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Abstract Statistical methods for QTL mapping and QTL hotspot detection have been well developed
and applied to the exploration of the genetic architecture of quantitative traits across various biological
studies. In this paper, we introduce QTLEMM, an R package designed to implement commonly
used statistical methods for QTL mapping and QTL hotspot detection. The QTLEMM package
offers statistical functions for simulating or analyzing data, computing significance thresholds, and
visualizing results of QTL mapping and QTL hotspot detection. For QTL mapping, the QTLEMM
package offers a variety of functions to perform tasks such as estimating QTL parameters using
single-QTL or multiple-QTL methods. These methods encompass linear regression, permutation
tests, normal mixture models, and truncated normal mixture models. The package enables the fitting
and comparison of numerous statistical models during the QTL mapping process, and also employs
Gaussian stochastic processes to compute significance thresholds for QTL detection in genetic linkage
maps across diverse experimental populations, including BC, F2, RI, AI, IRI, and IF2 populations.
Moreover, the QTLEMM package accommodates both complete genotyping and selective genotyping
data from various experimental designs for QTL detection. For QTL hotspot detection, the QTLEMM
package utilizes a permutation algorithm that randomly shifts elements in the QTL matrix with trait
grouping to detect QTL hotspots. By trait grouping, it can take trait correlations into account to
mitigate the underestimation of hotspot thresholds in the analysis. Moreover, this approach can deal
with both individual-level and summarized data, and also identify various types of hotspots at a very
low computational cost during the detection process. Our paper offers a comprehensive overview
of QTLEMM’s primary functions, supported by numerical analyses and graphical outputs. This
provides researchers with statistical tools of QTL mapping and hotspot detection to facilitate the
discovery of more significant results in the analysis of networks among genes, QTL hotspots and
quantitative traits in broad areas of biological studies.

1 Introduction

Many biologically and economically important traits in organisms are quantitative rather than qualita-
tive. These include traditional traits (such as yields and quality in rice, weight and body fat percentage
in animals, and diabetes and hypertension in humans) and molecular traits (such as gene expression
and protein levels). Quantitative traits typically exhibit continuous variation in a population, so
there is no easy way to categorize them. They are likely to be affected by numerous genes each with
modest effects and easily affected by environmental factors. Consequently, traditional methods such
as the Mendelian segregation ratio analysis, mean and variance analyses, covariance studies, and the
examination of familial correlations are very difficult to detect the individual genes contributing to
these traits. The genes responsible for quantitative traits are referred to as quantitative trait loci (QTL).
For a long time, researchers have tried to obtain individual QTL information for exploring the genetic
mechanisms underlying quantitative traits and further to manipulate them for improving the traits.
With the availability of fine-scale genetic marker data along the genomes for various organisms, it has
become possible to systematically map for and detect individual QTL (QTL mapping) by using more
sophisticated statistical methods.

Statistical methods for QTL mapping have been well established (Lander and Botstein 1989; Haley
and Knott 1992; Zeng 1993, 1994; Jansen 1993; Xu and Atchley 1995; Kao, Zeng, and Teasdale 1999;
Kao 2000, 2004, 2006; Sen and Churchill 2001; Broman et al. 2003; Kao and Zeng 2002; Kao and Zeng
2009, 2010; Kao and Ho 2012; Lee, Ho, and Kao 2014). These methods analyze the marker and trait
data from well-designed experimental populations to estimate the QTL parameters, including the
numbers, positions, various gene effects (additive, dominance, and interactive), variance components,
heritabilities, etc. The experimental populations include the most commonly used populations, such
as the backcross and F2 populations, and other more advanced populations, such as recombinant
inbred (RI) populations, advanced intercrossed (AI) populations, intermated recombinant inbred
(IRI) populations, and immortalized F2 (IF2) populations. The QTL mapping data typically comprise
two parts: a set of phenotypic traits of interest and a set of genetic marker genotypes aligned with
a fine-scale genetic marker map, obtained from the individuals within an experimental population.
The statistical methods are applied to analyze the QTL mapping data and tackle the several central
issues, including the estimation of QTL parameters, determination of threshold values and selective
genotyping, in the QTL mapping studies. These study has provided important insights into the genetic
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mechanisms governing quantitative traits in various organisms, such as rice, maize, alfalfa, Atlantic
salmon, trout, etc. (Vaughan, Balazs, and Heslop-Harrison 2007; Chen et al. 2021; Kumar et al. 2024;
Meng et al. 2024; Mackay and Anholt 2024).

QTL hotspots, characterized by genomic locations enriched in QTL, represent a common and
notable feature when collecting many QTL for various traits across various biological studies (Chardon
et al. 2004; West et al. 2007; Breitling et al. 2008; C. Wu et al. 2008; Yang, Wu, and Kao 2019; Meng
et al. 2024). These hotspots are significant and appealing due to their high informativeness and
potential harboring for genes related to quantitative traits. Presently, both the genetical genomics
experiments and public QTL databases can provide the data sets with numerous QTL for hotspot
analysis. The genetical genomics experiment provides individual-level data, which includes original
marker genotypes and many molecular traits. This allow to detect thousands of QTL in a single
experiment. On the other hand, public databases such as GRAMENE, Q-TARO, Rice TOGO browser,
PeanutBase, and MaizeGDB curate thousands of summarized QTL data from various independent
QTL experiments that contain detected QTL, trait names, and reference sources without any individual-
level data. Statistical methods using either type of data for detecting QTL hotspots have been proposed,
and they are mainly based on the permutation test approach (C. Wu et al. 2008; Li, Lu, and Cui 2010;
Breitling et al. 2008; Neto et al. 2012; Yang, Wu, and Kao 2019; P.-Y. Wu, Yang, and Kao 2021). Among
these methods, the statistical framework outlined by Yang, Wu, and Kao (2019) and P.-Y. Wu, Yang,
and Kao (2021) has the notable features of being able to handle both types of the data and save
computational cost in the detection of QTL hotspots.

We provide a comprehensive overview of the primary R functions in the QTLEMM package.
These functions can implement some commonly used and popular statistical methods of QTL mapping
and QTL hotspot detection to analyze the data from various experimental populations for exploring
the genetic architecture of quantitative traits. The package also offers functions that can simulate QTL
mapping data for the purpose of simulation study. Results from analyses are presented through nu-
merical and graphical outputs, facilitating interpretation and visualization of findings. The QTLEMM
package provides researchers with statistical tools to explore the network among expressivity of genes,
QTL hotspots, and quantitative traits in genes, genomes, and genetics studies.

2 Methods and Models

Identifying individual QTL (QTL mapping) is a crucial endeavor aimed at understanding the genetic
basis and architecture of quantitative traits, thereby facilitating the trait manipulation and improve-
ment. Since the specific locations of QTLs are unknown prior to mapping and they could potentially
be located anywhere along the genome, the primary objectives of statistical methods are centered
around searching for individual QTLs and subsequently fitting them all into statistical model for the
estimation of QTL parameters.

Detection of QTL

Lander and Botstein (1989) were the first to propose a QTL mapping procedure known as interval
mapping (IM), which systematically searches the entire genome for QTLs. The IM approach utilizes
one marker interval (one flanking marker pair) at a time to establish a putative QTL at a specific
position. It models the relationship between a quantitative trait and the putative QTL at that position,
subsequently testing for the presence of the QTL by investigating its effects. For a putative QTL,
denoted as Q, at a specific fixed position along the genome, the IM model for an individual i with a
phenotypic trait value yi can be expressed as follows:

yi = Gi + εi (1)

where Gi represents the genotypic value contributed by the QTL genotype, and εi is a residual
assumed to follow a normal distribution with mean 0 and variance σ2. For the individuals in a
population derived from two inbred lines, such as the F2 population, the genotypes of their Q can
be one of the three possible genotypes, P1 homozygote (QQ), heterozygote (Qq) and P2 homozygote
(qq). Various genetic models have been proposed to characterize the relationship between genotypic
values and gene effects (Cockerham 1954; Van Der Veen 1959; Weir and Cockerham 1977; Kao and
Zeng 2002). According to Cockerham’s model (Kao and Zeng 2002), the relationship between the three
genotypic values and the QTL effects can be modeled as GQQ = µ + a − d/2, GQq = µ + d/2 and
Gqq = µ − a − d/2, respectively, where a and d represent the additive and dominance effects of the
QTL, respectively. We then can construct an equivalent model based on equation (1) for an individual
i as follows:
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yi = µ + axi + dzi + εi (2)

where (xi, zi) = (1,−1/2), (0, 1/2) or (−1,−1/2) if the QTL genotype of yi is QQ, Qq or qq.
Equation (2) builds the relationship between the genotypic values and QTL genotypes. If the putative
QTL is located at the marker, the IM model simplifies to a regression model. However, if the putative
QTL is positioned at x within the marker interval (M,N), the genotypes of the QTL are not directly
observable and must be inferred from its flanking markers M and N. In this scenario, the statistical
model of IM typically becomes a normal mixture model. Given data with n individuals, the likelihood
function of the IM model for θ = (µ, a, d, σ2) can be expressed as follows:

