
Chapter 3

Uniform LILI for Markov

chains with a countable state

space

3.1 Introduction

Let (S,G, P ) be a probability space and let F be a set of measurable functions
on S with an envelope function F finite everywhere. Let X1, X2, ... be a
strictly stationary sequence of random variables with distribution P . We say
the compact LIL holds over F with respect to {Xi} if there exists a compact
set K in l∞(F) such that, with probability one,

{(2n log log n)−
1
2

n∑

j=1

(f(Xj)− Ef(X1)) : f ∈ F}∞n=1

is relatively compact and its limit set is K, and the bounded LIL holds over
F with respect to {Xi} if, with probability one,

sup
n

sup
f∈F

(2n log log n)−
1
2

∣
∣
∣
∣
∣

n∑

j=1

(f(Xj)− Ef(X1))

∣
∣
∣
∣
∣
< ∞.

Let {Xi}i≥0 be a positive recurrent irreducible Markov chain taking values
in S = {1, 2, 3, · · ·} with the unique invariant probability measure π, Ni be
the i-th hitting time of state 1,

mi,j = E (min{n : n ≥ 1, Xn = j} | X0 = i) .
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Recall in chapter 2 we have the uniform CLT for F = {f : |f | ≤ F} under
conditions E(N2 − N1)

2 < ∞ and the envelope function F of F satisfying
E(
∑

N1<j≤N2
F (Xj))

2 < ∞ and

∞∑

k=1

F (k)π(k)m
1
2
1,k < ∞ (3.1)

In this chapter we will prove the compact LIL and bounded LIL for Markov
chains under a weaker condition than (3.1). Let F also be a non-negative
function on S and F = {f : |f | ≤ F}. Assume E(N2 − N1)

2 < ∞,
E(
∑

N1<j≤N2
F (Xj))

2 < ∞ and choose a suitable order of S as indicated
in Theorem 3.1 below. If

(log log n)−
1
2

n∑

k=1

F (k)π(k)m
1
2
1,k → 0, (3.2)

then the compact LIL holds over F with respect to {Xi}. Conversely, if the
compact LIL holds over F with respect to {Xi} and there are c, α > 0 such
that π(k) ≥ ck−α for all k ∈ S, then (3.2) holds. We have the bounded LIL
when (3.2) is replaced by

sup
n

(log log n)−
1
2

n∑

k=1

F (k)π(k)m
1
2
1,k < ∞.

To compare our results to those obtained from weakly dependent observa-
tions, we let {Xi} be a strictly stationary sequence of random variables and
recall the definition of the absolutely regular mixing coefficient:

βk = 1
2
sup{

I∑

i=1

J∑

j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)| : {Ai}I
i=1is a partition in σl

1

and {Bj}J
j=1is a partition in σ∞l+k, l ≥ 1}.

Arcones (1995) proved a compact LIL over classes of functions which
satisfy a bracketing condition with respect to a norm ‖·‖2,β defined in [?]. He
also obtained a compact LIL on a discrete space over classes whose envelope
functions satisfy

∑

x∈S

F (x)(P (X1 = x))
1
p < ∞,

where p depends on the rate of decay of mixing coefficient βk.
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We will present an example to illustrate that, in the Markov chain case,
applying Arcones’ empirical processes result will not get the results obtained
by our approach. We also obtain a result which is better than Arcones’
discrete space result in some special cases.

3.2 Empirical law of iterated logarithm

Let {Xj}j≥0 be a positive recurrent irreducible Markov chain taking values
in S = {1, 2, 3, · · ·} with an invariant probability measure π. Let Ni be the
i-th hitting time of state 1.

We define for every f ∈ L1(S, π)

Sn(f) =

n∑

j=1

(f(Xj)− π(f))

and
Zk(f) =

∑

Nk<j≤Nk+1

(f(Xj)− π(f))

for all k ≥ 1. Then the Zk(f) are i.i.d.. If F is a subset of L2(S, π) with the
induced topology, then Zk(·) are almost surely continuous on F . Denote by
C(F ,R) the set of all continuous functions from F to the real numbers. If F
is a compact subset of L2(S, π), then C(F ,R) equipped with supremum norm
become a separable Banach space. Then we can consider Zk(·) as random
elements in C(F ,R) and apply those limit theorems in separable Banach
spaces.

Let (M, d) be a metric space, {xn} a sequence of points in M and A ⊆ M.
We use the notation {xn} →→ A if both limn d(xn, A) = 0 and the cluster

set of {xn} is A. We also let an = (2n log log n)
1
2 .

Let F be a compact subset of L2(S, π). We define HL(Z1) in C(F ,R) by
canonical construction (Kuelbs 1976), and let K be the unit ball of HL(Z1).
The compact LIL holds over F with respect to {Xj} means that

{
1

an
Sn(f) : f ∈ F

}

→→ K
√

m1,1
a.s.

and the bounded LIL holds over F with respect to {Xj} means that

sup
n

sup
f∈F

1

an
|Sn(f)| < ∞ a.s..
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Comparing Theorem 2.7 of Chapter 2 and Theorem 3.1 below we see that we
can obtain the compact LIL and bounded LIL under conditions which are
weaker than those for the uniform CLT.

