 -0.191 0.002
QTL3 0.013 -0.006 0.065 -0.034 0.035 0.036 0.134 -0.688 0.009
a1 -0.003 -0.023 -0.034 1.417 -0.354 -0.091 0.038 1.775 0.006
a2 0.000 0.021 0.035 -0.354 1.585 -0.039 0.154 -2.462 -0.096
a3 0.014 -0.003 0.036 -0.091 -0.039 1.463 0.257 -1.185 -0.034
a1:a3 0.076 0.041 0.134 0.038 0.154 0.257 3.724 -2.787 -0.096
variance -0.073 -0.191 -0.688 1.775 -2.462 -1.185 -2.787 179.411 0.030
X1 -0.003 0.002 0.009 0.006 -0.096 -0.034 -0.096 0.030 0.650

> round(MIMv$EMvar, 3)
QTL1 QTL2 QTL3 a1 a2 a3 a1:a3 variance X1
0.015 0.004 0.065 1.417 1.585 1.463 3.724 179.411 0.650

The asymptotic variances of the estimated QTL positions and effects are 0.015, 0.004, 0.065, 1.417, 1.585,
1.463 and 3.724, respectively. The asymptotic variances of the estimated mean and residual variance
are 0.650 and 179.411, respectively.

The MIM.search() function is devised to fit the detected QTLs into the model to search the
genome for other possible QTL. The arguments in the MIM.search() function include the detected
QTL (denoted by dQTL2 in this example), marker (for marker information), geno (for genotypes), y (for
phenotypes), type (for population type), ng (for the generation number), D.matrix (for the genetic
design matrix), speed (for the walking speed in cM), QTLdist (for the minimum distance between
detected QTLs). The outputs of the MIM.search() function include information about the estimates of
all search positions (effect), the best QTL positions with the largest log likelihood (QTL.best), and the
estimated QTL effects at the best QTL positions (effect.best). For demonstration purposes, assume
that the two detected QTLs located at [1,14] and [1,77] are fitted into the MIM model to search for the
next (third) QTL considering the additive by additive effect (the design matrix will be the same as that
in the above EM.MIM() function). Below are the commands of the MIM.search() function to conduct
the search for the third QTL given the two detected QTLs:

> dQTL2 <- cbind(c(1, 1), c(14, 77))
> MIMs <- MIM.search(dQTL2, marker, geno, y, type = "RI", ng = 2, D.matrix = D.matrix,
speed = 1, QTLdist = 15, console = FALSE)

> names(MIMs)
[1] "effect" "QTL.best" "effect.best" "model" "inputdata"

> MIMs$QTL.best
chromosome position(cM)

QTL 1 1 14
QTL 2 1 77
QTL new 2 54

> MIMs$effect.best
a1 a2 a3 a1:a3 LRT log.likelihood R2

-9.619 10.302 6.385 1.806 145.876 -772.129 0.412

The third QTL is detected at the position [2,54] with an estimated effect of approximately 6.385. The
log likelihood of the MIM model is about -772.129. The LRT statistic for testing the significance of the
effects jointly is about 145.876.

Another function related to the MIM analysis is the MIM.points() function, which is used to
fine tune the estimation of QTL parameters by multidimensional search around the detected QTLs.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 13

The fine-tuning ranges around the detected QTLs are defined using the scope argument, while the
other arguments are the same as those in the MIM.search() function. Below is the command of the
MIM.search() function for performing a three-dimensional search on the 10-cM range on both sides of
the three QTL at [1,14], [1,77] and [2,54] (with additive by additive effect).

> MIMp <- MIM.points(dQTL, marker, geno, y, type = "RI", ng = 2, D.matrix = D.matrix,
speed = 2, scope = 10, console = FALSE)

> # MIMp <- MIM.points(D.matrix = D.matrix, speed = 2, scope = 10, IMresult = IMtest,
console = FALSE)

> names(MIMp)
[1] "effect" "QTL.best" "effect.best" "model" "inputdata"

> MIMp$QTL.best
chromosome position(cM)

[1,] 1 24
[2,] 1 75
[3,] 2 53

> MIMp$effect.best
a1 a2 a3 a1:a3 LRT log.likelihood R2

-10.846 11.994 6.503 3.725 181.130 -765.371 0.464

The results show that the largest model log likelihood becomes -765.371, and the estimated heritability
is 0.464. After fine-tuning, the detected positions are closer to the true positions [1,23], [1,77] and [2,55],
compared to the estimated positions [1,14], [1,77] and [2,53] before fine-tuning. With these estimates,
other composite genetic parameters such as heritability and variance components of a quantitative trait
can be estimated. Additionally, the response to selection can be predicted based on these estimates.