L(θ|Y, X) =
n

∏
i=1

[
3

∑
j=1

pij × f (yi|µj, σ2)] (3)

where f (yi|µj, σ2) represents a normal probability density function with mean µj and variance
σ2. The µj’s correspond to the genotypic values of the three different QTL genotypes (µ1 = GQQ,µ2 =
GQq,µ3 = Gqq), while pij’s denote the mixing proportions (conditional probabilities) of the three QTL
genotypes inferred from the two flanking markers (refer to Kao and Zeng 2009 for obtaining pij’s
in various experimental populations). By treating the normal mixture model as an incomplete-data
problem, the EM algorithm (Dempster, Laird, and Rubin 1977) can be readily implemented to obtain
the maximum likelihood estimates (MLE) of the parameters. Subsequently, a likelihood ratio test
(LRT) can be performed to test the null hypothesis of no QTL (H0 : a = 0 and d = 0) at the position
x. With a fine-scale genetic marker map throughout the genome, Interval Mapping (IM) can be
conducted at all positions covered by markers to produce a continuous LRT statistic profile along
chromosomes. By setting a predetermined LRT threshold, the position with the significantly maximum
LRT statistic in a chromosome region is considered the estimated QTL location. This method enables
the systematic search and identification of QTLs at the genome-wide level, thereby facilitating the
estimation of QTL parameters. However, since the search process for QTL needs to be performed
at every position of the genome, the iterative expectation-maximization (EM) algorithm can become
computationally expensive for QTL mapping (Haley and Knott 1992; Kao 2000). Haley and Knott
(1992) introduced regression interval mapping (REG IM) as an approximation to interval mapping
(IM), aimed at reducing computational costs. In REG IM, the quantitative trait value is regressed on
the conditional expected genotypic value, providing a computationally efficient alternative to full
interval mapping (Haley and Knott 1992), although the approximation may not be satisfactory in all
cases (Kao 2000; Sen and Churchill 2001).

The IM approach focuses on one putative QTL at a time within the model. However, this method
may introduce bias in the identification and estimation of QTLs when multiple QTLs are present in
the same linkage group (Lander and Botstein 1989; Haley and Knott 1992; Zeng 1994). To address this
issue, composite interval mapping (CIM), which combines interval mapping with multiple regression
analysis, was proposed (Jansen 1993; Zeng 1994). In CIM, the method involves using other markers
as covariates during the test for a putative QTL. This approach aims to mitigate the interference of
other QTLs and reduce residual variance, thereby improving the accuracy of the test. To further
enhance QTL mapping, Kao, Zeng, and Teasdale (1999) introduced the multiple interval mapping
(MIM) approach. This method aims to leverage multiple marker intervals concurrently to incorporate
several putative QTL into the model for QTL mapping. For instance, considering m putative QTL, Q1,
Q2,. . . , and Qm, located at given positions within m separate marker intervals, (M1,N1), (M2,N2),. . . ,
and (Mm,Nm), respectively, the MIM model fitted these m putative QTL can be expressed as follows:

yi = µ +
m

∑
j=1

(ajxij + djzij) + εi (4)

For m putative QTL in the model, there are 3m possible QTL genotypes. The likelihood function of
the MIM model for θ = (µ, a1, d1, a2, d2, ..., am, dm, σ2) becomes a 3m normal mixture model

L(θ|Y, X) =
n

∏
i=1

[
3m

∑
j=1

pij × f (yi|µj, σ2)] (5)

(replacing the number 3 by 3m in equation (3)), where pij’s are the conditional probabilities of
the 3m possible QTL genotypes given the flanking marker genotypes. The general formulas by Kao
and Zeng (1997), formulated based on the EM algorithm, can be used to estimate the parameters of
the m QTL. To avoid using the iterative EM algorithm, alternative approximate methods considering
multiple QTL in the model for QTL mapping include REG interval mapping (Haley and Knott 1992)
and multiple imputation by Sen and Churchill (2001). While the two approximate methods offer
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faster computational speeds, their differences compared to the MIM method in QTL analysis can
be significant in certain situations, as discussed by Kao (2000) and Sen and Churchill (2001), and
demonstrated through empirical examples. Subsequently, Kao (2004), Kao (2006) and Kao and Zeng
(2009) extended the MIM approach to various advanced populations for QTL mapping, considering
specific genome structures present in advanced populations. In addition, Lee, Ho, and Kao (2014)
further developed the MIM method for the selective genotyping design, a topic we discuss below. The
MIM approach indeed offers enhanced precision and power in QTL mapping. It enables the analysis
and estimation of epistasis between QTL, more accurate prediction of genotypic values of individuals,
and estimation of heritabilities of quantitative traits.

Determination of threshold values

In the interval mapping procedure, a series of null hypotheses, both correlated and uncorrelated, are
tested using likelihood ratio test (LRT) statistics across all genomic positions. Given the multiplicity of
tests, controlling genome-wide error rates is crucial when determining threshold values for claiming
significant QTL detection. It has been recognized that various factors, such as the number and size of
intervals, population genome structures, and marker density, are involved and should be considered
in determining the threshold value of QTL detection. To address this challenge, several analytical,
empirical, and numerical approaches have been proposed to obtain the threshold values. These include
methods like Bonferroni adjustment, Ornstein-Uhlenbeck process, numerical simulation, permutation
test, and Gaussian process. Each offers unique insights and advantages in obtaining threshold values
tailored to the specific characteristics of the QTL mapping study (Lander and Botstein 1989; Churchill
and Doerge 1994; Rebai, Goffinet, and Mangin 1994; Piepho 2001; Zou 2004; Chang et al. 2009; Guo
2011; Kao and Ho 2012). In practice, computational efficiency is a crucial consideration when selecting
an approach for obtaining threshold values in QTL mapping studies. While numerical methods like
permutation tests or numerical simulations may be computationally intensive, analytical methods
offer a more efficient alternative with lower computational costs. However, analytical methods often
rely on certain assumptions, such as normality, which may not always hold true in practice (Rebai,
Goffinet, and Mangin 1994; Piepho 2001; Kao and Ho 2012). The Gaussian process approaches by
Chang et al. (2009), Guo (2011) and Kao and Ho (2012) can stand out as particularly efficient, as we
found that it is approximately 7700 times faster than the permutation method in obtaining thresholds.
This significant improvement in computational speed makes the Gaussian process method a highly
attractive option as far as the computational efficiency is concerned in determining the threshold
values for QTL detection.

Chang et al. developed a score test for the detection of QTL in the backcross population and
showed that the asymptotic distribution of the score test statistics, denoted as u(xi) for i = 1, 2, ..., k, at
all the k sequential positions in the genome, follows a Gaussian stochastic process characterized by a
mean of zero and a well-structured variance-covariance matrix. Furthermore, as the squared score
statistic u2(x) is asymptotically equivalent to the LRT statistic (Cox and Hinkley 1979; Chang et al.
2009), the distribution of sup u2(x) along the genome under the null hypothesis can be used to assess
the threshold value of the LRT statistic in QTL mapping. Based upon this concept, Guo (2011) and Kao
and Ho (2012) extended Chang et al.’s methodology by deriving more general score test statistics and
Gaussian processes tailored for evaluating threshold values in various populations, including the F2
population and other advanced populations. These advancements provide researchers with statistical
tools to determine the significance thresholds for QTL mapping analyses in diverse experimental
populations.