Theorem 3.1. Let F be a non-negative function on S and F = {f : |f | ≤
F}. Suppose E(N2 −N1)

2 < ∞,

E

(
∑

N1<j≤N2

F (Xj)

)2

< ∞, (3.3)

and let θF be any bijection from S to itself such that the sequence

bθF ,k = F (θF (k))π(θF (k))m
1
2

1,θF (k)

is decreasing.
(I) If

lim
n→∞

(log log n)−
1
2

n∑

k=1

bθF ,k = 0 (3.4)

then the compact LIL holds over F with respect to {Xj}. Conversely, if the
compact LIL holds over F with respect to {Xj}, then we have (3.4) for those
bijections on S such that for some c, α > 0

π(θ(k)) ≥ ck−α for all k ∈ S. (3.5)

(II) If

sup
n

(log log n)−
1
2

n∑

k=1

bθF ,k < ∞ (3.6)

then the bounded LIL holds over F with respect to {Xj}. Conversely, if the
bounded LIL holds over F with respect to {Xj}, then we have (3.6) for those
bijections on S such that (3.5) holds for some c, α > 0.

Remarks.

(i) In (3.4), since bθF ,k is decreasing

n∑

k=1

bθF ,k ≥
n∑

k=1

bθ,k
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for any bijection θ, and hence (3.4) is the strongest condition of all bijec-

tions. There are examples such that (log log n)−
1
2

∑n
k=1 bθF ,k diverges but

there exists θ such that (log log n)−
1
2

∑n
k=1 bθ,k → 0.

(ii) The condition (3.3) does not depend on the state which we choose to use
to define the hitting times Ni. (page 84, Theorem 4 in Chung).

(iii) The conditions E(N2−N1)
2 < ∞ and (3.3) are both necessary conditions

for the uniform LIL over F . (proof is after the proof of Theorem 3.1) Hence
F ∈ L2(S, π) is also necessary by the remark following Theorem 2.2 in chapter
2.

(iv) We can replace (3.5) by the following condition: there are c, α > 0 and
Λ ⊆ S such that

π(θ(k)) ≥ ck−α for all k ∈ Λ

and

(log log n)−
1
2

∑

1≤k≤n,k/∈Λ

F (θ(k))π(θ(k))m
1
2

1,θ(k) → 0 or < ∞.

Proof of Theorem 3.1. (To simplify notation, we omit θF and write k for
θF (k).)

Lemma 3.2. Let F be a non-negative function on S and F = {f : |f | ≤ F}.
Suppose E(N2 −N1)

2 < ∞,

E

(
∑

N1<j≤N2

F (Xj)

)2

< ∞.

Then the compact LIL holds over F with respect to {Xj} is equivalent to

1

an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥
→ 0 in probability, (3.7)

and the bounded LIL holds over F with respect to {Xj} is equivalent to

1

an

n∑

j=1

Zj is bounded in probability (3.8)
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Proof. Let
Rn(f) =

∑

1≤j≤N1 or Nl(n)<j≤n

(f(Xi)− π(f)) ,

and l(n) = max {i : Ni ≤ n}, then

Sn(f) =

l(n)−1
∑

i=1

Zi(f) + Rn(f). (3.9)

We have

lim
n→∞

sup
f∈F

|Rn(f)|√
n

= 0 a.s., (3.10)

from Chung’s proof (Theorem 5 page 106), since

sup
f∈F

|Rn(f)| ≤
∑

1≤j≤N1 or Nl(n)<j≤n

F (Xj) + (N1 + n−Nl(n))π(F ).

The compact LIL holds over F with respect to {Xj} means

{
1

an
Sn(f)

}

f∈F
→→ K

√
m1,1

a.s..

By (3.9) and (3.10) this is equivalent to







1

an

l(n)−1
∑

j=1

Zj(f)







f∈F

→→ K
√

m1,1
a.s..

Since an

al(n)−1
→√

m1,1, where al(n)−1 = [2(l(n)−1) log log(l(n)−1)]
1
2 , the last

expression is equivalent to







1

an

an

al(n)−1

l(n)−1
∑

j=1

Zj(f)







f∈F

→→ K a.s.,

and then {

1

an

n∑

j=1

Zj(f)

}

f∈F

→→ K a.s., (3.11)
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since {l(n) : n = 1, 2, ...} = {1, 2, ...}. We consider Zk as random vectors in
C(F ,R) and have

E ‖Z1‖2 = E





(

sup
f∈F

∣
∣
∣
∣
∣

∑

N1<j≤N2

f(Xi)− π(f) (N2 −N1)

∣
∣
∣
∣
∣

)2




≤ 2E



sup
f∈F





(

∑

N1<j≤N2

f(Xj)

)2

+ π2(f) (N2 −N1)
2









≤ 2



E

(

∑

N1<j≤N2

F (Xi)

)2

+ π2(F )E (N2 −N1)
2



 .

Thus E ‖Z1‖2 < ∞. Note that EZ1 = 0. By applying Theorem 4.1 in Kuelbs
(1977) we have that (3.11) is equivalent to

1

an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥
→ 0 in probability.

Thus the compact LIL holds over F with respect to {Xj} is equivalent to
(3.7). Using similar arguments we can obtain that the bounded LIL holds
over F with respect to {Xj} is equivalent to

sup
n

1

an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥

< ∞ a.s., (3.12)

and (3.12) is equivalent to

1

an

n∑

j=1

Zj is bounded in probability

by Theorem 4.2 in Kuelbs (1977).