3.3 The yeast dataset example

The yeast dataset (Brem et al., 2005) consists of 112 backcross individuals with 5740 traits and 1072
markers. The raw data are reprocessed into a new dataset called ‘yeast.process‘, which can be
downloaded from GitHub using the following command:

> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.process.RDATA"))

The yeast.process dataset comprises three lists: the list of marker genotypes (yeast.process$geno)
that contains the marker genotypes of the 112 individuals; the list of trait values (yeast.process$pheno)
that contains the trait values of the 112 individuals; the list of marker information (yeast.process$marker)
that includes the marker map (distances) of the 1072 markers on the 16 chromosomes.

> geno <- yeast.process$geno
> marker <- yeast.process$marker
> pheno <- yeast.process$pheno

3.3.1 Selective genotyping data

For the demonstration of analyzing selective genotyping data, we selected the 3590th trait from the
dataset and intentionally deleted the marker genotypes of the individuals with medium trait values to
produce selective genotyping data for QTL mapping analysis. Specifically, one half of the individuals
with extreme trait values (comprising one quarter each from the upper and lower extremes) are
chosen to keep their marker genotypes and trait values, and the marker genotypes of the remaining
individuals are deleted and ignored in the analysis. Below are the codes for generating the selective
genotyping dataset.

> y0 <- pheno[, 3590]
> y <- y0[y0>quantile(y0)[4] | y0<quantile(y0)[2]]
> yu <- y0[y0 >= quantile(y0)[2] & y0 <= quantile(y0)[4]]
> geno.s <- geno[y0 > quantile(y0)[4] | y0 < quantile(y0)[2],]

The vector y contains the trait values of the individuals with marker genotypes (the upper and
lower 25% individuals), and the geno.s argument consists of their marker genotypes. The vector yu
contains the trait values of individuals without marker genotypes. The IM.search() function can
also perform several selective genotyping QTL mapping methods, which encompass the Lee et al.
model (sele.g="f"), the truncated model (sele.g="t"), and the population frequency-based model
(sele.g="p"), to analyze the selective genotyping dataset (see Lee et al. 2014 for details). If sele.g="n",
the function is used to analyze the complete genotyping data.
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Figure 3: The profiles of the LRT statistics and estimated effects along the genome by using the
IM.search2() function to analyze the selective genotyping data of the 3590th trait (part a), and using
the IM.search() function to analyze the complete genotyping data (part b). The red line indicates the
LRT threshold obtained by using Gaussian process for assessing the significance of QTL detection.

3.3.2 Selective genotyping IM and MIM analysis

The followings are the codes of the IM.search() function to analyze the selective genotyping data of
the 3590th trait. The random number seed 8000 is used to set up the Gaussian process to compute
threshold values for assessing the significance of QTLs.

> library(QTLEMM)
> set.seed(8000)
> IMtest2 <- IM.search(marker, geno.s, y, yu, sele.g = "f", type = "BC", ng = 1,
plot.all = TRUE, plot.chr = FALSE, console = FALSE)

> IMtest2$detect.QTL
chr cM a1 LRT R2

626 3 53 0.893 22.0 0.1128
1579 5 112 0.753 16.0 0.0749
4523 13 22 -0.882 21.7 0.1048
> IMtest2$LRT.threshold
95%
15.4

Figure 3(a) presents the profiles of the LRT statistics and estimated effects along the genome. It
shows that three QTL are detected at [3,53], [5,112] and [13,22], respectively. The LRT threshold value
obtained by using Gaussian process (permutation test) is 15.4 (19.34). For comparison, we use the
IM.search() function to conduct complete genotyping analysis for the 3590th trait.