In the scenario of the F2 population, each of the k positions is linked with two score test statistics:
one for the additive effect and the other for the dominance effect. Let U represent a vector whose
components are the score test statistics at the k genomic positions. Therefore, the vector U has length
of 2k. The asymptotic distribution of U follows a Gaussian stochastic process, denoted as U N(µ, Σ),
which is a multivariate normal distribution with a probability density function given by:

p(U; µ, Σ) =
1

(2π)
n
2 |Σ|

1
2

exp(−1
2
(U − µ)TΣ−1(U − µ)) (6)

Here µ = 0 represents the mean of the distribution, indicating that the score test statistics are cen-
tered around zero. The variance-covariance matrix Σ captures the variability and correlations among
the score test statistics across different genomic positions. The structure of Σ is intricately linked to the
population genome structure and is typically well-defined in experimental populations. The elements
of Σ are determined based on the genotypic distributions of one, two, three, and four genes within the
population. In backcross and F2 populations, whose genomes have the Markovian structure under
the Haldane map function (J. B. Haldane 1919), the genotypic distributions of three and four genes
can be derived from the genotypic frequencies of pairwise genes. However, in advanced populations,

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 5

the genomes no longer adhere to the Markovian property and are more complex. Consequently,
obtaining the genotypic distributions of two, three, and four genes directly becomes challenging in
such populations. Indeed, the transition equations proposed by J. Haldane and Waddington (1931),
Geiringer (1944), and Kao and Zeng (2010) provide valuable tools for deriving genotypic frequencies
of two, three, and four genes, facilitating the construction of the variance-covariance matrix. These
equations offer insights into the genotypic distribution of various experimental populations, enabling
a deeper understanding of variance-covariance structures between genes. The general frameworks of
the score test statistics and Gaussian processes introduced by Guo (2011) and Kao and Ho (2012) can
be used to obtain the threshold values of QTL mapping for genomes with different sizes and marker
densities in various experimental populations, such as backcross, F2, and more advanced populations.
Importantly, these methods have very low computational costs, making them practical for large-scale
analyses. In practice, when given a specific significance level and genome size, threshold values should
be adjusted to account for denser marker maps and more advanced populations. This adjustment
ensures that the statistical analysis appropriately controls for multiple testing and accounts for the
complexities inherent in different genetic backgrounds and experimental designs.

Selective genotyping

The cost of conducting QTL mapping experiments includes both phenotyping and genotyping ex-
penses. In situations where budget constraints are not a primary concern, researchers usually choose
complete genotyping, wherein all individuals in the sample undergo both genotyping and pheno-
typing procedures. However, despite recent reductions in genotyping costs, researchers frequently
encounter insufficient budgets that prevent them from fully covering the expenses of complete geno-
typing. In situations where budgets are insufficient, researchers may explore alternative cost-saving
approaches. Selective genotyping has been known as a cost-saving strategy to reduce genotyping
work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping
(Lebowitz, Soller, and Beckmann 1987; Lander and Botstein 1989; Xu and Vogl 2000; Lee, Ho, and
Kao 2014). This method involves selecting individuals from the high and low extremes of the trait
distribution for genotyping, while leaving the remaining individuals ungenotyped within the entire
sample. By focusing genotyping on individuals with extreme trait values, researchers can still capture
most of the genetic variation in the sample to maintain efficiency. Overall, selective genotyping allows
researchers to balance between budget constraints and mapping efficiency in QTL detection analysis.

Suppose that the sample consists of n individuals, out of which ns individuals with extreme
trait values (ns/2 each from the upper and lower extremes) are selected for marker genotyping. The
remaining nu = n − ns individuals are not genotyped. Statistical QTL mapping methods for analyzing
selective genotyping data can either consider all the n individuals (full data) or consider just the ns
genotyping individuals (genotyping data) in their models for QTL detection. If only the genotyping
data are utilized in the analysis, data of this sort are called centrally truncated data. Xu and Vogl
(2000) and Lee, Ho, and Kao (2014) introduced the truncated model within the mixture framework of
interval mapping procedure, presenting a truncated normal mixture model for QTL analysis. For ns
genotyped individuals, the likelihood function for θ in the m QTL model can be expressed as follows:

L(θ|Y, X) =
ns

∏
i=1

[
3m

∑
j=1

pij ×
f (yi|µj, σ2)

Uj
] (7)

where

Uj =
∫ TL

−∞
f (yi|µj, σ2)dyi +

∫ ∞

TR

f (yi|µj, σ2)dyi (8)

is the cumulative density with trait values greater than TR (right truncated point) and lower than
TL (left truncated point), such that P(yi > TR) = P(yi < TL) = ns/2n. Further details on the EM
algorithm for obtaining the Maximum Likelihood Estimates (MLE) of the parameters are provided in
Lee, Ho, and Kao (2014). If the full data are fitted into the statistical model for QTL analysis, the model
likelihood can be expressed as follows:

L(θ|Y, X) =
ns

∏
i=1

[
3m

∑
j=1

pij × f (yi|µj, σ2)]×
nu

∏
i=1

[
3m

∑
j=1

qj × f (yi|µj, σ2)] (9)

where the first term represents the likelihood for the ns genotyped individuals, while the second
term accounts for the nu ungenotyped individuals.

Note that pij’s are derived from the conditional probabilities of the QTL genotypes given their
flanking marker genotypes, and qj’s represent the proportions of QTL genotypes in the ungenotyped
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individuals (Lee, Ho, and Kao 2014). In the parameter estimation, the same EM algorithm employed
for complete genotyping (Kao and Zeng 1997) can be directly applied to obtain the MLE. Studies have
indicated that the analysis utilizing full data by model (9) outperforms that utilizing only genotyping
data by model (7) because additional information from the ungenotyped individuals is incorporated
into the analysis (Xu and Vogl 2000; Lee, Ho, and Kao 2014). Additionally, selective genotyping
using larger genotyping proportions, such as ns/n = 0.5, may maintain roughly equivalent power to
complete genotyping, whereas using smaller genotyping proportions presents difficulties in achieving
the same level of power (Lee, Ho, and Kao 2014). Here, we further extend the models in equations (7)
and (9) to map QTL using selective genotyping data from other advanced populations. This extension
requires considering the specific genome structures of the advanced populations to compute the
proportions pij for the model in Equation (7) and both the proportions pij and qj for the model in
Equation (9). The details of the EM algorithm for obtaining the MLE of the parameters in the truncated
normal mixture model and the normal mixture model in Equations (7) and (9) are described in Lee,
Ho, and Kao (2014).

QTL hotspot detection

Genome-wide QTL hotspot detection typically requires datasets containing numerous QTL to proceed
with the analysis. Currently, genetical genomics experiments and public QTL databases serve as two
feasible sources of such data. These two data sources have different structures. Genetical genomics
experiments provide individual-level data, including original marker genotypes and numerous
molecular traits for each individual, enabling the detection of thousands of QTL in a single experiment.
On the other hand, public databases such as GRAMENE, Q-TARO, Rice TOGO browser, PeanutBase,
and MaizeGDB curate thousands of summarized QTL data. These databases curate the information
from numerous independent QTL experiments across various traditional traits, and contain detected
QTL, trait names, and reference sources but lack individual-level data. Utilizing both individual-level
data from genetical genomics experiments or summarized QTL data from public databases, several
statistical methods, primarily based on permutation tests, have been proposed to detect QTL hotspots.
West et al. (2007), C. Wu et al. (2008), Li, Lu, and Cui (2010), Breitling et al. (2008) and Neto et al.
(2012) have developed statistical methods to detect QTL hotspots for genetical genomics experiments.
These methods for detecting QTL hotspots may suffer from several problems, including ignoring the
correlation structure among traits, neglecting the magnitude of LOD scores for the QTL, or incurring
a very high computational cost. These problems often lead to the detection of excessive spurious
hotspots, failure to discover biologically interesting hotspots composed of a small to moderate number
of QTL with strong LOD scores, and computational intractability, respectively, during the detection
process. Solving these problems is crucial for improving the accuracy and efficiency of QTL hotspot
detection.