Sufficient part of the compact LIL

To prove (3.4) is a sufficient condition for the compact LIL we assume
(3.4) and show (3.7). First we have
∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥

= sup
f∈F

∣
∣
∣
∣
∣

n∑

j=1

Zj(f)

∣
∣
∣
∣
∣
≤ sup

f∈F

∞∑

k=1

|f(k)|
∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
≤

∞∑

k=1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
.
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Thus, for fixed ε > 0,

P

(

1

an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥

> ε

)

≤ P

(

1
an

∞∑

k=1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
> ε

)

,

and hence

P

(

1
an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥

> ε

)

≤ P

(

1

an

n2
∑

k=1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
>

ε

2

)

︸ ︷︷ ︸

+ P

(

1

an

∞∑

k=n2+1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
>

ε

2

)

︸ ︷︷ ︸

.

I II
(3.13)

By Markov’s inequality

I ≤
√

2

ε
(log log n)−

1
2

n2
∑

k=1

F (k)E

(

n−
1
2

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣

)

. (3.14)

Since Zi(·) are i.i.d. and centered,

E(n−
1
2 |

n∑

i=1

Zi(1{k}) |) ≤ (n−1E |
n∑

i=1

Zi(1{k}) |2)
1
2 =

(
E
(
Z2

1(1{k})
)) 1

2 .

(3.15)

Denote ω(k) = (E(
∑

N1<j≤N2

1{k}(Xj))
2)

1
2 , and then by definition,

(
E
(
Z2

1(1{k})
)) 1

2 = (E(
∑

N1<j≤N2

1{k}(Xj)− (N2 −N1)π(k))2)
1
2

≤ ω(k) + π(k) (E(N2 −N1)
2)

1
2 .

(3.16)

¿From (3.15) and (3.16)

E

(

n−
1
2

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣

)

≤ ω(k) + π(k)
(
E (N2 −N1)

2)
1
2 . (3.17)

Since
∑∞

k=1 F (k)π(k) < ∞ we only have to show that

(log log n)−
1
2

n2
∑

k=1

F (k)ω(k) → 0,
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and that is equivalent to

(log log n)−
1
2

n∑

k=1

F (k)ω(k) → 0.

From Chung [2, p88],

E(
∑

N1<j≤N2

1{k}(Xj))
2 = 2m1,1π

2(k) (m1,k + mk,1)−m1,1π(k) for k ≥ 1

(3.18)
and

E (N2 −N1)
2 = 2m1,1

∞∑

k=1

π(k)mk,1 −m1,1. (3.19)

Since E (N2 −N1)
2 < ∞ and m1,1 < ∞, we thus have

∑∞
k=1 π(k)mk,1 < ∞,

and hence

∞∑

k=1

F (k)π(k)m
1
2

k,1 ≤ (

∞∑

k=1

F 2(k)π(k))
1
2 (

∞∑

k=1

π(k)mk,1)
1
2 < ∞, (3.20)

From (3.18) we have

n∑

k=1

F (k)ω(k)

≤
√

2m1,1

[
n∑

k=1

F (k)π(k)m
1
2
1,k +

n∑

k=1

F (k)π(k)m
1
2
k,1

]

,
(3.21)

and thus obtain the convergence by (3.20) and (3.4). For the other part we
have

II ≤ 2

εan

∞∑

k=n2+1

F (k)E

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
≤
√

8m1,1

ε

(
n

log log n

) 1
2

∞∑

k=n2+1

F (k)π(k),

(3.22)

since E
∣
∣
∣
∑n

j=1 Zj(1{k})
∣
∣
∣ ≤ nE

∣
∣Z1(1{k})

∣
∣ ≤ 2m1,1nπ(k). Now we have to show

that
(

n

log log n

) 1
2

∞∑

k=n2+1

F (k)π(k) → 0. (3.23)
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From (3.4)

(log log n)−
1
2

n∑

k=1

F (k)π(k)m
1
2
1,k → 0.

Write bk = F (k)π(k)m
1
2
1,k. Thus for n large enough

n∑

k=1

bk ≤ (log log n)
1
2

and since bk is decreasing

bn ≤
1

n

n∑

k=1

bk ≤
(

log log n

n2

) 1
2

.

Thus for n large enough

(
n

log log n

) 1
2

( ∞∑

k=n2+1

b2
k

) 1
2

≤
(

n

log log n

) 1
2

( ∞∑

k=n2+1

log log k

k2

) 1
2

, (3.24)

and the right hand side converges to zero as n → ∞. Since m1,k + mk,1 ≥
mk,k = (π(k))−1 for all k and

∑∞
k=1 F 2(k)π2(k)mk,1 = M < ∞ by (3.20)

∞∑

k=n2+1

F (k)π(k) ≤
( ∞∑

k=n2+1

F 2(k)π(k)

) 1
2
( ∞∑

k=n2+1

π(k)

) 1
2

≤
( ∞∑

k=n2+1

F 2(k)π2(k)mk,1 +

∞∑

k=n2+1

b2
k

) 1
2

,

and hence we have (3.23) by (3.24).