> IMcon <- IM.search(marker, geno, y0, type = "BC", ng = 1, LRT.thre = 15.4,
plot.all = TRUE, plot.chr = FALSE, console = FALSE)

> IMcon$detect.QTL
chr cM a1 LRT R2

624 3 53 0.904 29.0 0.210
1580 5 117 0.877 25.0 0.171
4511 13 22 -0.945 33.1 0.231
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The profiles of the LRT statistics and estimated effects along the genomes are presented in Figure 3(b).
It shows that three QTL are detected at [3,53], [5,115] and [13,22], respectively. Both the selective and
complete genotyping IM analyses produce similar LRT statistic profiles and estimates of positions and
effects. For each detected QTL, the complete genotyping data analysis produces larger LRT statistics
and R2’s as compared to the selective genotyping analysis.

Using the IM.search() function, the estimates of QTL effects and positions, model likelihoods and
model R2 values were obtained individually. Certainly, we would like to further fit these detected
QTLs simultaneously into a multiple-QTL model (the MIM Model). This allows the QTLs to be jointly
fitted and controlled in the model to explain more genetic variation of the quantitative traits and obtain
more precise estimates. Below are the commands of the EM.MIM() function to perform the selective
genotyping MIM model analysis that considers the three detected QTLs and their all possible epistasis.

> D.matrix <- D.make(3, type = "BC", aa = TRUE)
> MIMtest2 <- EM.MIM(D.matrix = D.matrix, IMresult = IMtest2, console = FALSE)
> MIMtest2$E.vector

a1 a2 a3 a1:a2 a1:a3 a2:a3
0.818 0.744 -0.954 -0.641 0.371 -0.423

> c(MIMtest2$log.likelihood, MIMtest2$LRT, MIMtest2$R2)
[1] -115.253 79.117 0.512

The model R2 and likelihood are 0.512 and -115.41, respectively. The estimated marginal and epistatic
QTL effects are 0.818, 0.744, -0.954, -0.641, 0.371 and -0.423, respectively. The MIM.points() function
can be further used to perform a multi-dimensional search around the 5-cM regions of the detected
QTL positions (at [3,53], [5,112] and [13,22]) to fine-tune the QTL estimates (using the argument of
scope=5). Below are the codes of the MIM.points() function to perform the multi-dimensional search
and the fine-tuning results.

> MIMp <- MIM.points(D.matrix = D.matrix, scope = 5, IMresult = IMtest2, console = FALSE)
> MIMp$QTL.best

chromosome position(cM)
[1,] 3 58
[2,] 5 111
[3,] 13 21

> MIMp$effect.best
a1 a2 a3 a1:a2 a1:a3 a2:a3 LRT log.likelihood R2

0.678 0.758 -0.964 -0.866 0.673 -0.499 82.214 -113.705 0.524

The model with the largest log likelihood (-113.705) occurs at positions [3,58], [5,111] and [13,21], and
the estimated effects are 0.678, 0.758, -0.964, -0.866, 0.673, -0.499, respectively. The model R2 (estimated
heritability) improves from 0.512 to 0.524.

4 Using QTLEMM for QTL hotspot detection

The analysis of QTL hotspot detection has been a pivotal step towards unraveling the genetic architec-
tures of quantitative traits in the study of genes, genomes and genetics (Breitling et al., 2008; Fu et al.,
2009; Neto et al., 2012; Wang et al., 2014; Yang et al., 2019; Wu et al., 2021). The genetical genomics
experiments and public QTL databases are two feasible sources to provide data with many QTLs for
the detection of QTL hotspots. The statistical framework of QTL hotspot detection proposed by Yang
et al. (2019) and Wu et al. (2021) is capable of accommodating both types of data. The framework
addresses various challenges, including handling the correlation structure among traits, identifying
different types of hotspots, and ensuring computational efficiency, thereby making it practical for QTL
hotspot detection. The QTLEMM package offers the statistical framework by Yang et al. and Wu et al.
for the detection of QTL hotspots. The functions for detecting QTL hotspots using the framework
are summarized in Table 4. Below, we present the analyses of two real examples, the yeast genetic
genomics dataset and the GRAMENE rice database, as demonstration of using these functions for
detecting QTL hotspots.

4.1 The yeast genetic genomics dataset example

There are 5740 molecular traits in the yeast dataset (Brem et al., 2005). The QTL mapping procedure
employed for the 3590th trait using the IM.search() function can be applied to analyze the remaining
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Table 4: List of the functions for QTL hotspot detection in the QTLEMM package

Function Description

LOD.QTLdetect() Detect QTL by LOD matrix.
EQF.permu() EQF matrix cluster permutation process for QTL hotspot detection.
EQF.plot() Depict the EQF plot by the result of permutation process.
Qhot() This function generates both numerical and graphical summaries of

the QTL hotspot detection in the genomes.
Qhot.EQF() Convert the QTL flanking marker data to EQF matrix and carry out

the EQF matrix cluster permutation process.

