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ABSTRACT

Endosperm traits are trisomic inheritant and are of great economic importance because they are usually
directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits
can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods
(diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches
to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical
method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-
interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to
broadly use the marker information either from only the maternal plants or from both the maternal
plants and their embryos in the backcross and F, populations for mapping endosperm traits. Due to the
use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can
provide better detection power and estimation precision, and as shown in this article it is capable of
analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and
current triploid methods using only one (or two) interval(s). Several important issues in endosperm
trait mapping, such as the relation and differences between the diploid and triploid methods, variance
components of genetic variation, and the problems if effects are present and ignored, are also addressed.
Simulations are performed to further explore these issues, to investigate the relative efficiency of different
experimental designs, and to evaluate the performance of the proposed and current methods in mapping
endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic
architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain
quality in crop science. The triploid MIM FORTRAN program for mapping endosperm traits is available
on the worldwide web (http:/www.stat.sinica.edu.tw/chkao/).

EREAL grains of many crops, such as rice, wheat,
barley, and corn, are major food and nutritious
resources for human, animal feeds, and industrial prod-
ucts. To enhance the yield and quality of grains, the
understanding of the genetic basis underlying the cereal
grains becomes increasingly important in crop study.
The cereal grains are generally composed of diploid (em-
bryo) and triploid (endosperm) tissues due to double
fertilization. During the process of double fertilization,
one of the two sperm cells fuses with the egg cell to
produce a diploid zygote, which later divides mitotically
to form the embryo, and the other sperm cell unites
with the central cell (a diploid set of maternal chromo-
somes) to form a triploid endosperm nucleus, which also
undergoes several mitotic divisions to become the endo-
sperm. It is known that the endosperm plays a major role
to nourish the embryo in the seed and the young seedling,
and the content of endosperms, such as protein, sugar,
oil, and carbohydrate concentration, showing quantita-
tive variation is directly related to the quality of cereal
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grains. The genetic improvement targeting these endo-
sperm traits can provide an efficient way to enhance
the grain quality, and it has attracted a lot of attention
in plant breeding (SADIMANTARA et al. 1997; MAZUR et
al. 1999; TAN et al. 1999; WANG and Larkins 2001; Lou
and Zau 2002). Genetically, the trisomic endosperm rep-
resents the next generation and has a more complex
genetic mechanism than the diploid tissues. For these
reasons, the approach of genetic analysis to endosperm
traits is different from that to traits under diploid con-
trol, and special treatments are required in the study
of endosperm traits.

Most endosperm traits show continuous variations.
Quantitative genetic models considering the triploid
nature of endosperm traits for studying the underlying
genetic basis have been proposed by several researchers
(GALE 1976; Mo 1987; BoGYO0 et al. 1988; Zau and WEIR
1994). These models generally focus on partitioning the
phenotypic variance of an endosperm trait into various
genetic and nongenetic (environmental) components.
These variance components do not provide all the de-
tailed information, such as the number, positions, and
effects about the underlying quantitative trait loci (QTL).
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To unlock this QTL information, the ideas of the tradi-
tional QTL mapping methods utilizing the well-distrib-
uted genetic markers along the genome to infer the
QTL parameters can be used. The traditional QTL map-
ping methods use the information about traits and
markers from the same generation, e.g., backcross or Fy
populations, to detect QTL controlling traits in diploid
organisms (LANDER and BotsTEIN 1989; HAaLEY and
KNoTT 1992; JANSEN 1993; ZENG 1994; KAO et al. 1999;
Kao and ZenG 2002). Although they are designed for
traits under diploid control, some researchers have ap-
plied them to mapping for QTL controlling endosperm
traits (TAN et al. 1999; WANG and Larkins 2001; WaANG
et al. 2001). Such application implicitly relies on an
invalid assumption that the endosperm traits are directly
controlled by the diploid maternal genomes, not by the
triploid endosperm genomes. Consequently, the tradi-
tional QTL mapping methods have limited power and
precision in mapping endosperm traits (Wu et al. 2002a).

Wu et al. (2002a,b) and Xu et al. (2003) pioneered
statistical methods to map endosperm traits by taking
the triploid nature of endosperms into account using
the marker information from the maternal plants (one-
stage design) in the backcross or F, population. Wu et
al. (2002a) further proposed a triploid QTL mapping
method by using the marker information from both the
maternal plants and their embryos (two-stage design),
to improve the mapping of endosperm traits in the
backcross population. Their methods have been shown
to be able to provide improved QTL resolution. As these
methods consider only one (or two) QTL ata time in the
model, they can bias QTL identification and estimation
when multiple QTL are located in the same linkage
group (LANDER and BOTSTEIN 1989; JANSEN 1993; ZENG
1994). To deal with these problems and further improve
the endosperm trait mapping, a potential way is to ex-
tend the current one-QTL model to a multiple-QTL
model such that more genetic variation can be con-
trolled in the model, as has been done in mapping traits
in diploid tissues (Koo and ZeNG 1997; Kao et al. 1999;
ZENG et al. 1999). In this article, a triploid method based
on multiple-interval mapping (MIM) using multiple
marker intervals simultaneously to fit multiple putative
QTL into the model is developed to achieve these pur-
poses. This MIM-based triploid method can broadly take
cither the one- or two-stage design in either the back-
cross or Fy, population into account to analyze endo-
sperm traits. As shown in this article, the proposed
method can detect QTL responsible for endosperm
traits with more power and better precision, and it can
readily analyze and search for epistatic QTL due to its
multiple-QTL approach. Besides, some related issues in
mapping endosperm traits, such as the problems of
using the diploid methods, the differences and relation
between the diploid and triploid methods, the genetic
variance components of endosperm traits, and the prob-
lems if QTL effects are present and ignored, are also in-

vestigated. A series of simulation studies was performed
to further investigate these issues, to examine the rela-
tive efficiency of different experimental designs, and to
evaluate the performance of the MIM-based method as
compared to the current methods in mapping endo-
sperm traits.

GENETIC MODEL OF ENDOSPERM TRAITS

Genetic model: For individuals in a backcross or F,
population of autogamous plants, the endosperm tis-
sues of their seeds can have four possible genotypes,
000, Q0gq, Qqq, and qqg, if only one QTL @ is consid-
ered (APPENDIX B). Some genetic models for defining
the genetic parameters and modeling the relationship
between their genotypic values and the genetic parame-
ters already exist (e.g., GALE 1976; Mo 1987; BoGyo et
al. 1988; PooN1 et al. 1992; Zru and WEIR 1994). Here,
the genetic model by Bogyo et al. is adopted for model-
ing, and it can be expressed in matrix notation as

3 0 0
P)
1
G L “
a| |1 2
al=lir ] a.
G, 1 2 ?
| 2 ]

where the notations Gy, G,, Gs, and G, denote the geno-
typic values of genotypes QQQ, QQq, Qqq, and qqgq,
respectively, and a, d;, and d, are the genetic parame-
ters. In Equation 1, the matrix with 4 X 3 dimension is
called a genetic design matrix as it specifies the relation-
ship between the genotypic values and genetic parame-
ters, and it is symbolized by D. The unique solutions of
a, di, and d, in terms of the genotypic values are
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The parameter p obviously is not a measure of mean
genotypic values as the genotypic values of AAa and
Aaa are ignored. The parameter ¢, which measures the
average effect of substituting Q for ¢, is defined as the
additive effect, and the parameter d; (d,), which mea-
sures the departure of the substitution effectin Q0 (¢q)



Endosperm Trait Multiple-Interval Mapping 1989

background, is defined as the first (second) dominance
effect. The genetic model can be expressed more suc-
cinctly as

G=pn+ax+ dzy + dz, i=1,2,3,4, (2)
where the coded variables are defined as
% i Qis QQQ
Yo if Qis QQq |
—% ifQisQqq
—% if Qis qqq,
1 if Qis Qqq

0 otherwise,

if Qis QQq

0 otherwise,

Z9 =

such that each genotype corresponds to its genotypic value.
If different genetic models are used for modeling, they
can be also expressed as in Equations 1 and 2, but note
that the parameters may have different meanings and
the variance component may have different structure.