Sufficient part of the bounded LIL

For the bounded LIL we assume (3.6). Hence there is a finite M0 > 0
such that

sup
n

(log log n)−
1
2

n2
∑

k=1

F (k)π(k)m
1
2
1,k < M0.
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To show (3.8) it suffices to show that for every η > 0 there exists M > 0
such that

sup
n

P

(

1

an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥

> M

)

< η.

Similar to the proof of (3.23), we can obtain

sup
n

(
n

log log n

) 1
2

∞∑

k=n2+1

F (k)π(k) < ∞.

Since F ∈ L1(S, π) and (3.20) we define

c1 = supn (log log n)−
1
2
∑n2

k=1 F (k)π(k)
(
E (N2 −N1)

2)
1
2

c2 = supn (log log n)−
1
2
∑n2

k=1 F (k)π(k)m
1
2
k,1

c3 = supn

(
n

log log n

) 1
2 ∑∞

k=n2+1 F (k)π(k).

Fix η > 0 and take M = 1
η

[
2
√

2
(
c1 +

[√
2m1,1 (M0 + c2)

])
+ 4

√
2m1,1c3

]
.

From (3.13)

P

(

1
an

∥
∥
∥
∥
∥

n∑

j=1

Zj

∥
∥
∥
∥
∥

> M

)

≤ P

(

1

an

n2
∑

k=1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
>

M

2

)

︸ ︷︷ ︸

+ P

(

1

an

∞∑

k=n2+1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣
>

M

2

)

︸ ︷︷ ︸

.

I II

From (3.14)

I ≤
√

2

M
(log log n)−

1
2

n2
∑

k=1

F (k)E

(

n−
1
2

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣

)

.

From (3.17) and (3.21)

sup
n

(log log n)−
1
2

n2
∑

k=1

F (k)E

(

n−
1
2

∣
∣
∣
∣
∣

n∑

j=1

Zj(1{k})

∣
∣
∣
∣
∣

)

≤ c1+
[√

2m1,1 (M0 + c2)
]
,
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thus I ≤
√

2
M

(
c1 +

[√
2m1,1 (M0 + c2)

])
≤ η

2
. We also obtain that II ≤ η

2

since from (3.22)

II ≤
√

8m1,1

M

(
n

log log n

) 1
2

∞∑

k=n2+1

F (k)π(k) ≤
√

8m1,1c3

M
≤ η

2
.

So the sufficient part of the proof is completed.

Necessary part of LIL

For the necessary part, we suppose (3.7) holds to show (3.4), and (3.8)
holds to show (3.6). We need further notation. Let

Yk(f) =
∑

Nk<j≤Nk+1

f(Xj)−m1,1π(f)

and
Uk(f) = (m1,1 − (Nk+1 −Nk))π(f).

Then
Zk(f) = Yk(f) + Uk(f).

Lemma 3.3. Suppose (3.3) holds.
(a). If (3.7) holds, then

1

an

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥
→ 0 in probability.

(b). If (3.8) holds, then

sup
n

1

an

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

< ∞ a.s..

Proof. Since Zk = Yk + Uk, we only have to show that

1

an

∥
∥
∥
∥
∥

n∑

j=1

Uj

∥
∥
∥
∥
∥
→ 0 in probability.
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Kolmogorov’s LIL holds for the i.i.d. sequence {Nj+1−Nj}j≥1 since E(N2−
N1)

2 < ∞, and that is equivalent to

1

an

∣
∣
∣
∣
∣

n∑

j=1

(m1,1 − (Nj+1 −Nj))

∣
∣
∣
∣
∣
→ 0 in probability.

We have the desired result because
∥
∥
∥
∥
∥

n∑

j=1

Uj

∥
∥
∥
∥
∥
≤
∣
∣
∣
∣
∣

n∑

j=1

(m1,1 − (Nj+1 −Nj))

∣
∣
∣
∣
∣
π(F ). (3.25)

For part (b), similarly we only have to show that

sup
n

sup
f∈F

1

an

∣
∣
∣
∣
∣

n∑

j=1

Uj(f)

∣
∣
∣
∣
∣
< ∞ a.s..

Since E(N2 −N1)
2 < ∞ we have

sup
n

1

an

∣
∣
∣
∣
∣

n∑

j=1

(m1,1 − (Nj+1 −Nj))

∣
∣
∣
∣
∣
< ∞ a.s.,

and thus by (3.25)

sup
n

sup
f∈F

1

an

∣
∣
∣
∣
∣

n∑

j=1

Uj(f)

∣
∣
∣
∣
∣
< ∞ a.s..

Lemma 3.4. Suppose (3.3) holds.
(a). If (3.7) holds, then

1

an

E

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥
→ 0.

(b). If (3.8) holds, then

sup
n

1

an
E

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

< ∞.
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Proof. Suppose (3.7) holds. Then we have (3.8) and

sup
n

1

an

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

< ∞ a.s.

by part (b) of Lemma 3.3. Thus

E

[

sup
n

1

an

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

]

< ∞ is equivalent to E

[

sup
n

1

an
‖Yn‖

]

< ∞.

(Ledoux and Talagrand, Corollary 6.12). That is, since (3.3) holds we have

E



sup
n

1

an

∑

Nn<j≤Nn+1

F (Xj)



 < ∞.