The statistical framework developed by Yang, Wu, and Kao (2019) and P.-Y. Wu, Yang, and Kao
(2021) introduces novel methods to deal with the problems encountered in the approaches of West et
al. (2007), C. Wu et al. (2008), Li, Lu, and Cui (2010), Breitling et al. (2008), and Neto et al. (2012). in
QTL hotspot detection. Notably, the framework can accommodate both individual-level data from
genetical genomics experiments and summarized data from public QTL databases to detect QTL
hotspots. By employing trait grouping and top γn,α profile, the framework can also address all the
problems at a time for QTL hotspot detection. In trait grouping, the framework utilizes estimated
QTL positions instead of phenotypic or genetic correlations among traits to make inference about
the tightly linked and/or pleiotropic traits for trait grouping, accounting for the correlation structure
among traits. Subsequently, the permutation algorithm introduced by Yang, Wu, and Kao (2019) is
applied to randomly shift the tightly linked and/or pleiotropic QTL together along the genome within
each trait group. This process can obtain a series of EQF thresholds, denoted as γn,α, to facilitate the
detection of QTL hotspots during the analysis. The top γn,α threshold is defined as the highest EQF
threshold (corresponding to the smallest n) necessary for a bin to qualify as significant for a QTL
hotspot within the EQF matrix. In a specific EQF architecture, the top γn,α threshold of a hotspot
can be used to assess its significance status relative to others. When assessing a specific hotspot, we
can derive several, let’s say m, top γn,α thresholds for the m EQF architectures established using m
different LOD thresholds. The pattern of the n values within the set of m top γn,α thresholds can
outline the dynamic significance status of a hotspot across various EQF architectures. For each hotspot,
we profile the top γn,α thresholds and use the profile to outline the LOD-score pattern across the
different LOD thresholds. The top γn,α profile can then serve to characterize the types of hotspots with
varying sizes and LOD-score distributions, enabling the assessment of small and moderate hotspots
with strong LOD scores.
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Table 1: List of functions for QTL mapping in the QTLEMM package

Function Description

EM.MIM() MIM to estimate the parameters.
EM.MIMv() MIM to estimate the parameters and their variances.
IM.search() IM to search for the possible QTL.
MIM.search() MIM to search for one additional QTL given the identified QTLs in

the model.
MIM.points() MIM to fine tune the QTL parameters by a multidimensional search

around the regions of the identified QTL in the model.
EM.MIM2() MIM to estimate the parameters (for selective genotyping data).
IM.search2() IM to search for the possible QTL (for selective genotyping data).
MIM.search2() MIM to search for one additional QTL given the identified QTLs in

the model (for selective genotyping data).
MIM.points2() MIM to fine tune the QTL parameters by a multidimensional search

around the regions of the identified QTL in the model (for selective
genotyping data).

progeny() Generate the simulated phenotype and genotype data.
D.make() Generate the genetic design matrix.
Q.make() Generate the conditional probability matrix.
LRTthre() The LRT threshold for QTL detection based on Gaussian stochastic

process.

3 QTLEMM for QTL mapping

The QTLEMM package comprises functions designed for the statistical QTL mapping analysis. It
is capable of handling the data from diverse experimental populations, including BC, F2, RI, and
AI populations. For each population, the package considers both complete genotyping data and
selective genotyping data for the QTL mapping analysis. The functions within the package enable
the utilization of various methods including linear regression, interval mapping (Lander and Botstein
1989), and multiple interval mapping (Kao and Zeng 1997; Kao, Zeng, and Teasdale 1999; Zeng, Kao,
and Basten 1999) methods to estimate QTL parameters. The functions for QTL mapping are outlined
in Table 1. Below, we demonstrate the application of these functions through QTL mapping analyses
on both simulated and real datasets. The progeny() function generates simulated phenotype and
genotype data for populations based on the specified breeding schemes. These data are then input
into the IM.search() function to search for potential QTL on the chromosomes. Additionally, the
MIM.search() function can search for an additional QTL given other identified QTL. The best position
can be further obtained by using the MIM.points() function. Subsequently, the D.make() and Q.make()
functions are employed to create the genetic design matrix of the QTL effects and the conditional
probability matrix of the QTL genotypes, respectively. These two matrices are then utilized in the
EM.MIM() function to estimate the parameters in the MIM model.

Inputs

In QTL mapping studies, the data typically consist of two components: phenotypic trait values
and marker genotypes observed in the individuals under study. To initiate QTL mapping analysis
using the QTLEMM function, four essential arguments are required: markers (“marker”), genotypes
(“geno”), phenotypes (“y”) and QTL (“QTL”). The “marker” argument is a k ∗ 2 matrix containing
marker information, where k is the number of markers. In the “marker” argument, the first column
labels the chromosomes where the markers are located, while the second column indicates the marker
positions in Morgan (M) or centimorgan (cM). Table 2 provides an example of the “marker” argument,
demonstrating that the first three markers of the first chromosome are positioned at 0, 24, and 40
cM, respectively. The “QTL” argument is a q ∗ 2 matrix containing QTL information, where q is the
number of QTLs. Its format is the same as that of the “marker” argument. The “geno” argument is
an n ∗ k matrix containing the marker genotypes of n individuals. Genotypes for P1 homozygote
(MM), heterozygote (Mm) and P2 homozygote (mm) are encoded as 2, 1 and 0, respectively, while
missing genotypes are coded as NA. Table 3 provides an example of the “geno” matrix, where each
row represents the genotypes of the k markers of an individual. The “y” argument is an n ∗ 1 vector
containing the trait values of n individuals.
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Table 2: The format example of marker/QTL information data

chromosome position_cM

1 0
1 24
1 40
... ...
12 72

12 126

Table 3: The format example of genotype data

marker1 marker2 marker3 marker4 marker5 ... markerk

ind1 2 1 1 2 0 ... 2
ind2 2 1 0 0 1 ... 1
ind3 2 2 NA 1 1 ... 0
ind4 0 0 1 0 NA ... 2
... ... ... ... ... ... ... ...

indn 1 1 0 0 1 ... 0

Operation procedure and simulation example

We offer a simulation example to demonstrate the usage of our R package. Initially, it is necessary
to load the QTLEMM function and set an arbitrary random number seed, such as 8000, for data
simulation in the R environment. The QTLEMM function includes all the necessary functions for
simulating the data and conducting statistical analysis.

library(QTLEMM)
set.seed(8000)
options(digits=3)

The progeny() function can simulate marker genotype and phenotype data from experimental
populations for QTL mapping study. It accepts several key arguments: the E.vector argument
represents the effects of the QTL; the ng argument specifies the generation number; the h2 argument
sets the heritability; the size argument contains the sample size; the type argument is used to specify
the population type, which includes backcross (type = "BC"), advanced intercross population (type =
"AI"), and recombinant inbred population (type = "RI").

Consider the scenario that a simulated dataset consists of 200 F2 individuals with three chromo-
somes, each with eleven 10 cM equally spaced markers. Three QTLs are positioned at [1,23] (the 23 cM
of the 1st chromosome), [1,77] and [2,55], respectively, and their effects are assumed to be -10, 12, and
8, respectively. The 1st and 3rd QTLs have an additive-by-additive effect of 1. The heritability is set at
0.5. The commands used to generate such a dataset are described below. The command of defining
the QTL effects is as follows:

eff <- c("a1" = -10, "a2" = 12, "a3" = 8, "a1:a3" = 1)

If other effects, such as dominance effect of 3 and additive-by-dominance effect of 2, are considered,
the arguments in the command is “d2=3” and “a2:d1"=-2. Please refer to the QTLEMM document in
CRAN for detailed instructions. The commands for specifying the QTL and marker positions are as
follows:

marker <- cbind(rep(1:3,each = 11), rep(seq(0, 100, 10), 3))
QTL <- cbind(c(1, 1, 2), c(23, 77, 55))

Then, the progeny() function can use the above commands to simulate 200 F2 individuals with
heritability 0.5.

testdata <- progeny(QTL, marker, type = "RI", ng = 2, E.vector = eff, h2 = 0.5, size = 200)
names(testdata)
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Figure 1: The graphical output generated by the IM.search() function. The upper plot shows the
profile of LRT statistics, while the lower plot exhibits the profile of effects. The red line represents the
threshold value of 9.62 obtained by using Gaussian process.

#> [1] "phe" "E.vector" "marker.prog" "QTL.prog"
#> [5] "genetic.value" "VG" "VE"

y <- testdata$phe
geno <- testdata$marker.prog

The progeny() function outputs a dataset into the file named testdata. This file contains four
parts: phenotypes (phe), QTL effects (E.vector), marker genotypes (marker.prog), and QTL genotypes
(QTL.prog). The markers and trait values of the 200 individuals in the testdata file are further extracted
and organized into the geno matrix and y vector for QTL mapping analysis.