The extension of the one-locus genetic model in Equa-
tion 1 to multiple, say m, loci is straightforward. Consider
m QTL, Qy, Qo, ..., and Q,, each with four genotypes
and three genetic parameters. Together, for m QTL,
there are 4™ possible different QTL genotypes and 3m
parameters if epistasis between QTL is not considered
or 3m(3m — 1) /2 parameters if only up to digenic epista-
sis is considered. The columns for epistasis can easily
be obtained from the product of columns of marginal
effects. By expanding the genetic design matrix D of
Equation 1 to a 4" X 3mor 4" X 3m(3m — 1) /2 matrix
(see THE MIM MODEL FOR MAPPING ENDOSPERM TRAITS),
the genetic model for m QTL in matrix notation can
be obtained. The genetic design matrix D plays an im-
portant role in the estimation of the QTL effects in the
triploid MIM model. The corresponding multiple-QTL
model in the form of Equation 2 can be easily obtained
using a regression principle. Following the regression
principle, the genetic model of m QTL by considering
up to digenic epistasis can be written as

Gi =W + Ea,vx,- + 2d71Zj1 + Edl'gz72
=1 =1 =1

m m

m
+ Ei/z]ak (x]xk) + Eia]lt“ ('sz/cl) + Eia/d“ (x/'zk?)
i<k JFk Niald

m m m
+ Eidﬂdkl (zjizm) + Eidﬂdm (zj121) + Ei:lﬂd“ (zj2211)
i<k <k <k

m

+ Eidjzd,r? (ZjQZk‘Z)) i = 1, 2: LR 4’”’ (3)
<k

where  is the intercept; a;, d;;, and dj, are the additive
and dominance effects of Q ;; ljap Tajdys lagdyy Uydyys U dygs
U yi> and i, denote the epistatic effects between

QTL; and x;, z;;, and zj, are the coded variables of the
additive and dominance effects for Q.

Variance components: Consider only one QTL in the
genetic model. It is easy to show that the variance of
the additive variable, V(x), is '%g, and the variances of
the two dominance variables, V(z;) and V(z,), are %,
in a backcross population. In an F, population, these
variances are 7, %, and %, respectively. The covari-
ances between the variables, Cov(x, z), Cov(x, zy), and
Cov(z, z9), are %s, Y, and —%, respectively, in the
backcross population, and they are %5, —%s, and —Y%,,
respectively, in the F; population. Therefore, the genetic
variance components of an endosperm trait are

, 19 7 7 5 1

oG = —ag + 7d% + 7d<% + 7Cld1 + 7ad2 - Ldld?
16 64 64 16 16 32
(4)

in the backcross population, and they are

of = za2 + ldf + ld§ + lad] - 1adg - idldg (5)

4 64 64 8 8 32
in the F, population. It shows that each effect contributes
not only to its variance but also to the covariances with
other effects, and that the relative importance of effects in
contributing to the total genetic variance depends not only
on their sizes but also on their associated coefficients (the
variance or covariance of their coded variables). When
m QTL each with complete effects are considered to-
gether, the genetic variance has [9m*(3m — 1)? + 6m
(3m — 1)]/8 components. For example, the total ge-
netic variance has 120 components for m = 2 in both
populations (not shown), and it reduces to 111 compo-
nents in the backcross population and 83 components
in the F, population when the two QTL are unlinked
(APPENDIX A). Among the coefficients of the variances
involving the epistatic effects, the coefficients associated
with the additive-by-additive effect (i,,,) are relatively
much larger than those of other variances and covari-
ances. For example, in the F, population, the coefficient
of i, (the variance of xx,) is */js (APPENDIX A); i,
the variance contributed by i,,, is /s X i; ,,, the coeffi-
cients of the other four epistatic variances involving
the additive effects are %,, and the coefficients of the
remaining four different types of epistatic variance are
%%006. The coefficients of the covariances between the
additive effects and the epistatic effects involving the
additive effects are %, and the coefficients of the covari-
ances between i, ,, and the other epistatic effects involv-
ing the additive effects are %4. The other covariances
are relatively smaller. Therefore, it implies that, for the
same order of the epistatic effects, the epistatic effects
involving the additive effects, especially the additive-
by-additive effect, are relatively easy to detect, and the
other epistatic effects are relatively difficult to detect in
practical QTL mapping (with a limited sample size).
A similar pattern can also be found in the backcross
population. For two nonepistatic QTL, the variance
components are
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ot = Lot + Lt + Lty + Loy + Lty + L,
4 64 64 47 64 64

1 1 1 1 1 1
+ gdldn - glhdlz - §d11d12 + gﬂzdm - gazdzz - ;2d21d22
1 ) 1 )
+ 1[9(1 = 2n9) + 5(1 = 2ny)*laya, + g(l = 2n9)*ardy
1 2 1 2
= <1 = 2ny)’ardyy + (1 — 2ny)°dyyay
8 8
1 1
+ {Z[T?z + (1 — ny)'l — 3*2]1111@1
1 , 1
+ {5[7’12(1 - n)]* — %]dndm
1 5 1 1
- §(1 - 2712)Zazd12 + {5[712(1 - ”12)]2 - i]dlzd?l

+ E[Til‘z + (1 - n)'l - ;E}dI‘ZdQ%
where 7, is the recombination fraction between the
two QTL, in the F, population. Similarly, the variance
components for the backcross population also have 21
terms (not shown). If the two nonepistatic QTL are
unlinked, the variance components reduce to a much
simpler form with the first 12 components.

THE RELATION BETWEEN THE DIPLOID
AND TRIPLOID METHODS

The traditional QTL mapping methods are usually de-
signed to map for QTL controlling traits in diploid organ-
isms (LANDER and BoTsTEIN 1989; HALEY and KNOTT
1992; JanseEN 1993; ZENG 1994; Kao et al. 1999; Kao
and ZeNG 2002). These diploid methods classify the
genotypes of each QTL into two groups, QQ (¢g¢) and
Qg, for the backcross population or three groups, ¢g,
Qq, and QQ, for the F, population, and they detect the
association between the QTL genotype and the trait
value both measured at the same generation for QTL
mapping. Although the endosperms are known to be
triploid and represent the next generation, some re-
searchers have applied these diploid methods to map-
ping endosperm traits of the backcross or F, individuals
(TAN et al. 1999; WANG et al. 2001; WU et al. 2002a).
Therefore, it is important to investigate the problems
of using the diploid methods and the relation between
the diploid and triploid methods in mapping endo-
sperm traits.

Diploid methods: When applying the diploid meth-
ods to mapping endosperm traits and only one QTL is
considered, the statistical model for n endosperms in
the backcross population can be written as

Y= wt bt e, i=1,2. . .0 (6)

where w¥ is coded as

wF = Y if Qis Qq,
=% if Qis qq;

y; is the endosperm trait value; p is the intercept; b
is the QTL effect measuring the genotypic difference
between Qg and ¢q. The statistical model for »n endo-
sperms in the Fy, population can be expressed as

y1:}~L+b<le;+bdw(>ll<l+€1’ l:1,2,,7l, (7)

where w¥ and wi are defined as

1 if Qis R
. Q. ©Q %o if Qis Qg,
wk =10 it Qis Qq, wi =
) ) —Y% otherwise;
—1 if Qis ¢q,

b, and by denote the additive and dominance effects.
The residual error €;in the above two models is assumed
to have a normal distribution with mean zero and vari-
ance of. As QTL may not be coincident with markers,
the QTL genotype is usually unobservable. Therefore,
the likelihood of the diploid model is known as a mix-
ture of normals,

LY, X) =[] |:EI71']'N(P~;', 03)1, (8)

=1 j=1

where W’s correspond to the genotypic values of the k
different QTL genotypes (k = 2 for the backcross model
and k = 3 for the F; model), and the mixing proportions,
pi’s, are the conditional probabilities of QTL genotypes
(see Tables 1 and 2 in Kao and ZeNG 1997). The maxi-
mum-likelihood estimate (MLE) of the QTL effects and
their asymptotic variance-covariance can be obtained
using the EM algorithm (DEMPSTER et al. 1977) and
Lours’s (1982) method by treating the normal mixture
model as an incomplete-data problem.