Table 5: The format of LOD matrix

bin1 bin2 bin3 bin4 bin5 ... binn

trait1 0.047 0.116 0.209 0.313 0.342 ... 0.358
trait2 0.095 0.176 0.274 0.376 0.301 ... 0.342
trait3 0.798 0.67 0.533 0.394 0.342 ... 0.284
trait4 0.363 0.321 0.272 0.219 0.192 ... 0.149
trait5 0.017 0.01 0.005 0.002 0.001 ... 0

... ... ... ... ... ... ... ...
traitt 0.683 0.593 0.471 0.336 0.304 ... 0.271

5739 traits, obtaining their LRT statistics at all positions along the genome. These LRT statistics can
then be converted into LOD scores using the formula LOD = LRT/4.6. Subsequently, the LOD scores
are organized into a LOD matrix for QTL hotspot detection, following the methods outlined by Yang
et al. (2019) and Wu et al. (2021). The LOD.QTLdetect() function is constructed to detect QTL hotspots.
It requires two input datasets: the LOD matrix and the bin information on the chromosomes. The
LOD matrix is a t × p matrix, where t and p are the numbers of traits and numbers of bins on the
chromosomes, respectively. The LOD matrix contains the LOD scores of all bins for all traits (refer
to Table 5). The bin information is an n × 2 matrix, where n is the number of chromosomes, and it
contains the information about the bin number on each chromosome. The first column denotes the
chromosomes, and the second column denotes the numbers of bins on the chromosomes (refer to
Table 6).

The LOD matrix of the yeast data can be downloaded from GitHub using the commands be-
low. Users can combine the four files (yeast.LOD.1.RDATA, yeast.LOD.2.RDATA, yeast.LOD.3.RDATA,
yeast.LOD.4.RDATA) to obtain the complete LOD matrix.

> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.1.RDATA"))
> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.2.RDATA"))
> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.3.RDATA"))
> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.4.RDATA"))
> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.bin.RDATA"))
> LOD <- rbind(yeast.LOD.1, yeast.LOD.2, yeast.LOD.3, yeast.LOD.4)
> bin <- yeast.LOD.bin

Once the LOD matrix is available, the LOD.QTLdetect() function can be applied to detect QTL hotspots.
The function’s arguments include LOD for the LOD matrix (refer to Table 5), bin for the numbers of

Table 6: The format example of bin information

chromosome number_of_bin

1 256
2 324
3 160
4 723
... ...

15 463
16 513
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bins on each chromosome (refer to Table 6), thre for the threshold value (in terms of LOD) of QTL
detection, and QTLdist for specifying the minimum distance (cM) between the detected QTL. The
numerical results of this function will be output to the LOD.QTLdetect.result file.

> library(QTLEMM)
> set.seed(8000)
> LOD.QTLdetect.result <- LOD.QTLdetect(LOD, bin, thre = 3, QTLdist = 20, console = FALSE)
> names(LOD.QTLdetect.result)
[1] "detect.QTL.number" "QTL.matrix" "EQF.matrix" "linkage.QTL.number"
[5] "LOD.threshold" "bin"

The LOD.QTLdetect.result file is a data list comprising several components: detect.QTL.number
contains the number of detected QTL of each trait; QTL.matrix holds the QTL positions, where
elements marked as 1 represent the QTL positions, elements marked as 0 represent bins with LOD
scores under the LOD threshold, and other positions are designated as NA; EQF.matrix contains the
EQF value of each bin; linkage.QTL.number indicates the number of linked QTL among all detected
QTLs; LOD.threshold and bin remain the same as those in the input data. With these information, the
EQF.permu() function embedding the permutation analysis (with trait grouping; Wu et al., 2021) can
be applied to detect QTL hotspots. The arguments in the EQF.permu() function involve inputting the
output data from LOD.QTLdetect(), specifying the permutation time (ptime), and using the genome-
wide error rate (GWER) of a given level α to carry out the permutation analysis. Additionally, the
Q=TRUE argument is to perform permutation analysis without trait grouping.