(Here we use that if {Xj} is i.i.d. and real valued, then EX2
1 < ∞ implies

E[supn n−
1
2 |Xn|] < ∞). Since

‖Yn‖ ≤
∑

Nn<j≤Nn+1

F (Xj) + m1,1π(F ),

we have E
[

supn
1
an
‖Yn‖

]

< ∞, and hence E
[

supn
1
an

∥
∥
∥
∑n

j=1 Yj

∥
∥
∥

]

< ∞.

From (3.7)

P

(

1

an

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

> ε

)

→ 0,

and hence

lim
n

EΨn ≤ lim
n

E
[
Ψn1{6Ψn≤ε}

]
+lim

n
E
[
Ψn1{6Ψn>ε}

]
≤ ε+lim

n
E

[(

sup
n

Ψn

)

1{6Ψn>ε}

]

= ε,

where Ψn = 1
an

∥
∥
∥
∑n

j=1 Yj

∥
∥
∥. Since ε is arbitrary we have the desired result.

For part (b), the above argument and (3.8) imply

E

[

sup
n

1

an

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

]

< ∞,
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and this implies supn
1

an
E
∥
∥
∥
∑n

j=1 Yj

∥
∥
∥ < ∞.

Lemma 3.5. We have

E

∥
∥
∥
∥
∥

n∑

j=1

Yj

∥
∥
∥
∥
∥

=

∞∑

k=1

F (k)E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
.

Proof. Pointwise, for all ω, we have

sup
f∈F

∣
∣
∣
∣
∣

n∑

j=1

Yj(f)

∣
∣
∣
∣
∣
= sup

f∈F

∣
∣
∣
∣
∣

∞∑

k=1

f(k)
n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
=

∞∑

k=1

F (k)

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣

i.e. since F = {f : |f(x)| ≤ F (x) for all x ∈ S} we can pick up any sequence
of positive or negative that is required.

Lemma 3.6. Suppose (3.3) holds and there is a bijection θ from S to itself
such that (3.5) holds. Then there are c′, M > 0 such that

n−
1
2 E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{θ(k)})

∣
∣
∣
∣
∣
≥ c′

[
EY 2

1 (1{θ(k)})
] 1

2

for all k ∈ S and n ≥ max{k4α(EY 2
1 (1{θ(k)}))

−2, M}.

Proof. (omit θ) By the Marcinkiewicz-Zygmund inequality

n−
1
2 E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
≥ c1E





(

n−1
n∑

j=1

Y 2
j (1{k})

) 1
2





where c1 > 0 is a constant which is independent of the random variables.
Note that

E





(

1
n

n∑

j=1

Y 2
j (1{k})

) 1
2





≥ E





(

1
n

n∑

j=1

Y 2
j (1{k})

) 1
2

1{
(n−1

∑n
j=1 Y 2

j (1{k}))
1
2≥[EY 2

1 (1{k})]
1
2

}





≥
[
EY 2

1 (1{k})
] 1

2 P

(

1
n

n∑

j=1

Y 2
j (1{k}) ≥ EY 2

1 (1{k})

)

.
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By the Berry-Esseen theorem

P

(

1

n

n∑

j=1

Y 2
j (1{k}) ≥ EY 2

1 (1{k})

)

≥ 1

2
− 3n−

1
2 EY 6

1 (1{k})
(
EY 4

1 (1{k})
) 3

2

.

Thus it is enough to show that there is a M > 0 such that

3n−
1
2 EY 6

1 (1{k})
(
EY 4

1 (1{k})
) 3

2

≤ 1

4
for all n ≥ max{k4α(EY 2

1 (1{k}))
−2, M}.

Let Ti = min{n ≥ 1 : Xn = i}, ak = P1(Tk < T1), bk = Pk(Tk < T1), and
1− bk = Pk(Tk > T1) for k > 1. Denote W (k) =

∑

N1<j≤N2
1{k}(Xj) then

EW l(k) =
∞∑

m=1

mlP (W (k) = m) = akb
−1
k (1− bk)

∞∑

m=1

mlbm
k

since P (W (k) = m) = akb
m−1
k (1− bk). By computation

∑∞
m=1 mbm

k = bk

(1−bk)2∑∞
m=1 m2bm

k = 2bk

(1−bk)3
− bk

(1−bk)2∑∞
m=1 m4bm

k = 24bk

(1−bk)5
− 36bk

(1−bk)4
+ 14bk

(1−bk)3
− bk

(1−bk)2∑∞
m=1 m6bm

k = 720bk

(1−bk)7
− 1800bk

(1−bk)6
+ 1560bk

(1−bk)5
− 540bk

(1−bk)4
+ 62bk

(1−bk)3
− bk

(1−bk)2
.