The relation between the diploid and triploid models:
When applying the diploid models to mapping endo-
sperm traits, it is generally assumed that the endosperm
traits are directly controlled by the diploid genomes of
the backcross or F, individuals. This assumption, how-
ever, violates the fact that the triploid endosperms repre-
sent the genetic composition of the next generation,
which, in fact, is mainly responsible for the trait varia-
tion. Consequently, as compared to the use of the trip-
loid model, some problems, such as less power and
precision in QTL detection, will occur in the diploid
model as shown below.

When an endosperm trait affected only by one QTL,
Q, is regressed on a marker M along the genome to infer
Q, the regression coefficient of Min the backcross diploid
model is

3 1
by= (1 — 2r) §(l + Z(dl + dy) |, 9)

where 7y, is the recombination fraction between M and
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Q, in the backcross population (APPENDIX B). If the
marker M is coincident with Q(rgy = 0), the coefficient
reduces to by = %a + Y(d, + ds). The estimated coeffi-
cient of the backcross diploid model is composed of
the additive effect and two dominance effects. In the
F, diploid model, the regression coefficient for the addi-
tive effect of M is

3(1 — 21y
_ ( TQw)a

by, = 5 , (10)
and the coefficient for the dominance effect is
1 — 27,
by, = ——— 2, + dy). (11)

If M and Q are coincident, the additive coefficient re-
duces to by = 3a/2 and the dominance coefficient re-
ducesto by, = (d; + dy) /4. The additive coefficient esti-
mated in the F, diploid model is 1.5 times the additive
effect, and the estimated dominance coefficient is one-
quarter of the sum of the two dominance effects. When
both of the additive and dominance variables are fitted
in the model, the partial regression coefficients are the
same as Equations 10 and 11 because of orthogonality.
The above derivations present the relation of parame-
ters between the diploid and triploid models and show
that the diploid models cannot directly estimate the
QTL effects in mapping endosperm traits.

The phenotypic variance conditional on the marker
M in the backcross diploid model is

O-)Zv.M =o'+ (1 - QTQM)2

5 3 1 1 1
X gaQ + g(d? +dj) + g(adl) - g(ﬂdz) - w(dldz):\

(12)

(apPENDIX B). It shows that the genetic variances and co-
variances contributed by the additive and dominance ef-
fects cannot be fully controlled in the model. The percent-
ages of additive and dominance variances uncontrolled
by the diploid model are ~47.4% (9/19) and 14.3% (1/
7), respectively. For the F, population, the phenotypic
variance conditional on the additive and dominance vari-
ables of marker M is the same as that in the backcross
model (APPENDIX B). The percentages of uncontrolled
additive and dominance variances are ~63.4% (9/14)
and 14.3% (1/7), respectively. In addition, a part of the
genetic covariances is also uncontrolled by the diploid
model. The uncontrolled variances and covariances will
become a part of the genetic residual, causing inflation
of the sampling variance of the coefficients. The sampling
variance of the regression coefficient of the backcross
model is ~V(by) = n ! X 03/ 0%, where o3 is the vari-
ance of the coded variable of M, in a large sample with
size n (STUART and OrD 1991). Using the approxima-
tion, the sampling variances of the regression coeffi-

cients between the diploid and triploid models can be
compared when M and Q are coincident (rg = 0).
Taking a QTL with no dominance (a = 1, d; = dy = 0)
and contributing 10% of the trait variation as an exam-
ple, the conditional phenotypic variance roughly equals
to o? for the triploid model, and it is ~"*/; X o? for
the diploid model. The variances o}, for the two different
models are ¥, and '%;, respectively. Consequently, the
sampling variance of the regression coefficient for the
diploid model is ~5.03 times that for the triploid model
in the backcross population. It is ~3.64 times that for
the same setting in the F, population. The sampling
variances of the regression coefficients in the diploid
models are larger than those in the triploid model.

On the basis of the above findings, two problems will
occur if the diploid models are applied to mapping
endosperm traits. First, the estimates in the diploid mod-
els are generally confounded by the additive and domi-
nance effects of endosperm QTL (Equations 9-11). Sec-
ond, the sampling variances of the estimates will inflate
because the genetic variances and covariances contrib-
uted by QTL are not fully controlled in the model.
Consequently, the diploid models cannot directly esti-
mate the effects of the endosperm QTL, and they have
the confounding problems in estimation and will de-
crease the power in endosperm QTL detection.

THE MIM MODEL FOR MAPPING
ENDOSPERM TRAITS

Endosperm trait multiple-interval mapping: Assume an
endosperm trait is controlled by m QTL, Q,, Q,, . . .,
and Q,, located at positions p;, ps, . . ., and p,, in m
different marker intervals, f;, &, . . . , and I,, along the
genome. If only up to digenic epistasis is considered,
the value of an endosperm trait, y,, in the backcross or
F, population can be related to the m putative QTL by
the model

m m

m m
_ * * * ; * ok
y=pt Eﬂszj + Edjlzijl + Edj‘lziﬂ + Ela/ak(xijxik)
=1 =1 j=1 <k

m m m
+ Eia/d,d(x?leﬁl) + Eia]dm(x?;zﬁﬂ) + Eidﬂd,(‘(zf{flzﬁl)
Ak Ak <k

m m m
+ Ei(lﬂdw(zjlz;:;?) + Eid]?d“(zilkzﬁrl) + Eidﬁdw(Z?;‘?Z:l;z?)
<k <k <k

+e, i=1,2,...,n, (13)

where the parameters and coded variables have the
same definitions as those in the genetic model in Equa-
tion 3, and the residual error €; is assumed to follow
normal distribution with mean zero and variance ¢*. In
QTL mapping, the endosperm QTL genotype of any
putative QTL, say Q;, j = 1, 2, . . ., m, is usually not
observable and could be Q;0Q,Q;, Q,;Q,9;, Q;q;q;» or
q;q,q; with different (conditional) probabilities for dif-
ferent endosperm i The conditional probabilities (distri-
bution) for each Q; under different experimental de-
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signs can be derived by using its flanking marker
information from the maternal plants (and their em-
bryos) as shown below, and then the normal mixture
likelihood of the model can be constructed. As multiple
(m) intervals are used to infer the conditional distribu-
tion of the (m) endosperm QTL for modeling, this
approach is called multiple-interval mapping in QTL
mapping (Kao and Zexc 1997; Kao et al. 1999), and
this model is a MIM-based triploid model. By specifying
appropriate conditional probabilities to the 4" endo-
sperm QTL genotypes of the m QTL, this triploid MIM
model can be applied widely to mapping endosperm
traits using data from various designs and populations.