The IM.search() function is designed to conduct interval mapping analysis. Its arguments include:
the type argument specifies the population type (BC, AI, and RI population); the ng argument represents
the generation number; the speed argument determines the walking speed of the interval mapping
analysis (in cM); the d.eff argument indicates if the dominant effect will be considered or not (for AI
or RI); the QTLdist argument specifies the minimum distance (in cM) between the detected QTL; the
plot.all and plot.chr arguments indicate whether plots of the LRT statistic profile will be generated
or not. The following is an example of using the IM.search() function to perform the interval mapping
analysis without considering any dominance effect in the F2 population.

IMtest <- IM.search (marker, geno, y, type = "RI", ng = 2, speed = 1, d.eff = F,
QTLdist = 15, plot.all = TRUE, plot.chr = FALSE, console = FALSE)

names(IMtest)

#> [1] "effect" "LRT.threshold" "detect.QTL"

IMtest$LRT.threshold

#> 95%
#> 9.62

The outputs of the IM.search() function include: estimated effects at all positions (effect); LRT
threshold (LRT.threshold) obtained using Gaussian process; numerical results of the detected QTLs
(detect.QTL). Figure 1 is the graphical output of the IM.search() function. It illustrates the profiles
of the LRT statistics and effects across the three chromosomes. There are three significant peaks,
indicating three QTLs are detected, on two of the three chromosomes. The LRT threshold obtained
using Gaussian stochastic process for assessing the significance of QTL detection is 9.62 in this dataset.
The numerical results of the detected QTLs can be listed using the following commands.

detQTL <- IMtest$detect.QTL
detQTL
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#> chr cM a1 LRT R2
#> 14 1 14 -7.00 24.1 0.1064
#> 77 1 77 8.03 29.6 0.1324
#> 153 2 53 6.14 17.3 0.0787

The IM analysis concludes that the three QTLs are detected at [1,14], [1,77] and [2,53] with effects
of -7.00, 8.03 and 6.14, respectively. They contribute approximately 10.64%, 13.24%, and 7.87% of
the trait variation, respectively. The analysis of the QTL detection using the IM approach can be
further improved using the MIM approach by jointly fitting the three QTL into the MIM model to
obtain more precise and accurate estimates of QTL parameters. The EM.MIM() function is designed
to perform the MIM analysis. Before conducting the EM.MIM() function, two matrices, the genetic
design matrix (D.matrix) and the conditional probability matrix (cp.matrix), must be constructed first.
The D.make() and Q.make() functions are utilized to generate the D.matrix and cp.matrix matrices,
respectively. Below are the commands of the D.make(), Q.make() and EM.MIM() functions for the MIM
model fitting the three QTL at [1,14], [1,77] and [2,53] with an additive by additive effect (between the
QTLs at [1,14] and [2,53]).

The arguments for the D.make() function to construct the genetic design matrix of the MIM model
fitting the three QTLs are as follows: the first argument is the number of QTL in the MIM model (nQTL
= 3); the second argument specifies the population type (type = "RI"); the arguments a and d indicate
whether additive or dominance effects will be considered for the QTL (a = TRUE, d = 0 for considering
their additive effects only); the arguments aa, dd, and ad specify the epistatic effects between QTL (aa
= c(1, 3) for considering the additive by additive effect between the QTLs at [1,14] and [2,53]).

dQTL <- detQTL[,1:2]
D.matrix <- D.make(nQTL = 3, type = "RI", a = TRUE, d = 0, aa = c(1, 3))
dim(D.matrix)

#> [1] 27 4

head(D.matrix)

#> a1 a2 a3 a1:a3
#> 222 1 1 1 1
#> 221 1 1 0 0
#> 220 1 1 -1 -1
#> 212 1 0 1 1
#> 211 1 0 0 0
#> 210 1 0 -1 -1

The arguments in the Q.make() function for generating the conditional probability matrix of the
three-QTL MIM model are as follows.

cp.matrix <- Q.make(dQTL, marker, geno, type = "RI", ng = 2)$cp.matrix
dim(cp.matrix)

#> [1] 200 27

Three inputs are required to drive the EM.MIM() function for performing the MIM analysis: the
genetic design matrix (D.matrix); the conditional probability matrix (cp.matrix); the phenotypic
values (y). The outputs from the EM.MIM() function include a vector containing the estimated QTL
effects (E.vector), the mean (beta), the residue variance (variance), the posterior probabilities matrix
(PI.matrix), the log likelihood value (log.likelihood), the LRT statistics (LRT), the coefficient of
determination (R2), the estimated trait values (y.hat), and the iteration time (iteration.time).

MIMtest <- EM.MIM(D.matrix, cp.matrix, y, console = FALSE)
names(MIMtest)

#> [1] "E.vector" "beta" "variance" "PI.matrix"
#> [5] "log.likelihood" "LRT" "R2" "y.hat"
#> [9] "iteration.number"

MIMtest$E.vector
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#> a1 a2 a3 a1:a3
#> -9.61 10.29 6.35 1.66

MIMtest$log.likelihood

#> [1] -772

MIMtest$R2

#> [1] 0.411

The log likelihood of the MIM model fitting the three QTL with epistasis is approximately -772.
The estimated QTL effects are approximately -9.61, 10.29 and 6.35 (true values being -10, 12, and 8),
respectively, and the estimated epistatic effect is approximately 1.66. The estimated heritability (R2) is
0.411, while the true heritability is 0.50.

The EM.MIMv() function can provide the asymptotic variance-covariance matrix of the QTL pa-
rameters. The inputs in the EM.MIMv() function include: QTL information about the QTL effects and
positions (QTL); marker information (marker); genotypes (geno); genetic design matrix (D.matrix);
conditional probability matrix (cp.matrix), and phenotypic values (y). If the argument cp.matrix is
set to NULL, the conditional probability matrix is constructed from the input QTL information and
marker information. If the estimated QTL positions coincide with markers, the asymptotic variance-
covariance matrix is not available. Below are the arguments of the EM.MIMv() function to produce the
variance-covariance matrix for the MIM model fitting the three detected QTL.

MIMv <- EM.MIMv(dQTL, marker, geno, D.matrix, cp.matrix = NULL, y, console = FALSE)
names(MIMv)

#> [1] "E.vector" "beta" "variance" "PI.matrix"
#> [5] "log.likelihood" "LRT" "R2" "y.hat"
#> [9] "iteration.number" "avc.matrix" "EMvar"

The avc.matrix is the asymptotic variance-covariance matrix, and the EMvar contains the asymp-
totic variances of the estimates.

round(MIMv$avc.matrix, 3)

#> QTL1 QTL2 QTL3 a1 a2 a3 a1:a3 variance X1
#> QTL1 0.015 0.017 0.013 -0.003 0.000 0.014 0.076 -0.073 -0.003
#> QTL2 0.017 0.004 -0.006 -0.023 0.021 -0.003 0.041 -0.191 0.002
#> QTL3 0.013 -0.006 0.065 -0.034 0.035 0.036 0.134 -0.688 0.009
#> a1 -0.003 -0.023 -0.034 1.417 -0.354 -0.091 0.038 1.775 0.006
#> a2 0.000 0.021 0.035 -0.354 1.585 -0.039 0.154 -2.462 -0.096
#> a3 0.014 -0.003 0.036 -0.091 -0.039 1.463 0.257 -1.185 -0.034
#> a1:a3 0.076 0.041 0.134 0.038 0.154 0.257 3.724 -2.787 -0.096
#> variance -0.073 -0.191 -0.688 1.775 -2.462 -1.185 -2.787 179.411 0.030
#> X1 -0.003 0.002 0.009 0.006 -0.096 -0.034 -0.096 0.030 0.650

round(MIMv$EMvar, 3)

#> QTL1 QTL2 QTL3 a1 a2 a3 a1:a3 variance
#> 0.015 0.004 0.065 1.417 1.585 1.463 3.724 179.411
#> X1
#> 0.650

In EMvar, the asymptotic variances of the estimated mean, QTL positions and effects are 0.015,
0.004, 0.065, 1.417, 1.585, 1.463 and 3.724, respectively. The asymptotic variances of the estimated mean
and residual variance are 0.650 and 179.411, respectively.