Thus EW (k) = ak

1−bk
. Then

EY 2
1 (1{k}) = E (W (k)− EW (k))2 = ak

(
2

(1− bk)
2 −

1

(1− bk)

)

− a2
k

(1− bk)
2

and

EY 2
1 (1{k}) ≤

2ak

(1− bk)
2 . (3.26)

Now we claim that there is a M1 > 0 such that

EY 6
1 (1{k})

(
EY 4

1 (1{k})
) 3

2

≤ M1a
− 1

2
k for k ∈ V, (3.27)

where V is the set of those k such that ak is sufficiently small. Note that
S − V is finite since

∞∑

k=1

ak ≤
∞∑

k=1

ak

1− bk

=
∞∑

k=1

EW (k) =
∞∑

k=1

m1,1π(k) = m1,1.
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If bk < 1
2

then there is a M2 > 0 such that for all k ∈ V,

EY 6
1 (1{k}) ≤ EW 6(k)

= ak

(
720

(1−bk)6
− 1800

(1−bk)5
+ 1560

(1−bk)4
− 540

(1−bk)3
+ 62

(1−bk)2
− 1

(1−bk)

)

≤ M2ak

and

EY 4
1 (1{k}) = E

(

W (k)− ak

1−bk

)4

= ak

(
24

(1−bk)4
− 36

(1−bk)3
+ 14

(1−bk)2
− 1

(1−bk)

)

− a4
k

(
1

(1−bk)4

)

−4a2
k

(
6

(1−bk)4
− 6

(1−bk)3
+ 1

(1−bk)2

)

+ 6a3
k

(
2

(1−bk)4
− 1

(1−bk)3

)

≥ ak

4
.

Thus if bk < 1
2

then

EY 6
1 (1{k})

(
EY 4

1 (1{k})
) 3

2

≤ 8M2a
− 1

2
k for k ∈ V.

If bk ≥ 1
2

then there is a M3 > 0 such that EY 6
1 (1{k}) ≤ M3

ak

(1−bk)6
and

EY 4
1 (1{k}) ≥ ak

4(1−bk)4
for k ∈ V. Thus if bk ≥ 1

2
then

EY 6
1 (1{k})

(
EY 4

1 (1{k})
) 3

2

≤ 8M3a
− 1

2
k for k ∈ V.

So (3.27) holds if we take M1 = max{8M2, 8M3}. We also claim that

1− bk ≥ ck−α except for finite many k. (3.28)

Note that E(N2 − N1)
2 < ∞ implies

∑∞
k=1 π(k)mk,1 < ∞ by (3.19). Thus

by (3.5)
mk,1 ≤ c−1kα except for finite many k.

However, we have

mk,1 ≥
∑∞

j=1 j (Pk (T1 > Tk))
j−1 Pk (T1 < Tk)

=
∑∞

j=1 jbj−1
k (1− bk)

= (1− bk)
−1 .
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Thus
1− bk ≥ m−1

k,1 ≥ ck−α except for finite many k.

From (3.26), if n ≥ k4α
(
EY 2

1 (1{k})
)−2

, then

1√
n
≤ EY 2

1 (1{k})

k2α
≤ 2ak

k2α (1− bk)
2 ,

and from (3.27) and (3.28) for k ∈ V ,

3n−
1
2 EY 6

1 (1{k})
(
EY 4

1 (1{k})
) 3

2

≤ 3M1n
− 1

4

√

1

ak

√
n
≤ 3M1n

− 1
4

√

2

k2α (1− bk)
2 ≤ 3

√
2M1c

−1n−
1
4

except for finite many k. Now we can choose M > 0 such that for all k ∈ S

3n−
1
2 EY 6

1 (1{k})
(
EY 4

1 (1{k})
) 3

2

≤ 1

4
for all n ≥ max{M, k4α(EY 2

1 (1{k}))
−2},

and this complete the proof of Lemma 3.6.

Continue the proof of necessary part.

Now back to the proof of necessary part, (omit θ) let

U =
{

k : F (k)
(
EY 2

1 (1{k})
) 1

2 ≥ k−
3
2

}

.

Since F ∈ L2(S, π) and (3.5) holds,

F (k) ≤ c−
1
2 k

α
2 except for finite many k.

Thus for k ∈ U
EY 2

1 (1{k}) ≥ ck−3−α

and
k4α
(
EY 2

1 (1{k})
)−2 ≤ c−2k6α+6

except for finite many k. We denote the exceptional set by V ′ and then the
conclusion of Lemma 3.6 can be replaced by that for k ∈ U − V ′, there are
c′ and M such that

n−
1
2 E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
≥ c′

(
EY 2

1 (1{k})
) 1

2 for all n ≥ max{M, c−2k6α+6}.
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Thus for n ≥ M

n−
1
2

∑

k∈Λn

F (k)E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
≥
∑

k∈Λn

F (k)c′
(
EY 2

1 (1{k})
) 1

2 (3.29)

where Λn = {k : k ∈ U − V ′ and 1 ≤ k ≤ (c2n)
1

6α+6}. For the compact LIL,
from part (a) of Lemma 3.4 and Lemma 3.5 we have

1

an

∞∑

k=1

F (k)E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
→ 0,

thus by (3.29)

(log log n)−
1
2

∑

k∈Λn

F (k)
(
EY 2

1 (1{k})
) 1

2 → 0.

Since
∑

k/∈U F (k)(EY 2
1 (1{k}))

1
2 ≤

∑

k/∈U k−
3
2 < ∞ and V ′ is finite

(log log n)−
1
2

∑

1≤k≤(c2n)
1

6α+6

F (k)
(
EY 2

1 (1{k})
) 1

2 → 0.

Let m = (c2n)
1

6α+6 then n = c−2m6α+6 and hence

(
log log

(
c−2m6α+6

))− 1
2
∑

1≤k≤m

F (k)
(
EY 2

1 (1{k})
) 1

2 → 0.