Likelihood: For any interval, [, flanked by the two
markers, M;and N}, the maternal plants or their embryos
can have four and nine different marker genotypes in
the backcross and F, populations, respectively. If both
the plants and embryos are considered together, their
marker genotypes can have 16 and 25 combinations in
the two different populations, respectively (APPENDIX
¢). For any Q;in [, the (conditional) probabilities of
the four endosperm QTL genotypes can be inferred
only from the maternal plants (one-stage design) or
both from the maternal plants and their embryos (two-
stage design) as shown in APPENDIX c. To assist with
explaining the parameter estimation, these conditional
probabilities are extracted to form a matrix Q;, j = 1,
2, ..., m. The dimension of Q;is 25 X 4 (16 X 4) for
a two-stage design in the F, (backcross) population, it is
9 X 4 (4 X 4) for a one-stage design in the F, (backcross)
population (note that Q denotes QTL, and Q denotes
the conditional probability matrix). For the total m QTL
in the m different intervals, there are 4" possible endo-
sperm QTL genotypes in each of 25" (16", 9", or 4")
possible marker genotypes. The 4" joint conditional
probabilities of endosperm QTL genotypes can be ob-
tained by the product of individual conditional proba-
bilities for each QTL using the property of conditional
independence among different QTL (Kao and ZENG
1997), and they play the role of mixing proportions
in the normal mixture likelihood. Let the conditional
probabilities of 4" possible QTL genotypes for endo-
sperm ¢ from designs and populations be denoted as
pis, j = 1,2, ..., 4" (note that p/s denote QTL
positions, and p,’s denote the conditional probabilities).
The likelihood of the triploid MIM model for the n
endosperms is a mixture of 4" normals as

LOY. X) = [ {Epijzv(u,, o“’)}, (14)

=1 j=1

where ;s correspond to the genotypic values of the 4"
different QTL genotypes, and the mixing proportions,
pi’s, are the corresponding joint conditional probabili-
ties. The density of each individual ¢ is a mixture of 4"
possible normal densities with different means, p;’s, and
mixing proportions, p;’s. The general formulas proposed

by Kao and ZenG (1997) are used to obtain the MLE
of the effects and their asymptotic variance-covariance
matrix.

Parameter estimation: The application of the general
formulas to obtain the MLE and the asymptotic variance-
covariance matrix for the triploid MIM model is based
on the construction of the two matrices D and Q, where
D is the genetic design matrix for characterizing the
QTL effects, and Qis the conditional probability matrix
containing the mixing proportions of QTL genotypes.
Given the two matrices, the MLE of QTL effects and
their asymptotic variance-covariance matrix of the trip-
loid model can be easily obtained. The construction of
the D and Q matrices is described below.

For one QTL (m = 1) in the model, there are four
endosperm QTL genotypes and three genetic effects,
and the genetic design matrix is a 4 X 3 matrix as shown
in Equation 1. For m QTL in the model, if epistasis
between QTL effects is not considered, there are 4"
endosperm QTL genotypes and 3m genetic effects (m
additive effects, m first dominance effects, and m second
dominance effects), and the genetic design matrix is
then a 4" X 3m matrix. If all the possible digenic epista-
ses between QTL are considered, the column dimension
of D becomes 3m(3m — 1)/2. An example of genetic
design matrix with m = 2 and all possible effects (with
dimension 16 X 15) can be found in Wu et al. (2002a).
The joint conditional probability matrix Q for the m QTL
has a dimension 9" X 4" (4" X 4™) or 25" X 4" (16" X 4")
under the one- or two-stage design in the F, (backcross)
population, and they can be obtained by Q = Q; ® Q,
®...Q Q,, where ® denotes the Kronecker product.
The 4" mixing proportions of any endosperm i, p;’s, in
the likelihood can be found to be one of the rows in Q
according to the marker genotypes of the plants (and
embryos). By applying the matrices D and Q to the general
formulas, the MLE of the effects and their asymptotic
variance-covariance matrix can be readily obtained.

The problems if effects are present and ignored: Three
marginal genetic effects are associated with each endo-
sperm QTL. In practice, QTL may display all or some of
the effects (see Wu et al. 2002b as an example), and,
before mapping, it is not known which effects are pres-
ent or absent. The possible drawback of fitting the ab-
sent effects (overfitting) in the model is the loss of power
in QTL detection, as higher critical value is usually re-
quired to claim the significance of QTL. If some dis-
played effects are ignored in the model, not only the
power of detection will be affected but also the con-
founding problem will occur as discussed below.

Assume the endosperm trait value yis affected by two
nonepistatic endosperm QTL, Q; and Q,. When the
trait value is regressed on Q; by fitting only its additive
variable x; into the model, the regression coefficients
in terms of the QTL effects and linkage parameter for
the backcross and F, populations are shown in APPENDIX
D. It shows that the estimate of the additive effect of Q,
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is not unbiased for @ and is confounded by its other
effects and the effects of Q,. The confounding of Q,
effects is through linkage parameter. If Q, and Q, are
unlinked, the regression coefficients reduce to much
simpler forms without the confounding of Q,. For exam-
ple,if n, = 0.5, b, = @ + 5d;1/38 + dy»/38 for the back-
cross population, and b, = @ + dn/28 — dy/28 for the
F, population. The confounding of Q, disappears, and
the coefficient is confounded only by its dominance
effects. The same confounding problem can also be found
for the estimate of the dominance effect if fitting only
its dominance variable z in the model (APPENDIX D).
If epistasis is present and ignored in the model, most
of the epistatic effects will be confounded in the estima-
tion as most of the covariances between the marginal
and epistatic effects are not zero whether they are linked
or not (result not shown). To avoid the confounding
problem and enhance the detection power, it is desir-
able to fit only those displayed effects into the model
in QTL mapping.

SIMULATION STUDY

Asseries of simulations was performed to achieve three
purposes: (1) to verify the derived relations and com-
pare the differences between the diploid and triploid
models, (2) to examine the performance of the triploid
method in different experimental designs and popula-
tions, and (3) to evaluate the performance of the pro-
posed MIM-based triploid method as compared to the
current methods in mapping endosperm traits. The sim-
ulation study includes two parts. The first part is to
achieve the first two purposes, and the second part is
to achieve the third purpose. In each part, the sample
size is assumed to be 200. The first part assumes one
QTL affecting the endosperm trait with two levels of
heritability (%), 0.1 and 0.2. It includes four different
parameter settings: (1) a=1,d, = =2, dy = —2 (G, =
%, Gy = =%, Gy = =%, and G, = —%); (2) a=1,d =
2,dy =2 (G =%, Gy =%, Gy = %, and G, = —%); (3)
a=1,d = —-2,d, = 0; (Glz%, Gy = =%, Gy = =%,
and G, = —%);and (4) a=1,d, = 0,dy = 0 (G, = %,
Gy = Y%, Gy = —%, and G, = —%). Among the four
settings, the QTL genotypes are complete-recessive type
in the first and third settings, and they are complete-
dominance type in the second setting. For each setting,
the QTL is placed in the middle of a chromosome with
six 20-cM equally spaced markers, and data from both
the one- and two-stage designs in the backcross and F,
populations were generated. The number of simulation
replicates is 500. Both the diploid and triploid methods
were used to detect the QTL using the generated data
sets. The results are shown in Tables 1 and 2. The second
part assumes three chromosomes each with six 20-cM
equally spaced markers, and each chromosome contains
only one QTL. The three unlinked QTL, Q,, Qy, and
Qc, are assumed to contribute 40% to the total trait

variation together and to be located in the middle of
the chromosomes. Data from the two-stage design in the
F, population were generated. The parameter setting is
@ =3, dy = —3,and djy = —3 for Q,; ay = 2.5, dy =
4, and dy» = 4 for Qp; and a; = 1.5, d3; = 0, and
ds; = 0 for Q. There is additive-by-additive interaction
between Qp and (¢, and the epistatic effect i, is as-
sumed to be 1. Under the parameter setting, the genetic
and environmental variances are ~38.37 and 51.66, re-
spectively. In the total genetic variance, the marginal
effects of the three QTL contribute ~45.44, 36.32, and
10.26%, respectively, and the epistatic effect contributes
~7.98%. In the genetic variance contributed by Q,
(Qs), the variance contributed by the two dominance
effects is ~11.29% (25.11%). The number of simulation
replicates is 100. Both the current triploid method con-
sidering only one QTL, i.e., the interval-mapping (IM)-
based method, and the proposed MIM-based method
were used to analyze the data. The results are shown in
Table 3. In each scenario, permutation tests proposed by
CHURCHILL and DOERGE (1994) were used to determine
the critical values for power calculation.