The MIM.search() function is designed to fitting the detected QTLs into the model to search the
genome for other possible QTL. The arguments in the MIM.search() function include the detected
QTL (denoted by dQTL2 in this example), marker (for marker information), geno (for genotypes), y (for
phenotypes), type (for population type), ng (for the generation number), D.matrix (for the genetic
design matrix), speed (for the walking speed in cM), QTLdist (for the minimum distance between
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detected QTLs). The outputs of the MIM.search() function include information about the estimates of
all search positions (effect), the best QTL positions with the largest log likelihood (QTL.best), and
the estimated effects of the best QTL positions (effect.best). For demonstration purposes, assume
that the two detected QTLs located at [1,14] and [1,77] are fitted into the model to search for the next
(third) QTL considering the additive by additive effect (the design matrix will be the same as that in
the above EM.MIM() function). Below are the commands of the MIM.search() function to conduct the
search for the third QTL given the two detected QTLs:

dQTL2 <- cbind(c(1, 1), c(14, 77))
MIMs <- MIM.search(dQTL2, marker, geno, y, type = "RI", ng = 2, D.matrix = D.matrix,

speed = 1, QTLdist = 15, console = FALSE)
names(MIMs)

#> [1] "effect" "QTL.best" "effect.best"

MIMs$QTL.best

#> chromosome position(cM)
#> QTL 1 1 14
#> QTL 2 1 77
#> QTL new 2 54

MIMs$effect.best

#> a1 a2 a3 a1:a3 LRT
#> -9.619 10.302 6.385 1.806 145.876
#> log.likelihood R2
#> -772.129 0.412

The third QTL is detected at the position [2,54] with an estimated effect of approximately 6.385.
The log likelihood of the MIM model fitting the three QTLs at [1,14], [1,77] and [2,54] with epistasis
is about -772.13. The LRT statistic for testing the significance of the effects jointly is about 145.876.
Another function related to the MIM analysis is the MIM.points() function, which is developed to
fine tune the estimation of QTL parameters by multidimensional search around the detected QTLs.
The fine-tuning range around the detected QTL is specified using the scope argument, while the
other arguments are the same as those in the MIM.search() function. Below is the command of the
MIM.search() function for performing a three-dimensional search on the 10 cM range of both sides of
the three QTL at [1,14], [1,77] and [2,54] (with additive by additive effect).

MIMp <- MIM.points(dQTL, marker, geno, y, type = "RI", ng = 2, D.matrix = D.matrix,
speed = 2, scope = 10, console = FALSE)

names(MIMp)

#> [1] "effect" "QTL.best" "effect.best"

MIMp$QTL.best

#> chromosome position(cM)
#> [1,] 1 24
#> [2,] 1 75
#> [3,] 2 53

MIMp$effect.best

#> a1 a2 a3 a1:a3 LRT
#> -10.846 11.994 6.503 3.725 181.130
#> log.likelihood R2
#> -765.371 0.464

The results show that the largest likelihood is found to be -765.371 at positions [1,24], [1,75] and
[2,53], and the estimated heritability is 0.464. After fine-tuning, the detected positions are closer to
the true positions [1,23], [1,77] and [2,55], compared to the estimated positions [1,14], [1,77] and [2,53]
before fine-tuning. With these estimates, other composite genetic parameters such as heritability and
variance components of a quantitative trait can be estimated. Additionally, the response to selection
can be predicted based on these estimates.
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The yeast dataset example

The yeast dataset (Brem et al. 2005) consists of 112 backcross individuals with 5740 traits and 1072
markers. We have reprocessed the raw data into a new dataset called yeast.process, which can be
downloaded from GitHub using the following command:

load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.process.RDATA"))

The yeast.process dataset comprises three lists: the list of marker genotypes (yeast.process$geno)
that contains the marker genotypes of the 112 individuals; the list of trait values (yeast.process$pheno)
that contains the trait values of the 112 individuals; the list of marker information (yeast.process$marker)
that includes the marker map (distances) of the 1072 markers of the 16 chromosomes.

geno <- yeast.process$geno
marker <- yeast.process$marker
pheno <- yeast.process$pheno

P.-Y. Wu, Yang, and Kao (2021) utilized regression interval mapping (Haley and Knott 1992) to
conduct QTL mapping analysis of the yeast dataset. For the demonstration of analyzing selective
genotyping data, we select the 3590th trait from the dataset and intentionally deleted the marker
genotypes of the individuals with medium trait values to produce selective genotyping data in QTL
mapping analysis. Specifically, one half of the individuals with extreme trait values (comprising one
quarter each from the upper and lower extremes) are chosen to keep their marker genotypes and trait
values, and the marker genotypes of the remaining individuals are deleted and ignored in the analysis.
Below are the codes for generating the selective genotyping dataset.

y0 <- pheno[, 3590]
quantile(y0)

#> 0% 25% 50% 75% 100%
#> -2.372 -0.661 0.000 0.661 2.372

y <- y0[y0>quantile(y0)[4] | y0<quantile(y0)[2]]
yu <- y0[y0 >= quantile(y0)[2] & y0 <= quantile(y0)[4]]
geno.s <- geno[y0 > quantile(y0)[4] | y0 < quantile(y0)[2],]

The vector y contains the trait values of the individuals with marker genotypes (the upper and
lower 25% individuals), and the geno.s argument consists of their marker genotypes. The vector yu
contains the trait values of individuals without marker genotypes. The IM.search2() function can
perform several selective genotyping QTL mapping methods, which encompass the Lee, Ho, and Kao
(2014) model (Lee, Ho, and Kao (2014), sele.g = "f"), the truncated model (Lee, Ho, and Kao 2014,
sele.g = "t"), and the population frequency-based model (Lee, Ho, and Kao 2014, sele.g = "p"), to
analyze the selective genotyping dataset. If sele.g = "n", the IM.search2() function can be used to
analyze the complete genotyping data. The followings are the codes of the IM.search2() function to
analyze the selective genotyping data of the 3590th trait.

library(QTLEMM)
set.seed(8000)
IMtest2 <- IM.search2(marker, geno.s, y, yu, sele.g = "f", type = "BC", ng = 1,

plot.all = TRUE, plot.chr = FALSE, console = FALSE)
IMtest2$detect.QTL

#> chr cM a1 LRT R2
#> 626 3 53 0.893 22.0 0.1128
#> 1579 5 112 0.753 16.0 0.0749
#> 4523 13 22 -0.882 21.7 0.1048

The random number seed 8000 is used to set up the Gaussian process to compute threshold
values for assessing the significance of QTLs. Figure 2 presents the profiles of the LRT statistics and
estimated effects along the genome. It shows that three QTL are detected at [3,53], [5,112] and [13,22],
respectively. For comparison, we also conduct the complete genotyping analysis for the 3590th trait
using the IM.search() function. Belows are the codes of the IM.search() function for analyzing the
complete genotyping data.
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Figure 2: The profiles of the LRT statistics and estimated effects along the genome by using the
IM.search2() function to analyze the selective genotyping data of the 3590th trait. The red line indicates
the LRT threshold obtained using Gaussian process for evaluating the significance of QTL detection.

Figure 3: The profiles of the LRT statistics and estimated effects along the genome by using the
IM.search() function to analyze the complete genotyping data. The red line indicates the LRT threshold
obtained by using Gaussian process for assessing the significance of QTL detection.

IMcon <- IM.search(marker, geno, y0, type = "BC", ng = 1, plot.all = TRUE, plot.chr = FALSE,
console = FALSE)

IMcon$detect.QTL

#> chr cM a1 LRT R2
#> 624 3 53 0.904 29.0 0.210
#> 1580 5 117 0.877 25.0 0.171
#> 4511 13 22 -0.945 33.1 0.231

The profiles of the LRT statistics and estimated effects along the genomes are presented in Figure 3.
It shows that three QTL are detected at [3,53], [5,115] and [13,22], respectively. Both the selective and
complete genotyping IM analyses produce similar LRT statistic profiles and estimates of positions and
effects. The complete genotyping data have larger LRT statistics and R2’s for each detected QTL.

