
Chapter 1

Introduction

The uniform empirical process central limit theorem (CLT) and law of the
iterated logarithm (LIL) for i.i.d. observations has been the subject of ex-
tensive study, but much less is known for dependent observations. Recent
work which improves on this situation includes [2], [3], [4], [7] and [8], where
Levental studies the uniform CLT for Markov chains, and where Doukhan,
Massart, and Rio [4], and Arcones [2] and Yu [3] obtained the uniform CLT
and LIL for stationary processes satisfying various mixing conditions. Our
main effort has been to generalize Levental’s uniform CLT results for Markov
chains from the family of uniformly bounded functions to various families
of unbounded functions, and to prove the uniform LIL for Markov chains.
Although application of the uniform CLT and LIL for strictly stationary
processes satisfying various mixing conditions yields results of this type, our
point of view was that a direct approach should yield better results for the
Markov case. Examples are given to show the differences, and completely
substantiate this point of view.

Let (S,G, P ) be a probability space and let F be a set of measurable
functions on S with an envelope function F finite everywhere. Let X1, X2, ...
be a strictly stationary sequence of random variables with distribution P ,
and define the empirical measures Pn, based on {Xi}, as Pn = n−1

∑n

i=1 δXi
.

We say the uniform CLT holds over F , if n
1

2 (Pn−P ) converges in law, in the
space l∞(F) to a Gaussian process. l∞(F) is the set of bounded functions
on F with sup-norm. We say the compact LIL holds over F with respect to
{Xi} if there exists a compact set K in l∞(F) such that, with probability
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one,
{

(2n log log n)−
1

2

n
∑

j=1

(f(Xj)− Ef(X1)) : f ∈ F
}

n≥1

is relatively compact and its limit set is K, and the bounded LIL holds over
F with respect to {Xi} if, with probability one,

sup
n

sup
f∈F

(2n log log n)−
1

2

∣

∣

∣

∣

∣

n
∑

j=1

(f(Xj)− Ef(X1))

∣

∣

∣

∣

∣

< ∞.

In Chapter 2 and Chapter 3 we study Markov chains with countable state
spaces. Let {Xi}i≥0 be a positive recurrent irreducible Markov chain taking
values in S = {1, 2, 3, · · ·} with the unique invariant probability measure π,
Ni be the i-th hitting time of state 1,

mi,j = E (min{n : n ≥ 1, Xn = j} | X0 = i) .

Levental (1990) [8] proved that for Markov chains if E(N2−N1)
2 < ∞, then

the uniform CLT holds over {1A : A ⊆ S} if and only if

∞
∑

k=1

π(k)m
1

2

1,k < ∞.

In Chapter 2 we prove a uniform CLT which generalizes Levental’s the-
orem from the set of indicator functions to the set of possibly unbounded
functions. This uniform CLT over the family of functions dominated by a
non-negative function is the best possible result for positive recurrent irre-
ducible Markov chains with a countable state space. Let F be a non-negative
function on S and F = {f : |f | ≤ F}. We have that the uniform CLT holds
over F if and only if E(N2 −N1)

2 < ∞,

E(
∑

N1<j≤N2

F (Xj))
2 < ∞ (1.1)

and
∞

∑

k=1

F (k)π(k)m
1

2

1,k < ∞. (1.2)

In Chapter 3 we prove the compact LIL and bounded LIL for Markov
chains under a weaker condition than (1.2). Assume E(N2 − N1)

2 < ∞,
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(1.1) holds and choose a suitable order of S as indicated in Theorem 3.1 in
Chapter 3. If

(log log n)−
1

2

n
∑

k=1

F (k)π(k)m
1

2

1,k → 0, (1.3)

then the compact LIL holds over F with respect to {Xi}. Conversely, if the
compact LIL holds over F with respect to {Xi} and there are c, α > 0 such
that π(k) ≥ ck−α for all k ∈ S, then (1.3) holds. We also have the bounded
LIL when (1.3) is replaced by

sup
n

(log log n)−
1

2

n
∑

k=1

F (k)π(k)m
1

2

1,k < ∞.

In Chapter 4 and Chapter 5 we will deal with Markov chains in general
state spaces. However, a uniform CLT and LIL is not always possible for
families of functions of the form {f : |f | ≤ F} in the general state space
setting. The following example illustrates this. In particular, it points out
the need for additional assumptions on the family of functions.