Tables 1 and 2 show the results of the first part of
the simulation. The relationship between the estimates
of the diploid and triploid models corresponds very well
with the derived prediction (Equations 9-11). For the
backcross population, the effects of the diploid models
in the four settings are expected to be 0.5, 2.5, 1.0, and
1.5, according to Equation 9. The means of the estimates
are found to be 0.610, 2.516, 1.040, and 1.521, respec-
tively, for 72 = 0.1 (Table 2), and they are 0.599, 2.489,
1.005, and 1.475, respectively, for #* = 0.2 (Table 3).
For the F, population, the means of the estimated addi-
tive and dominance effects in the diploid model are
also found to be very close to the predicted values in
both levels of heritability. For example, the mean of the
estimated additive effects for the first setting with #* =
0.1is 1.499 (predicted value 1.5), and the mean of the
estimated dominance effects for the second setting with
W = 02 is 1.010 (predicted value 1.0). The estimated
residual variance by the diploid model is found to be
upwardly biased in all cases as expected by Equation 12.

The most striking differences in power and estimation
between the diploid and triploid models are found in
the first parameter setting when the additive and domi-
nance effects are in the opposite direction and #* = 0.2
(Table 2). The detecting powers of the diploid model
are 0.160 and 0.100, respectively, in the two different
populations. The detecting powers of the triploid model
are 0.508 and 0.926, respectively, under the one-stage
design, and they increase to 0.980 and 0.998, respec-
tively, under the two-stage design. For QTL position,
the means of position estimates by the diploid model
are 46.46 (SD 28.58) and 49.63 (SD 11.10), respectively,
in the two populations. The means of position estimates
provided by the triploid model under the two-stage de-
sign are 49.77 (SD 7.08) and 50.21 (SD 5.68), respectively,
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TABLE 3

Simulation results of QTL mapping using the IM- and MIM-based triploid methods

Qc

a; = 1.5 Power i,, =1 o® = 51.66

Qs
2.5 dy = 4 dyy = 4 Power

Qx4

3 dy

Posi = 50

Ay =

Posi = 50

-3 dy = —3 Power

ay =

Posi = 50

Method

0.41

1.612

0.94 50.83 (20.43)

4967  2.662

(0.543) (2.901) (3.408)

2.543

0.97

—3.955
(2.585)

—1.449

48.94 (7.86) 3.003

M

(0.811)

50.95 (6.50)

(0.554) (3.451)

53.61

0.57

1.591

1.00 49.40 (18.29)

2.958

4.630
(0.530) (2.580)

2.546

1.00

—3.698
(2.737)

—2.033

49.37 (6.34) 3.003

MIM (without

(0.716) (9.171)

(3.346)

50.60 (6.63)

(0.551) (2.836)

epistasis)

0.71  0.904 50.39

1.00 48.97 (17.18) 1.510

4.153 3.538

2.527

1.00

—3.695
(2.675)

—92.991
(2.745)

MIM (with epistasis) 49.37 (6.34) 2.986

(8.26)

(0.510)

(4.079) (0.698)

(0.531) (8.159)

50.60 (6.63)

(0.545)

The number of simulated replicates is 100. The three unlinked QTL, Q,, Qp, and Qc, contribute 40% of the trait variation and are located in the middle of the chromosomes.
The average LRT statistics provided by IM are 31.12 (SD 10.00), 25.99 (SD 8.82), and 9.26 (SD 6.45) for Q,, Qp, and Q, respectively. The average LRT statistics provided

by MIM without epistasis are 35.18 (SD 10.57), 30.07 (SD 10.42), and 11.36 (SD 6.97), respectively. The average LRT statistic provided by MIM with epistasis is 16.84 (SD

7.79) for Q¢. The experimentwise critical values at 0.05 significance level based on 1000 permutations are 13.48, 12.57, and 9.36 for the additive-, one-dominant-, and

complete-effect models. Posi, QTL position.
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and they are 49.00 (SD 24.26) and 51.03 (SD 11.19) under
the one-stage design, respectively. Therefore, the triploid
model performs significantly better than the diploid
model in this setting. In other settings, the triploid model
under the two-stage design is also found to be much
more powerful and precise than the diploid model, but
the triploid model under the one-stage design seems to
provide power and precision (in position estimation)
similar to the diploid model. For example, in the third
setting of the backcross population with 72 = 0.1, the
diploid model has power 0.400 and mean estimated
position 49.03 (SD 23.68; Table 1). For the triploid
model, they are 0.406 and 50.33 (SD 23.67) under the
one-stage design, and they are 0.800 and 49.15 (SD
12.38) under the two-stage design. In the second setting
of the F, population with 72 = 0.1, the diploid model
has power 0.668 and mean estimated position 49.66 (SD
19.16). For the triploid model, they are 0.648 and 49.85
(SD 19.05) under the one-stage design, and they are
0.796 and 49.86 (SD 12.35) under the two-stage design.
A'similar pattern can also be found for the other settings
in Tables 1 and 2.

The triploid model is found to have better perfor-
mance under the two-stage design than under the one-
stage design in this study. Under the two-stage design,
the triploid model can provide higher power for QTL
detection and more precise estimates for positions and
effects. For example, in the first setting with " =0.1
in the backcross population, the powers are 0.190 and
0.730, respectively (Table 1), and the means of the posi-
tion estimates are 47.48 (SD 29.98) and 49.39 (SD
15.10), respectively, under the two different designs. In
the second setting with A2 = 0.2 in the F, population,
the powers are 0.938 and 0.986, respectively (Table 2),
and the means of the position estimates are 50.70 (SD
11.65) and 49.77 (SD 6.37), respectively, under the two
different designs. Besides, the triploid model under the
one-stage design seems to have problems in correctly
estimating the effects in the backcross population when
the additive and dominance effects are in opposite direc-
tion. For example, in the first setting (¢ = 1, d; = —2,
and dy = —2), the means of the effect estimates by the
triploid model under the one-stage design are 0.199
(SD 0.452), 1.587 (SD 2.342), and —0.589 (SD 2.202),
respectively, for A2 = 0.1 (Table 1), and they are 0.143
(SD 0.344), 2.117 (SD 1.628), and —0.766 (SD 1.547),
respectively, for #* = 0.2 (Table 2). These estimates are
highly biased and imprecise under the one-stage design.
Similar problems can also be found in the third setting
(a=1, d = —2,and dy, = 0) for the backcross popula-
tion. Such estimation problems, however, do not occur
in the F, population or under the two-stage design (see
Tables 1 and 2), which may suggest that the F, popula-
tion is a better population than the backcross popula-
tion and the two-stage design might be a more suitable
design than the one-stage design for mapping endo-
sperm traits.
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The simulation in the second part aims to evaluate
and compare the differences between the proposed
MIM-based and the current IM-based methods in map-
ping endosperm traits. The results are shown in Table
3. When the IM-based method is used to detect QTL,
three different models, the additive-effect model (with
a only), the one dominant-effect model (with aand d;),
and the complete-effect model (with a, d;, and ds), will
be implemented in the search. The experimentwise crit-
ical values at 0.05 significance level are found to be
9.36, 12.57, and 13.48 for the three different models,
respectively, by 1000 permutations. For the additive-
effect model, the powers to detect Q4, Qp, and Q are
0.97,0.96, and 0.41, respectively. For the one dominant-
effect model, the powers to detect the three QTL are
0.97,0.95,and 0.31, respectively. For the complete-effect
model, the powers are 0.97, 0.94, and 0.31, respectively.
The three models have similar powers to detect Q , and
Qp, and the additive-effect model has greater power
than the other two models to detect Q. Among the 100
replicates, the three models can detect either both or
one of Q, and Oy in each replicate. The results of map-
ping Q4 and Qjy by the complete-effect model and map-
ping Q¢ by the additive-effect model are presented in
Table 3. In Table 3, the means of the position estimates
for the three QTL are 48.94 (SD 7.86), 50.95 (SD 6.50),
and 50.83 (SD 20.43), respectively. The average LRT
statistics are 31.12 (SD 10.00), 25.99 (SD 8.82), and 9.26
(SD 6.45), respectively, for the three QTL. This shows
that the larger QTL, Q4 and Qj, can be detected with
higher power and better precision as compared to the
small QTL, Q. Besides, the estimates of additive effects
generally are more precise than those of dominance
effects. For example, the mean of 4, is 3.003 (SD 0.554),
and the means of d;, and 6212 are —1.449 (SD 3.451) and
—3.995 (SD 2.585), respectively. One of the advantages
of the MIM-based method is that it is capable of fitting
the detected QTL into the model in further searching
for the other QTL. When the MIM-based method con-
siders only one QTL in the model (m = 1), the mapping
results are identical to those obtained by the IM-based
method. Among the 100 replicates analyzed by the IM-
based method, most of the replicates (91 replicates)
have both Q, and Qj detected. For the remaining 9
replicates, either Q4 or Qy is detected. If the detected
Q. (Qp) isfitted into the MIM-based model in the search
(m = 2), the undetected Qpy (Q,) in the 9 replicates
can be identified and the already detected Qy (Q4) in
the other replicates will have a larger LRT statistic by
including either their partial or complete effects in the
model (that is, the power for detecting Q, and Qj is
1.0 for MIM with m = 2). To shorten the article, only
the results of considering complete effects of Q4 and
Qy in the analysis are presented (Table 3). The average
(partial) LRT statistics of Q4 and Qy increase to 35.18
(SD 10.57) and 30.07 (SD 10.42), respectively. Further,
if these two detected QTL are fitted into the MIM model
for QTL search along the third chromosome (m = 3),