Using the IM.search() and IM.search2() functions, the estimates of QTL effects and positions,
model likelihoods and model R2 values were obtained individually. Certainly, we would like to
further fit these detected QTLs simultaneously into a multiple-QTL model (the MIM Model). This
allows the QTLs to be jointly fitted and controlled in the model to explain more genetic variation of
the quantitative traits and obtain more precise estimates. Below are the commands of the EM.MIM2()
function for performing the selective genotyping MIM model that fits the three detected QTLs and
their all possible epistasis.

D.matrix <- D.make(3, type = "BC", aa = TRUE)
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dQTL <- IMtest2$detect.QTL[, 1:2]
MIMtest2 <- EM.MIM2(dQTL, marker, geno.s, D.matrix, y = y, yu = yu, sele.g = "p",

type = "BC", ng = 1, console = FALSE)
MIMtest2$E.vector

#> a1 a2 a3 a1:a2 a1:a3 a2:a3
#> 0.751 0.639 -0.762 -0.560 0.279 -0.376

MIMtest2$log.likelihood

#> [1] -124

MIMtest2$LRT

#> [1] 61.4

MIMtest2$R2

#> [,1]
#> [1,] 0.384

The positions of the QTL detected by the selective genotyping MIM model are recorded in the dQTL
argument. The model R2 and likelihood are 0.512 and -115.41, respectively. The estimated marginal and
epistatic QTL effects are 0.818, 0.744, -0.954, -0.641, 0.371 and -0.423, respectively. The MIM.points2()
function can be further used to perform a multi-dimensional search around the 5-cM regions of the
detected QTL positions ([3,53], [5,112] and [13,22]) to fine-tune the QTL estimates (using the argument
of scope = 5). Below are the codes of the MIM.points2() function for the multi-dimensional search
and the fine-tune results.

MIMp <- MIM.points2(dQTL, marker, geno.s, y, yu, sele.g = "p", method = "EM",
type = "BC", ng = 1, D.matrix = D.matrix, scope = 5, console = FALSE)

MIMp$QTL.best

#> chromosome position(cM)
#> [1,] 3 58
#> [2,] 5 111
#> [3,] 13 21

MIMp$effect.best

#> a1 a2 a3 a1:a2 a1:a3
#> 0.665 0.634 -0.780 -0.789 0.591
#> a2:a3 LRT log.likelihood R2
#> -0.389 64.630 -122.497 0.403

The model with the largest log likelihood (-113.705) occurs at positions [3,58], [5,111] and [13,21],
and the estimated effects are a1=0.678, a2=0.758, a3=-0.964, ia1a2 =-0.866, ia1a3 =0.673, ia2a3 =-0.499, re-
spectively. The model R2 (estimated heritability) improves from 0.512 to 0.524. Below are the codes
of the MIM.points() function for analyzing the complete genotyping data of the 3590th trait. After
fine-tuning, the estimated positions are at positions [3,54], [5,112] and [13,22], and the estimated effects
are a1=0.703, a2=0.652, a3=-0.824, ia1a2 =-0.279, ia1a3 =0.259, ia2a3 =-0.604, respectively. The model R2

(estimated heritability) is 0.531.

dQTLcon <- IMcon$detect.QTL[,1:2]
MIMpcon <- MIM.points(dQTLcon, marker, geno, y0, method = "EM", type = "BC", ng = 1,

D.matrix = D.matrix, scope = 5, console = FALSE)
MIMpcon$QTL.best

#> chromosome position(cM)
#> [1,] 3 54
#> [2,] 5 112
#> [3,] 13 22

MIMpcon$effect.best

#> a1 a2 a3 a1:a2 a1:a3
#> 0.703 0.652 -0.824 -0.279 0.259
#> a2:a3 LRT log.likelihood R2
#> -0.604 128.497 -114.883 0.531
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Table 4: List of functions for QTL hotspot detection in the QTLEMM package

Function Description

LOD.QTLdetect() Detect QTL by LOD matrix.
EQF.permu() EQF matrix cluster permutation process for QTL hotspot detection.
EQF.plot() Depict the EQF plot by the result of permutation process.
Qhot() This function produces both the numerical and graphical summaries

of the QTL hotspot detection in the genomes that are available on the
worldwide web including the flanking markers of QTLs.

Table 5: The format of LOD matrix

bin1 bin2 bin3 bin4 bin5 ... binn

trait1 0.047 0.116 0.209 0.313 0.342 ... 0.358
trait2 0.095 0.176 0.274 0.376 0.301 ... 0.342
trait3 0.798 0.67 0.533 0.394 0.342 ... 0.284
trait4 0.363 0.321 0.272 0.219 0.192 ... 0.149
trait5 0.017 0.01 0.005 0.002 0.001 ... 0

... ... ... ... ... ... ... ...
traitt 0.683 0.593 0.471 0.336 0.304 ... 0.271

4 QTLEMM for QTL hotspot detection

The analysis of QTL hotspot detection has been a pivotal step towards unraveling the genetic archi-
tectures of quantitative traits in the study of genes, genomes and genetics (Breitling et al. 2008; Fu
et al. 2009; Neto et al. 2012; Wang et al. 2014; Yang, Wu, and Kao 2019). The genetical genomics
experiments and public QTL databases are two feasible sources to provide data with many QTLs for
the detection of QTL hotspots. P.-Y. Wu, Yang, and Kao (2021) introduced a statistical framework
capable of accommodating both types of data. It addresses various challenges, including handling the
correlation structure among traits, identifying different types of hotspots, and ensuring computational
efficiency, thereby making it practical for QTL hotspot detection. Below, we present the R-code of the
Wu et al. framework by demonstrating the analyses of two real examples: the yeast genetic genomics
dataset and the GRAMENE rice database. The functions for QTL hotspot detection of the Wu et
al. framework are summarized in Table 4.

The yeast genetic genomics dataset example

There are 5740 molecular traits for the yeast dataset (Brem et al. 2005). The QTL mapping procedure
employed for the 3590th trait using the IM.search() function can be applied to analyze the remaining
5739 traits, obtaining their LRT statistics across all positions along the genome. These LRT statistics can
then be converted into LOD scores using the formula LOD = LRT/4.6. Subsequently, the LOD scores
are organized into a LOD matrix for QTL hotspot detection, following the methods outlined by Yang,
Wu, and Kao (2019) and P.-Y. Wu, Yang, and Kao (2021). The LOD.QTLdetect() function is constructed
to detect QTL hotspots. It requires two input datasets: the LOD matrix and the bin information on the
chromosomes. The LOD matrix is a t ∗ p matrix, where t and p are the numbers of traits and numbers
of bins on the chromosomes, respectively. The LOD matrix contains the LOD score at each bin for all
traits (refer to Table 5). The bin information is an n ∗ 2 matrix, where n is the number of chromosomes,
and it contains the information about the bin number on each chromosome. The first column denotes
the chromosomes, and the second column denotes the numbers of bins (refer to Table 6).

The LOD matrix of the yeast data can be downloaded from GitHub using the following com-
mand. Users can combine the four files (yeast.LOD.1.RDATA, yeast.LOD.2.RDATA, yeast.LOD.3.RDATA,
yeast.LOD.4.RDATA) to obtain the complete LOD matrix.

load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.1.RDATA"))
load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.2.RDATA"))
load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.3.RDATA"))
load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.4.RDATA"))
load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/yeast.LOD.bin.RDATA"))
LOD <- rbind(yeast.LOD.1, yeast.LOD.2, yeast.LOD.3, yeast.LOD.4)
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Table 6: The format example of bin information

chromosome number_of_bin

1 256
2 324
3 160
4 723
... ...