Let {Xi} be a i.i.d. sequence of random variables with distribution func-
tion H(x) and measure µ. Let {x1,x2, ...} be the set of all jumps of H(x) and

λ be the measure with λ(xi) = µ(xi) for all i and λ(R) =
∑

i λ(xi)̇. Assume
λ(R) < 1. Let ν = µ−λ and δ = λ(R) > 0. Since G(x) = H(x)−λ((−∞, x])
is increasing and continuous, we can choose y1, y2, ... such that A1 = (−∞, y1],

ν(A1) = c, ..., Ak = (yk−1, yk], ν(Ak) = ck−
3

2 where c = δ/
∑∞

k=0 k−
3

2 . Let

F = {1A : A = ∪i∈IAi, I ⊂ N}.

Then by Theorem 2.7 in Chapter 2 and Theorem 3.1 in Chapter 3, we need
at least

sup
n

1√
log log n

n
∑

k=1

√

µ(Ak) < ∞

for the bounded LIL or the uniform CLT on F . But

1√
log log n

n
∑

k=1

√

µ(Ak) ≥
1√

log log n

n
∑

k=1

√

ν(Ak) =
1√

log log n

n
∑

k=1

√
ck−

3

4

diverges as n → ∞. Thus some restriction on the family of functions is
required for the uniform CLT or LIL on a general state space.
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We follow Levental’s [7] approach to study uniform limit theorems over
the functions in F provided F satisfies a combinatorial entropy condition
due to Kolčinskĭı [6] and Pollard [9]

∫ ∞

0

[log N2(ε,F)]
1

2 dε < ∞, (1.4)

where
N2(ε,F) = sup

Q

(N2(ε,F , Q)),

the sup is taken over all the measures on S with finite support, and N2(ε,F , Q)
is the minimum m for which there exists g1, ..., gm in L2(Q) such that, for all
f ∈ F , ‖ f − gi ‖L2(Q)< ε, for some 1 ≤ i ≤ m.

Dudley [5] proved the above combinatorial condition (1.4) is satisfied in
the case where the subgraphs of the functions in F are a VC class of sets
(see Section 4 of Chapter 4 for definition).

In Chapter 4 we improve Levental’s results by extending the family of
functions from uniformly bounded to the condition that its envelope function
F is in L2 and the CLT holds for F, and reduce the 2 + δ moment condition
of renewal time to ergodicity of degree 2.

Alexander and Talagrand [1] proved compact and bounded LIL’s on VC
classes of functions in the i.i.d. case with envelope function F satisfying

E

(

F 2(X)

LLF (X)

)

< ∞.

We will extend these results to Markov chains. Let {Xn} be a Markov
chain with ergodicity of degree 2 and order 1, and let F be a countable family
of functions on S satisfying

∫ ∞

0

[log N2(ε,F)]
1

2 dε < ∞,

and assume its envelope function F satisfies
∫

C

π(dx)Exmax
n≤τC

(

S2
n(F )/LLSn(F )

)

< ∞.

Here C is a small set and τC is the hitting time of C as defined in Chapter
4. If n−

1

2 S(f) converges weakly to N(0, σ2
f) for all f ∈ F and

sup
f∈F

σ2
f < ∞
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then the bounded LIL holds over F .
The empirical process CLT and LIL for stationary sequences satisfying

a mixing condition require the envelope function of the function class be in
Lp(P ) for some p > 2. We give an example such that our conditions hold,
but the envelope function F /∈ Lp(P ) for all p > 2. Additional examples are
also included to highlight other differences between our direct approach to
the problem for Markov chains and that obtainable from [2], [3], and [4].
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[6] Kolčinskĭı, V. I. On the central limit theorem for empirical measures.
Theory Probab. Math. Statist. 24, 1982, 71-82,

[7] Levental, S. Uniform limit theorems for Harris recurrent Markov chains.
Probability Theory and Related Fields 80, 1988, 101-118.

[8] Levental, S. Uniform CLT for Markov chain with a countable state space.
Stochastic Processes and their Application 34, 1990, 245-253.

[9] Pollard, D. A central limit theorem for empirical processes. Journal of
the Australian Mathematical Society (Series A) 33, 1982, 235-248.

6