the power to detect Q¢ is 0.57 (average LRT statistic
11.36 with SD 6.97) if only the additive effect (as) is
considered (Table 3). The power decreases to 40% (36%)
if the one-dominant-effect (complete-effect) model is con-
sidered (not shown). The means of the position esti-
mates are 49.37 (SD 6.34), 50.60 (SD 6.63), and 49.40
(SD 18.29) for the three QTL, respectively, which be-
come more precise as compared to those by the IM-
based method. If epistasis is taken into account to search
for the third chromosome, many different types of epis-
tasis can be considered. For illustration, only the addi-
tive-by-additive epistatic effect between QTL is consid-
ered (see also GENETIC MODEL OF ENDOSPERM TRAITS for
first taking the additive-by-additive effect into account).
Among the three possible additive-by-additive effects,
only the consideration of i,,, improves the QTL detec-
tion. The power increases to 71% (Table 3) when i,
is considered in the MIM model (m = 3 with epistasis)
to search for Q¢ (critical value 12.57 by permutation
tests; average partial LRT statistic 16.84 with SD 7.79).
The mean estimate of i,,, is 0.904 (SD 0.510), and the
mean estimate of o is 50.39 (SD 8.26). The mean of
position estimate for Q¢ becomes 48.97 (SD 17.18), and
the mean of the estimated effect is 1.510 (SD 0.698),
which is more precise than that obtained by ignoring
epistasis.

CONCLUSION AND DISCUSSION

The endosperm of a seed is a triploid tissue and has a
more complicated genetic mechanism than the diploid
tissues. Therefore, the traditional QTL mapping meth-
ods (LANDER and BoTsTEIN 1989; HALEY and KNoTT
1992; JANSEN 1993; ZENG 1994; CHURCHILL and DOERGE
1994; Kao et al. 1999; Kao and ZeNG 2002) designed
for traits under diploid control are not appropriate ap-
proaches to map for QTL underlying the endosperm
traits because they ignore the triploid nature of endo-
sperms. Wu et al. (2002a,b) and Xu et al. (2003) first
considered the triploid inheritance of endosperms to
propose IM-based triploid methods in the detection of
the underlying QTL. In this article, a new triploid ap-
proach based on the MIM method is developed to take
multiple QTL into account in the model for mapping
endosperm traits. The proposed method can be imple-
mented to analyze data from either the one-stage design
using only maternal genotypes or the two-stage design
using both maternal and embryo genotypes in the back-
cross and F, populations. As shown in this article, the
triploid MIM method can provide better detection power
and estimation precision, and it can analyze and search
for epistatic QTL directly in comparison with the cur-
rent IM-based methods when mapping endosperm
traits. Some important issues in mapping endosperm
traits, such as the problems of using the diploid mapping
methods, the relation between the diploid and triploid
methods, the variance components of genetic variance,
the problems if effects are present and ignored, and
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the relative efficiency of the diploid and triploid models
under different experimental designs, are also investi-
gated analytically or by simulation.

The triploid mapping method can provide better
power in detection and more precise estimation under
the two-stage design than under the one-stage design
in mapping endosperm traits as shown in the simulation
study (Tables 1 and 2) and also demonstrated by Wu
etal. (2002b). This is because the two-stage design, which
provides both the maternal and embryo marker geno-
types, is more informative than the one-stage design,
which offers only the maternal marker genotype, in infer-
ring the conditional probabilities of the endosperm QTL
genotypes (see the website http:/www.stat.sinica.edu.tw/
chkao/ for the conditional probabilities under different
experimental designs). In the backcross population, the
one-stage design provides only 4 different marker geno-
types, and these marker genotypes are noninformative
in inferring QQQ, QQgq, and Qgq as equal conditional
probabilities are assigned to them. The two-stage design,
however, can provide 16 different marker genotypes,
and the marker genotypes are not informative only for
0QQgq and Qgqq. In the F, population, the one- and two-
stage designs can provide 9 and 25 marker genotypes,
respectively, and each marker genotype in either design
is noninformative only for the genotypes Q Qg and Qqq.
Therefore, the two-stage design is generally more infor-
mative than the one-stage design, and the F, population
is generally more informative than the backcross design
in inferring the conditional probabilities. As these con-
ditional probabilities are the mixing proportions in the
normal mixture likelihood, they play a very important
role in the quality estimation of QTL parameters for
the model. A more informative design or population
can provide more detailed information in inferring the
conditional probabilities and thus can help improve the
estimation of QTL parameters. This argument can ex-
plain the reasons why the performance of the triploid
method is generally poor under the one-stage design
in the backcross population as compared to the perfor-
mance under another data structure (see, for example,
the simulation results in Tables 1 and 2 when the additive
and dominance effects are in the opposite directions) and
why the triploid method under the two-stage design can
perform well with satisfactory power and precision in all
the parameter settings. The two-stage design generally
requires more genotyping work as both the genomes
of the plants and their seeds need to be genotyped, and
different sampling strategies for allocations of a given
sample size between the two generations should be con-
sidered for cost control. Besides, Wu et al. (2002b) also
pointed out that the different sampling strategies for
allocations can affect the parameter estimation. There-
fore, the best strategy of allocation for the two-stage design
under the consideration of cost and estimation deserves
further investigation in practical QTL mapping.