Thus
(log log m)−

1
2

∑

1≤k≤m

F (k)
(
EY 2

1 (1{k})
) 1

2 → 0.

Note that from (3.18)

(
EY 2

1 (1{k})
) 1

2 ≥



E

(
∑

N1<j≤N2

1{k}(Xj)

)2




1
2

−m1,1π(k) ≥ √
m1,1π(k)m

1
2
1,k−2m1,1π(k),

thus
(log log m)−

1
2

∑

1≤k≤m

F (k)π(k)m
1
2
1,k → 0
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since
∑

1≤k≤∞ F (k)π(k) < ∞.
For the bounded LIL, from part (b) of Lemma 3.4 and Lemma 3.5 we

have

sup
n

1

an

∞∑

k=1

F (k)E

∣
∣
∣
∣
∣

n∑

j=1

Yj(1{k})

∣
∣
∣
∣
∣
< ∞,

thus by (3.29)

sup
n

(log log n)−
1
2

∑

k∈Λn

F (k)
(
EY 2

1 (1{k})
) 1

2 < ∞.

Using a similar argument we can obtain

sup
m

(log log m)−
1
2

∑

1≤k≤m

F (k)π(k)m
1
2
1,k < ∞.

Proof of Remark 3 following Theorem 3.1. We want to show that
E(N2 −N1)

2 < ∞ and

E

(
∑

N1<j≤N2

F (Xj)

)2

< ∞

are necessary conditions for the LIL over F = {f : |f | ≤ F}. Suppose the
LIL holds for F = {f : |f | ≤ F} and F is strictly positive at least at a
point of S. We need the following lemma from Chen ((2.16) of Theorem 2.2
of Chapter 3).

Lemma. If the LIL holds for F , i.e.

lim sup
n→∞

|Sn(F )|
an

< ∞ a.s.

then

lim sup
n→∞

1

an

∣
∣
∣
∣
∣
∣

n∑

j=Nl(n)+1

(F (Xj)− π(F ))

∣
∣
∣
∣
∣
∣

= 0 a.s.

where l(n) = max{k : Nk ≤ n}.
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Recall that

Sn(F ) =

N1∑

j=1

(F (Xj)− π(F )) +

l(n)−1
∑

k=1

Zk(F ) +
n∑

j=Nl(n)+1

(F (Xj)− π(F )).

Since the first term of the right hand side is finite a.s. and does not depend
on n,

lim sup
n→∞

1

an

∣
∣
∣
∣
∣
∣

l(n)−1
∑

k=1

Zk(F )

∣
∣
∣
∣
∣
∣

< ∞ a.s..

Thus since l(n)/n → 1/µ a.s.,

lim sup
n→∞

1

an

∣
∣
∣
∣
∣

n∑

k=1

Zk(F )

∣
∣
∣
∣
∣
< ∞ a.s., (3.30)

and (3.30) is equivalent to E(Z1(F ))2 < ∞, because the LIL is equivalent to
the second moment finite for real valued i.i.d. random variables. Assuming
F (1) > 0 to be specific, we thus have the LIL for 1{1} implies E(Z1(1{1}))

2 =
E(1− π(1)(N2 −N1))

2 < ∞ and hence E(N2 −N1)
2 < ∞. Thus



E

(
∑

N1<j≤N2

F (Xj)

)2




1
2

≤
[
E(Z1(F ))2

] 1
2 + π(F )

[
E(N2 −N1)

2
] 1

2 < ∞.

3.3 Comparison with mixing results

It is known that a positive recurrent irreducible Markov chain has conver-
gent absolutely regular mixing coefficients [?]. Using empirical process LIL’s
for stationary sequences satisfying absolutely regular mixing conditions one
can also obtain results similar to those above. However, our conditions are
less restrictive than those required for a mixing process application to these
problems.

Let X1, X2, ... be a strictly stationary sequence of random variables with
distribution P , and assume that the absolutely regular mixing coefficient
sequence {βk} satisfies the summability condition

∑

k≥1 βk < ∞. Define the
mixing rate function β(·) by β(t) = β[t] if t ≥ 1, and β(t) = 1 otherwise. For
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any numerical function f, we denote by Qf the quantile function of |f(X1)| ,
that is

Qf(u) = inf {t : P (|f(X1)| > t) ≤ u} .

Let F be a class of functions in the function space L2,β(P ), here the norm is
defined by

‖f‖2,β =

(∫ 1

0

β−1(u) (Qf(u))2 du

) 1
2

,

where β−1(u) = inf{t : β(t) ≤ u}.Let V is a subspace of the space of measur-
able functions on S such that F ⊆ V , and let ‖·‖ be a norm on V . Define the

bracketing number of F with respect to norm ‖·‖ and V by letting, for ε > 0,

N[ ](ε,F , ‖·‖) be the minimal number of brackets [g1, h1], ..., [gn, hn], with all

gi, hi ∈ V, such that for all f ∈ F there exists [gi, hi], for some i, 1 ≤ i ≤ n
with gi ≤ f ≤ hi and ‖hi − gi‖ < ε.

Doukhan, Massart and Rio (1995) proved that a sufficient condition for
the uniform CLT holding over F is that

∫ 1

0

(

log N[ ](ε,F , ‖·‖2,β)
) 1

2

dε < ∞ (3.31)

where N[ ](ε,F , ‖·‖2,β) is the bracketing number of F with respect to the
norm ‖·‖2,β and L2,β(P ).