15 463
16 513

bin <- yeast.LOD.bin

Once the LOD matrix is available, the LOD.QTLdetect() function can be applied to detect QTL
hotspots. The function’s arguments include LOD for the LOD matrix (refer to Table 5), bin for the
numbers of bins on each chromosome (refer to Table 6), thre for the threshold value (in terms of LOD)
of QTL detection, and QTLdist for specifying the minimum distance (cM) between the detected QTL.
The numerical results will be output to the LOD.QTLdetect.result file.

library(QTLEMM)
LOD.QTLdetect.result <- LOD.QTLdetect(LOD, bin, thre = 3, QTLdist = 20,

console = FALSE)

#> step process

names(LOD.QTLdetect.result)

#> [1] "detect.QTL.number" "QTL.matrix" "EQF.matrix"
#> [4] "linkage.QTL.number" "LOD.threshole" "bin"

The LOD.QTLdetect.result file is a data list comprising several components: detect.QTL.number
contains the number of detected QTL of each trait; QTL.matrix holds the QTL positions, where
elements marked as 1 represent the QTL positions, elements marked as 0 represent bins with LOD
scores under the LOD threshold, and other positions are designated as NA; EQF.matrix contains
the EQF value of each bin; linkage.QTL.number indicates the number of linked QTL among all
detected QTL; LOD.threshold and bin remain the same as the input data. With these information, the
EQF.permu() function embedding the P.-Y. Wu, Yang, and Kao (2021) permutation analysis (with trait
grouping) can be applied to detect QTL hotspots. The arguments in the EQF.permu() function involve
inputting the output data from LOD.QTLdetect(), specifying the permutation time (ptime), and the
type 1 error rate (alpha) to carry out the permutation analysis. Additionally, the Q = TRUE argument is
to perform permutation analysis without trait grouping.

result <- EQF.permu(LOD.QTLdetect.result, ptime = 1000, alpha = 0.05, Q = TRUE,
console = FALSE)

names(result)

#> [1] "EQF.matrix" "bin" "LOD.threshole"
#> [4] "cluster.number" "cluster.id" "cluster.matrix"
#> [7] "permu.matrix.cluster" "permu.matrix.Q" "EQF.threshold"

In the output data, the EQF.matrix, bin, and LOD.threshold lists represent the EQF matrix, bin
information matrix, and the LOD threshold respectively, which are the same as those in the input data.
The cluster.number contains the number of QTLs in each trait group. The cluster.id contains the
serial number of traits in each trait group. The cluster.matrix includes the reduced EQF matrix after
trait grouping. The permu.matrix.cluster contains the result of permutation with trait grouping,
sorted by order. Similarly, the permu.matrix.Q contains the result of the permutation without trait
grouping (the Q method), also sorted by order. The EQF.threshold represents the EQF threshold
calculated from the permutation analysis. Moreover, below is the command of the EQF.plot() function
to provide the EQF architecture of the genome (see Figure 4).

EQF.plot(result, plot.all = TRUE, plot.chr = TRUE)
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Figure 4: The EQF architecture of all chromosomes by using the EQF.plot() function. The EQF
architecture are constructed by the uniform method with bin size of 0.5 cM.

Figure 5: The EQF architecture of the 2nd chromosome by using the EQF.plot() function. The EQF
architecture are constructed by the uniform method with bin size of 0.5 cM.

In the EQF.plot() function, the result argument is the input data list produced from the LOD.QTLdetect()
or EQF.permu() function. The command of plot.all = TRUE is to draw the EQF architecture of the
entire genome (16 chromosomes) is outlined in a single figure (Figure 4). If plot.chr = TRUE, it will
draw the EQF architectures of genome separately by chromosomes in different figures. Figure 5 shows
the EQF architecture of one of the 16 chromosomes (the 2nd chromosome).

The GRAMENE rice database example

The Qhot() function manages summarized QTL data collected from public QTL databases to detect
QTL hotspots. Below, we demonstrate the use of the Qhot() function to detect QTL hotspots in the
public GRAMENE rice database. First the QTL data in the GRAMENE rice database can be retrieved
from GitHub using the following command:

load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/gramene.chr.RDATA"))
load(url("https://github.com/py-chung/QTLEMM/raw/main/inst/extdata/gramene.QTL.RDATA"))
head(gramene.chr)

#> CHR Center.cM. Length.cM.
#> 1 1 74.2 184
#> 2 2 55.5 161
#> 3 3 84.3 166
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#> 4 4 19.7 133
#> 5 5 51.8 121
#> 6 6 66.8 127

head(gramene.QTL)

#> X Trait chr L R
#> 1 1 Biochemical 1 54.1 54.1
#> 2 2 Vigor 1 147.4 147.4
#> 3 3 Vigor 1 147.4 147.4
#> 4 4 Vigor 1 147.4 147.4
#> 5 5 Vigor 1 147.4 158.6
#> 6 6 Vigor 1 54.1 54.1

The gramene.chr is a data frame containing the information about the chromosomes, including
their numbers, midpoint positions (in cM), and lengths. The gramene.QTL is a data frame for the
information about QTLs, including their serial numbers, trait names, the chromosomes on which they
are located, and positions of their flanking markers (in cM). Then the Qhot() function can utilize the
information about chromosomes and QTLs, gramene.chr and gramene.QTL, to detect the QTL hotspots
and output the analysis results.

result <- Qhot(gramene.QTL, gramene.chr, save.pdf = T)
names(result)

#> [1] "EQF" "P.threshold" "Q.threshold" "nHot"

The analysis results include the EQF values at every bin of chromosomes (EQF), EQF thresholds
obtained by the Yang et al. method (P.threshold), EQF thresholds obtained using the Q method
(Q.threshold), and the numbers of detected hotspots in each chromosome by the Yang et al. method
and Q method (nHot). The save.pdf = T command is to generate a PDF file that contains the plots
of QTL composition at every bin. Figure 6 shows the plot of QTL composition at bin [7,8) of the
first chromosome. It outlines the EQF architecture of the 1st chromosome, the QTL intervals, and the
composition of QTLs responsible for different traits in the hotspot at bin [7,8). Please refer to Yang,
Wu, and Kao (2019) and P.-Y. Wu, Yang, and Kao (2021) for more details.

5 Conclusion and Discussion

In this paper we introduce the R package called QTLEMM for QTL mapping and QTL hotspot
detection, and attempt to provide a comprehensive overview of the functions in the package by
analyzing the examples of both simulated and real data sets. The package offers several advantages:

• QTLEMM is designed to accommodate a wide range of experimental populations, including
backcross, F2, advanced intercrossed, and recombinant inbred populations. This versatility en-
ables comprehensive QTL mapping analysis across different genetic backgrounds and breeding
designs.

• Users can employ single-QTL or multiple-QTL models to estimate QTL parameters. It can
accommodate a host of statistical models to be fitted and compared for QTL detection. The
thresholds for claiming the QTL detection can be also determined across various experimental
populations.

• QTLEMM handles both complete genotyping and selective genotyping data in QTL mapping
analysis.

• Results from QTL mapping and hotspot detection analyses are presented through numerical
and graphical outputs, facilitating interpretation and visualization of findings.

• QTLEMM is unique in providing the asymptotic variance-covariance matrix for estimates of
QTL parameters and computing LRT.

The process of QTL mapping and hotspot detection usually involves the analysis of a large number
of positions along the genomes. At each position, statistical models are applied to the estimation and
testing for making decision, causing the process often typically time-consuming and computationally
intensive in the analysis. We attempt to reduce the computational cost and speed up the analysis by
eliminating unnecessary loops in writing the functions of this package. The QTLEMM package offers
mature, effective, and commonly used statistical methods for QTL mapping and hotspot detection in
the analysis of genetic architecture of quantitative traits. We envision the QTLEMM package will be
valuable for finding more significant results in exploring the networks among genes, QTL hotspots
and quantitative traits in broad areas of biological studies.
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Figure 6: The plot of EQF architecture of the 1st chromosome and breakdown of QTL composition
at bin [7,8) in the PDF file produced by using the Qhot() function with save.pdf = T command. The
x-axis denotes the 1st chromosome, the y-axis denotes the EQF values. The black triangle denotes the
position of centromere. The blue (red) dots denote the QTL hotspots detected by the Yang, Wu, and
Kao (2019) method (the Q method). The nine different colored symbols denote the QTLs responsible
for the nine different trait categories (see Yang, Wu, and Kao 2019 for the nine different trait categories).
The dotted lines denote the lengths of the marker intervals flanking the QTLs (QTL intervals). In total,
66 QTLs contribute probabilities to the EQF value of 27.31 at bin [7,8). The numbers of contributive
QTLs of the nine different trait categories are 22, 5, 14, 3, 11, 4, 0, 7 and 0, respectively.

Availability

• The QTLEMM package is freely available from the Comprehensive R Archive Network at
https://cran.r-project.org/web/packages/QTLEMM/index.html.

• The development website is available at https://github.com/py-chung/QTLEMM.
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