The traditional diploid methods proposed for map-
ping diploid traits have been applied to mapping endo-

sperm traits by several researchers (TAN et al. 1999; WANG
and LARKINS 2001; WANG et al. 2001). Such applications
generally violate the traditional belief that the endo-
sperm traits are under the control of triploid mecha-
nisms (BENNER et al. 1989; Zanu and WEIR 1994; Wu
et al. 2002a,b). If the diploid methods are applied to
mapping endosperm traits, the confounding problem
in estimation will occur (Equations 9-11), and the sam-
pling variances of the estimates will inflate. Conse-
quently, the diploid methods can cause some problems,
such as bias in estimation and loss in power, in mapping
endosperm traits. Although the diploid methods have
these problems, the simulation study indicates that, in
some parameter settings, its performance (in power and
position estimate) can be similar to the triploid method
under the one-stage design (Tables 1 and 2) due mainly
to the correlation between the genomes of the maternal
plant and its endosperms. Therefore, the diploid method
can still be used as a preliminary method in mapping
endosperm traits. By taking the triploid mechanism into
account, the triploid method, especially under the two-
stage design, can effectively solve the problems and sig-
nificantly improve the mapping of endosperm traits.
The proposed MIM-based triploid method is a multi-
ple-QTL model. This multiple-QTL approach distin-
guishes itself from the current IM-based methods of Wu
et al. (2002a,b) and Xu et al. (2003) by the ability to use
multiple-marker intervals simultaneously to fit multiple
QTL into the model in mapping endosperm traits. As
a result, the proposed method can provide greater
power and precision, and it can readily analyze and
search for epistatic QTL in endosperm trait mapping.
Besides, the estimation procedures between these meth-
ods are different. The likelihood of the MIM-based
method is a mixture of 4" normals and will become
increasingly unwieldy in maximization as the number
of QTL (m) fitted into the model increases. To solve
the maximization problem with large m, the general
formulas proposed by Kao and ZeNG (1997) are applied
to obtain the MLE of QTL effects as well as their vari-
ance-covariance matrix (see THE MIM MODEL FOR MAP-
PING ENDOSPERM TRAITS). The procedure of the general
formulas is a maximum-likelihood approach based on
the EM algorithm. The method by Xu e al. uses an
iteratively reweighted least squares (IRWLS) procedure,
which is a second-order approximation to the maximum
likelihood, and it has problems in estimating the two
dominance effects separately as pointed out by Xu et al.
The estimation procedure in Wu ¢t al. also implements
a maximum-likelihood approach via the EM algorithm,
but it needs additional procedures in the M-step to
obtain the MLE if some QTL effects are not considered
in the model (see APPENDIX B in WU ef al. 2002b). The
general formulas, however, do not have these problems
and are relatively straightforward and simple to max-
imize. An initial version of the triploid MIM program
source code (written in Fortran 77 language) is available
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on the worldwide web (http:/www.stat.sinica.edu.tw/
chkao/).

It has been pointed out that the critical value for
claiming QTL detection is a very complicated issue and
deserves further investigation (LANDER and BOTSTEIN
1989; JANSEN 1993; ZENG 1994; KAO et al. 1999). Gener-
ally, the critical value depends on the number and size
of intervals, different levels of heritability (size of QTL),
different numbers of (linked or unlinked) QTL, and
linked QTL in the same or opposite direction of effects.
VisscHER and HALEY (1996) pointed out that the criti-
cal value should be reduced after a QTL of large effect
has been detected. The determination of critical value
in mapping endosperm traits will be more complicated
as each QTL can have three possible effects and many
different types of epistasis, and more different experi-
mental designs (the one-stage or two-stage design with
different allocations in the backcross or Fy, population)
can be considered. In this article, the permutation tests
by CHURCHILL and DOERGE (1994) are used to deter-
mine the critical value for claiming QTL detection in
endosperm trait mapping. It is found that the critical
value for the triploid model in the two-stage design is
larger than that in the one-stage design (Tables 1 and
2). Given the same heritability, the critical value in the
F, population is larger than thatin the backcross popula-
tion except for the third setting. More efforts are needed
to unravel the issue of critical value in mapping endo-
sperm traits. The understanding of QTL underlying the
endosperm traits is very important to cereal breeding in
improving yvield potential and grain quality. This MIM-
based triploid method can serve as an effective tool to
estimate the parameters associated with the underlying
QTL in mapping endosperm traits. Another important
issue worth pursuing is to investigate the properties of
different genetic models in mapping endosperm traits.
Besides, several researchers (ZHU and WEIR 1994;
MAZUR et al. 1999; VAN DER MEER ef al. 2001; WU et al.
2002b; Xu et al. 2003) have pointed out that the mater-
nal and offspring genomes could jointly affect the seed-
or endosperm-specific traits. Therefore, it is important
to take the genome information about the two successive
generations into account in mapping those traits and,
more importantly, to do so on the basis of a multiple-
QTL model approach.
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APPENDIX A: THE GENETIC VARIANCE
COMPONENTS OF ENDOSPERM TRAITS

When m QTL with complete marginal and epistatic
effects are considered together, the genetic variance of
an endosperm trait can be decomposed into 4" X (4" —
1) /2 variance and covariance components. Taking m =
2 as an example, the genetic variance can have 120
variance and covariance components in the backcross
and F, populations (not shown). If the two QTL are
unlinked, the genetic variance reduces to 83 and 111
components in the two populations. For the F, popula-
tion, these components are
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Likewise, the components of variance and covariance
for the backcross population can be also obtained.

APPENDIX B: THE RELATION BETWEEN THE
PARAMETERS OF THE DIPLOID AND TRIPLOID
MODELS IN MAPPING ENDOSPERM TRAITS

To simplify the argument, assume that an endosperm
traitvalue, y, measured in the backcross or F, population

is affected only by a single QTL, Q. The backcross indi-
viduals can have two possible QTL genotypes, Q¢ (w =
%) and gq (w = —%), each with frequency 1/2. The F,
individuals can have three possible QTL genotypes, QQ
(w = 1, wy = —%), Qq (w = 0, w, = %), and qq (w =
=1, wy, = —%), with frequencies 1/4, 1/2, and 1/4,
respectively. For autogamous plants, the individuals with
QQ or gq genotype can produce only one endosperm
genotype, QQQ or gqq. The individuals with Qg geno-
type can produce four kinds of endosperm genotype,
000 (x=%,21=0,22=0), QQq (x= Yo, 2 = 1,29 =
0, Qg (x = %z =0, % = 1), and ggq (= %

=0,z = 0), each with frequency 1/4. The frequencies
of the four triploid QTL genotypes are 1/8, 1/8, 1/8,
and 5/8, respectively, in the backcross population, and
they are 3/8, 1/8, 1/8, and 3/8, respectively, in the F,
population. The covariances between the coded vari-
ables for the QTL genotypes of a diploid individual and
its triploid endosperm are found to be Cov(x, w) =
%, Cov(zi, w) = s, Cov(ze, w) = %4 in the backcross
population, and they are Cov(x, w;) = Y, Cov(z;, w) =
0, Cov(zs, w) = 0, Cov(x, ws) = 0, Cov(z,, ws) = Y,
and Cov(zy, wy) = % in the Fy population.

If the diploid models in Equation 6 or 7 are applied
to analyze a marker, M, to infer Q along the genome,
the regression coefficient of y on the marker M (coded
by wy) in the backcross model is given by b,,, = Cov(y,
wy) / V(wy), where Cov(y, wy) is the covariance between
the endosperm trait and the marker variable, and V(wy)
is the variance of the marker variable. It is easy to obtain

Cov(y, wy) = Cov(p + ax + diz + doze + €, wy)

= aCov(x, wy) + diCov(z, wy) + dyCov(zy, wy)
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if there is no covariance between the residual error and
marker variable. The regression coefficient is b, = (1 —
21om) [8a/2 + (dy + dy) /4] because V(wy) = Y. Similarly,
the two regression coefficients for the additive and dom-
inance effects of M in the F, diploid model can be
obtained. The regression coefficient of the additive vari-
able is
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and regression coefficient of the dominance variable is
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Note that the partial regression coefficients for the
additive and dominance effects are the same as b, and
byy,, as wy, and wy, are orthogonal in the F; population.

The conditional phenotypic variance on the marker

M for the backcross diploid model is o}y = 05 — by X
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0,1, where g3 is the phenotypic variance, and o,y denotes
the covariance between yand M. The conditional pheno-
typic variance is
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where o? is the variance of residual error. For the F, diploid
model, the conditional phenotypic variance on the marker
Mis ~o3y = 05 — (b X Oy + baa X 0yua). The con-
ditional phenotypic variance is
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The conditional phenotypic variances are the same for
the backcross and F, models.