> EQF.permu.result <- EQF.permu(LOD.QTLdetect.result, ptime = 1000, alpha = 0.05,
Q = TRUE, console = FALSE)

> names(EQF.permu.result)
[1] "EQF.matrix" "bin" "LOD.threshold" "cluster.number" "cluster.id" "cluster.matrix"
[7] "permu.matrix.cluster" "permu.matrix.Q" "EQF.threshold"

The output of the EQF.permu() function includes several components. The EQF.matrix, bin,
and LOD.threshold lists represent the EQF matrix, bin information matrix, and the LOD threshold
respectively, which are the same as those in the input data. The cluster.number contains the number
of QTLs in each trait group. The cluster.id contains the serial number of traits in each trait group.
The cluster.matrix includes the reduced EQF matrix after trait grouping. The permu.matrix.cluster
contains the result of permutation with trait grouping, sorted by order. Similarly, the permu.matrix.Q
contains the result of the permutation without trait grouping, also sorted by order. The EQF.threshold
represents the EQF threshold calculated from the permutation analysis. Moreover, the EQF.plot()
function is designed to plot the figure of the EQF architecture of the genome (see Figure 4) using the
output of the EQF.permu() function. Below are the codes.

> EQF.plot(EQF.permu.result, plot.all = TRUE, plot.chr = FALSE)

The command of plot.all = TRUE is to draw the EQF architecture of the entire genome (16 chromo-
somes) in a single figure (Figure 4). If plot.chr = TRUE, the EQF architectures of genome is drawn
separately by chromosomes in different figures.

4.2 The GRAMENE rice database example

The Qhot() function manages summarized QTL data collected from public QTL databases to detect
QTL hotspots. Below, we demonstrate the use of the Qhot() function to detect QTL hotspots using the
public GRAMENE rice database. First the QTL data in the GRAMENE rice database can be retrieved
from GitHub using the following command:

> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/gramene.chr.RDATA"))
> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/gramene.QTL.RDATA"))
> head(gramene.chr)
CHR Center.cM. Length.cM.

1 1 74.2 184
2 2 55.5 161
3 3 84.3 166
4 4 19.7 133
5 5 51.8 121
6 6 66.8 127

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 18

Figure 4: The 3-LOD EQF architecture of the yeast 16 chromosomes and the hotspots detected under
different EQF thresholds at GWER of 5% by using the EQF.plot() function with the output of the
EQF.permu() function. The EQF architecture are constructed by the uniform method with bin size of
0.5 cM.

Figure 5: The plot of EQF architecture of the 1st chromosome and breakdown of QTL composition
at bin [7,8) in the PDF file produced by using the Qhot() function with save.pdf=TRUE. The x-axis
denotes the 1st chromosome, the y-axis denotes the EQF values. The black triangle denotes the position
of centromere. The blue (red) dots denote the QTL hotspots detected by the Yang et al. (2019) method
(the Q method). The 9 different colored symbols denote the QTLs responsible for the 9 different trait
categories (see Yang et al., 2019). The dotted lines denote the lengths of the marker intervals flanking
the QTLs (QTL intervals). In total, 66 QTLs contribute probabilities to the EQF value of 27.31 at bin
[7,8). The numbers of contributive QTLs of the 9 different trait categories are 22, 5, 14, 3, 11, 4, 0, 7, and
0, respectively.
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Figure 6: The EQF architectures of the rice 12 chromosomes and the hotspots detected under different
EQF thresholds at GWER of 5% by using the EQF.plot() function with the output of the Qhot.EQF()
function. The EQF architecture are constructed by the uniform method with bin size of 0.5 cM.

> head(gramene.QTL) # 9 trait categories in the second column
X Trait chr L R

1 1 Biochemical 1 54.1 54.1
2 2 Vigor 1 147.4 147.4
3 3 Vigor 1 147.4 147.4
4 4 Vigor 1 147.4 147.4
5 5 Vigor 1 147.4 158.6
6 6 Vigor 1 54.1 54.1

The gramene.chr is a data frame containing the information about the chromosomes, including their
numbers, midpoint positions (in cM), and lengths. The gramene.QTL is a data frame for the information
about QTLs, including their serial numbers, trait names, the chromosomes on which they are located,
and positions of their flanking markers (in cM). Then the Qhot() function can utilize the information
about chromosomes and QTLs to detect the QTL hotspots and output the analysis results. Below are
the codes.

> library(QTLEMM)
> Qhot.result <- Qhot(gramene.QTL, gramene.chr, save.pdf = TRUE)
> names(Qhot.result)
[1] "EQF" "P.threshold" "Q.threshold" "nHot"

The analysis results include the EQF values at every bin of chromosomes (EQF), EQF thresholds
obtained by the Yang et al. method (P.threshold), EQF thresholds obtained using the Q method
(Q.threshold), and the numbers of detected hotspots in each chromosome by the Yang et al. method
and Q method (nHot`). The save.pdf=T command is to generate a PDF file that contains the plots
of QTL composition at every bin. Figure 5 shows the plot of QTL composition at bin [7,8) of the
first chromosome. It outlines the EQF architecture of the 1st chromosome, the QTL intervals, and the
composition of QTLs responsible for different traits in the hotspot at bin [7,8). The Qhot.EQF() function
is designed to draw the EQF architecture of the genome. The inputs of the Qhot.EQF() function include
the information about chromosomes, QTLs and traits. Below are the codes of the Qhot.EQF() and
EQF.plot() functions to draw the EQF architecture of the rice genome.

> load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/gramene.trait.RDATA"))
> head(gramene.trait) # 236 traits in the second column
X Trait chr L R

1 1 leaf nitrogen content 1 54.1 54.1
2 2 root dry weight 1 147.4 147.4
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3 3 root dry weight 1 147.4 147.4
4 4 tiller number 1 147.4 147.4
5 5 tiller number 1 147.4 158.6
6 6 root number 1 54.1 54.1

> set.seed(8000)
> Qhot.EQF.result <- Qhot.EQF(gramene.trait, gramene.chr[,3], bin.size = 0.5,
permu = TRUE, ptime = 1000, alpha = 0.05, Q = TRUE, console = FALSE)

> names(Qhot.EQF.result)
[1] "EQF.matrix" "bin" "bin.size" "EQF.trait" "EQF.detect" "EQF.nondetect"
[7] "cluster.matrix" "permu.matrix.cluster" "permu.matrix.Q" "EQF.threshold"

> EQF.plot(Qhot.EQF.result, plot.all = TRUE, plot.chr = FALSE)

The EQF.plot() function uses the output of the Qhot.EQF() function to draw the figure of the EQF
architecture (see Figure 6).

5 Conclusion and discussion

In this paper we introduce the R package called QTLEMM for the analysis of QTL mapping and QTL
hotspot detection, and attempt to provide a comprehensive overview of the functions in the package
by analyzing the examples of both simulated and real data sets. The package offers several novel
features and advantages:

• QTLEMM is designed to accommodate a wide range of experimental populations, including
backcross, F2, AI Ft, RI Ft, IRI and immortalized F2 populations. This versatility enables
comprehensive QTL mapping analysis across different genetic backgrounds and breeding
designs.

• Users can employ single-QTL or multiple-QTL models to estimate QTL parameters. It can
accommodate a host of statistical models to be fitted and compared for QTL detection. The
thresholds for claiming the QTL detection can be also determined in the backcross, F2 and more
advanced AI Ft and RI Ft populations.

• QTLEMM is unique in providing the asymptotic variance-covariance matrix for the estimates
of QTL parameters.

• QTLEMM is unique in being able to handle both complete genotyping and selective genotyping
data from diverse experimental populations in QTL mapping analysis.

• Results from QTL mapping and hotspot detection analyses are presented through numerical
and graphical outputs, facilitating interpretation and visualization of findings.

The process of QTL mapping and hotspot detection usually involves the analysis of a large number of
positions along the genomes. At each position, statistical models are applied to the estimation and
testing for making decision, causing the process often typically time-consuming and computationally
intensive in the analysis. We attempt to reduce the computational cost and speed up the analysis by
eliminating unnecessary loops in writing the functions in this package. The QTLEMM package offers
mature, effective, and commonly used statistical methods for QTL mapping and hotspot detection in
the analysis of genetic architecture of quantitative traits. We envision the QTLEMM package will be
valuable for finding more significant results in exploring the networks among genes, QTL hotspots
and quantitative traits in broad areas of biological studies.

6 Availability

• The QTLEMM package is freely available from the Comprehensive R Archive Network at
https://cran.r-project.org/web/packages/QTLEMM/index.html.

• The development website is available at https://github.com/py-chung/QTLEMM.
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