APPENDIX C: CONDITIONAL PROBABILITIES OF
ENDOSPERM QTL GENOTYPES

Consider a marker interval, [, flanked by markers, M;
and N,, on a linkage group. For the plants in the F,
population, there are nine observable genotypes for
markers M; and N;. They are M;N;/M;N;, M;N;/Mmn;,
Mini/ Mjn;, MyN,/m;N;, Mpm;Nin; (M;Nj/mjn; or Mjn;/
m;N)) s M/ min;, myN/mNj, mN;/mm;, and mn;/mjm;
with proportions (1 — r)2/4, r(1 — r)/2, ¥**/4, r(1 — r)/
2, (1 — n)2/2 4+ 2*/2, r(1 — 1) /2, ¥*/4, (1 — 7r)/2, and
(1 — r)?/4, respectively. For the plants in the backcross
population, there are four observable genotypes, M;N;/
M, MN/Mpn, MN,/mN,, and MN,/mpn,, with propor-
tions (1 — »)/2, /2, v/2, (1 — r)/2, respectively. For
autogamous plants, the plants with genotypes M;N,/
M;N,, Mmn;/Mmn;, m;N;/m;N, and mmn,;/mm; each can pro-
duce only one progeny (embryo) genotype. The plants
with genotypes M;N/Mn;, M;N,/m;N,, Mmn,/mmn;, and
m;N;/mm; each can produce three different embryo ge-
notypes. For example, the three embryo genotypes pro-
duced by plants with genotype M;N,/M;n;are M;N,/M;N;,
M;N,/Mn;, and Mmn;/Mmn; The plants with genotype
M;N,/mn; (Mn;/m;N;) can produce nine different em-
bryo genotypes. A total of 25 and 16 different combina-
tions of the plant and embryo genotypes are in the F,
and backcross populations, respectively.

If an unobservable QTL, Q;, is located in I, among
the seeds (progeny) collected from the F, plants, there

are three possible embryo genotypes, Q ;Q ;, Q ;g;, and ¢,q;,
and four possible endosperm genotypes, Q ;0 ;0 ;, Q;Q q;,
Q,4;9,, and ¢,q;q,. The conditional distribution of these
endosperm genotypes given the observable marker ge-
notypes of the F, plant (¢) and embryo (¢ + 1) can be
derived on the basis of Haldane’s mapping function
(HALDANE 1919) assuming no crossover interference.
For example, the conditional probabilities of the endo-
sperm genotype, Q ;0 0 ;, given the plant genotype M;N,/
]\/Ijn](-” and its embryo genotype M;N,/M;N!""*V are calcu-
lated as

Mjn;  M;N;

J

VA M
Probl Q ;0,0

_ Prob(Q,Q,;Q,, M;N/Mn;, M;N{"""/M;N})
Prob(M;N, /My, M;N,/M;N;"")

. (C1)

The probability in the denominator of Equation Cl1 is
r(1 — r)/8. As the QTL endosperm genotype Q,Q;Q;
implies the embryo genotype Q;Q,, it ensures that the
marker and QTL genotype of the embryo is M;Q N,/
M;Q ;N{"D. The possible F, plants that can produce such
an embryo genotype should be from one of the three
genotypes, M,Q ;N/Mgn;", MigN/M,Q )", and M;Q ;N,/
M,Q n!". It is easy to obtain that the probabilities of the
F, plants with these three genotypes are (1 — 5)(1 —
%)?/2, 11(1 — n)r3/2, and (1 — 7n)*n(l — n)/2, respec-
tively, and that their chances to produce seeds with em-
bryo genotype  M,Q;N,/MQ;N/™" are (1 — n)*/4,
r3/4, and 1/4, respectively. This allows calculation of
the numerator of Equation C1 as the sum of the follow-
ing three probabilities:

0 L) m ) ‘ U N
prop| QN MQNTY L Mg N MQNTT) L [MQN] ” M;Q,N,
Mn, ~ M,Q,N, M,Qmn,’ MQ)N, M;Qn; " M;Q,N,

— n(d —n) (1 —r? X [1 — 72]2 + n(l = n)rd X [Q]Q + A = r)*nd —n) X l

9 2 2 2 9 4

n( = ) = m)' + il + (L= )P = n)
. .

Therefore, the conditional probability of the endosperm
genotype, Q,0Q,Q;, given the plant marker genotype, M;N,/
Min”, and its embryo marker genotype, M;N,/M;N{""", is

) (1+1)
M/’N;l M/Nzl

Mjn; ~ MiN;

>

PrOb[ Q,0,0)1

_nd = —nm)'+ il + A = n)*n —n)
r(1 — ) ’

The same argument leads the other three conditional
probabilities of the endosperm genotypes, Q,;Q,q;, Q,4,q;,
and ¢;q;q; to

prob| 0,0,q) M. MNTT) 5@ = mynd = m)lri + (= n)?)
I M;n; ’ M;N; r(l — )

Prob| Qg | N0 MNTE ) n(l = mn(l = m)(rd+ (1= 5]

= Min; ’ M;N; (1 =) )
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M;N}" %N;M)
M;n

_nn = m)[20 = n) 1 — m)n + nl
© M\, (1 — 7 ’

Prob[ 49,91

J

Similarly, the conditional probabilities of endosperm
QTL genotypes given the other combinations of the F,
(backcross) plant and embryo genotypes (the two-stage
design) can be derived. If only the plant marker genotype
(the one-stage design) is available for inference, the deriva-
tion for the conditional probabilities of endosperm QTL
genotypes is simpler and can be also obtained. These condi-
tional probabilities under the one- and two-stage designs
in the backcross and F, populations are placed on the
website (http:/www.stat.sinica.edu.tw/chkao/) or a part of
them can be found in Wu et al. (2002a,b) and Xu et al
(2003).

APPENDIX D: THE PROBLEMS IF EFFECTS
ARE PRESENT AND IGNORED IN
MAPPING ENDOSPERM TRAITS

For simplicity, assume that an endosperm trait is con-
trolled by two QTL, Q; and Q,, without epistasis. It
can be found that the covariances between the coded
variables for the effects of different QTL are

9 5 9
Covla, %) = o(1 = o) + (1 = m) (1 = 2n0) = 7,

16
Cov(x, 201) = _% + (I = ny) (1 — 2ny) + 3’
16 16 32
Cov(x, 209) = 31y _ (I = mo) (1 — 2nmy) + é,
16 16 32

where 7, is the recombination fraction betwen Q; and
Q, in the backcross population. In the F, population,
these covariances become

9 5 ;
Cov(x, xy) = g(l — 2n,) + g(l — 219)?,

- 27’12)2

Cov(x, 291) = 16

(A = 2ny)*

Cov(x, z99) = — 16

If Q, and Q, are unlinked (1, = 0.5), the covariances
are all zeros. In the backcross population, if a single-
QTL model considering only the additive effect is used
to analyze Q,, the regression coefficient is

- 9]a, + idn + de

1
b, = a + E[IS(I = ng) T 10(1 = ny) (1 — 2ny) 38 3812

%

=

1 3
- E[?}Vm = (1 = n)d = 2n,) — 5 dy

1 3
- E[grm = (1 = no)(1 = 2nmy) — §]d22~

If only a dominance effect, say d,, is considered, the
regression coefficient is

10 1 1
byz, = 741 - ;[12712 = 4(1 = no)(1 = 2ny) — 6]ag + dn — ;dm

+ %[8(1 — )t = 1)dy + %[Sr%ga — ) — 1das.

In the F, population, the two coefficients are

1 g

byx] = a + ﬂ[g(l - 21’12) =+ 5(1 — 27.12)2]012

1 1 (1 — 2ny)? (1 = 2ny)?

gt T gghe Tt dy — do:

98" 98 " 28 2 98 22

and
—_ 2
by, = %d' + wafz + dy — %du

1 1 , 5
+ 5{8[7?24‘ (1 = n9)'1 — 1dy + ;[167f2(1 — 19)® —1]dy.

They show that the estimate of the additive (dominance)
effect of Q, is confounded by its other effects and the
effects of Q..