Arcones (1995) [1, Theorem 5 and Theorem 9] obtained a compact LIL
over F with respect to {Xi}, under the following conditions:
(i) F (X1) ∈ Lp,

(ii)
∑∞

k=1 βkk
2

p−2 log log k < ∞,
(iii) (3.31) holds,
where p > 2 and F (x) = supf∈F |f(x)| . Furthermore, in case the random
variables take values in a discrete space S, then the compact LIL holds over
F under the following conditions:

(i)
∑∞

k=1 βkk
2

p−2 log log k < ∞, and

(ii) the envelope function F satisfies
∑

k∈S F (k)(P (X1 = k))
1
p < ∞.

Since the uniform CLT implies the LIL, we only need examples such that
the conditions of uniform CLT hold, i.e. E(N2 −N1)

2 < ∞,

E

(
∑

N1<j≤N2

F (Xj)

)2

< ∞ (3.32)
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and ∞∑

k=1

F (k)π(k)m
1
2
1,k < ∞, (3.33)

but Arcones’ conditions fail.
Example 3.7. Let {Xi} be a stationary Markov chain with transition prob-
ability

Pn,n+1 = (
n

n + 1
)s, Pn,1 = 1− Pn,n+1 for all n ≥ 1 and some s > 1.

Let F (k) = kt for some t ≥ 0. We have showed in the example 2.9 of chapter
2 that in the case t = 0 and 2 < s < 5/2, (3.32) and (3.33) hold, but the
breaketing condition (3.31) fails.

We need that (3.32) and (3.33) hold, but the conditions
∑∞

k=1 βkk
2

p−2 log log k <

∞ and
∑

k∈S F (k)(P (X1 = k))
1
p < ∞ not both hold. Recall βk � k1−s and

by computation (3.32) and (3.33) holds if s > 2t + 2, but

∞∑

k=1

F (k)(π(k))
1

2+δ < ∞ only if δ ≤ s− 2t− 2

t + 1
.

Take s = 4.2 and t = 1. If
∑

k∈S F (k)(P (X1 = k))
1
p < ∞, then p− 2 ≤ 1

10
,

and then ∞∑

k=1

βkk
2

p−2 log log k �
∞∑

k=1

k−3.2k20 log log k = ∞.

We also have a little improvement of Arcones’ LIL for discrete spaces in
the special case F = {1A : A ⊆ S}.

Proposition 3.8. Suppose βk = O(k−a), for some a > 1. If

∞∑

k=1

p
a−1
2a

k < ∞, (3.34)

then (3.31) (with respect to F = {1A : A ⊆ S}) holds. Furthermore, if
pk ≈ k−b and

∞∑

k=1

(
k−b
) 1

2(
a−1

a
+ 1

ab) < ∞, (3.35)
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then (3.31) also holds.

Remark. In case pk ≈ k−b, (3.34) is equivalent to b > 2a
a−1

, but (3.35) is

equivalent to b > 2a−1
a−1

. Thus condition (3.35) is weaker than condition (3.34)

when pk ≈ k−b.

Proof of Proposition 3.8. (adapted from Dudley’s proof). We can assume
pk ≥ pl for k ≤ l. Let rj be the number of values of k such that

4−j−1 < p
a−1
2a

k ≤ 4−j j = 0, 1, 2, ... (3.36)

and let cj = rj4
−j, then

∑∞
j=1 cj < ∞. For n ≥ n0 large enough there is a

unique j(n) such that
∑

j>j(n)

cj

4j
≤ 4−n <

∑

j≥j(n)

cj

4j
.

Let kn =
∑j(n)

j=1 rj, and A = {k : k > kn}. Suppose βk ≤ ck−a for some

constant c > 0. Then β−1(u) ≤ (c
1
a + 1)u−

1
a ,

‖1A‖2,β ≤





(

c
1
a + 1

)

a

a− 1





1
2




(
∑

k>kn

pk

)a−1
a





1
2

,

and
(
∑

k>kn

pk

)a−1
a

≤
∑

k>kn

p
a−1

a

k ≤
∑

j>j(n)

rj4
−2j ≤ 4−n.

Thus
‖1A‖2,β ≤ c′2−n,

where c′ = [(c
1
a + 1)a(a− 1)−1]

1
2 . Let Ai run over all subsets of {1, 2, ..., kn}

where i = 1, ..., 2kn. Let Bi = Ai ∪ A. Then for any C ⊆ S, let Ai = C ∩
{1, 2, ..., kn}. Then 1Ai

≤ 1C ≤ 1Bi
and

‖1Bi
− 1Ai

‖2,β = ‖1A‖2,β ≤ c′2−n.

Thus N[ ](c
′2−n,F , ‖·‖2,β) ≤ 2kn. We observe that (3.31) is equivalent to

∞∑

n=1

2−n
(

log N[ ](c
′2−n,F , ‖·‖2,β)

) 1
2

< ∞,
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thus it will be enough to prove

∞∑

n=1

k
1
2
n 2−n < ∞,

and this follows exactly from Dudley’s argument.
For the special case c1k

−b ≤ pk ≤ c2k
−b for all k, we have

(
∑

k>kn

pk

)a−1
a

≤
(∫ ∞

kn

c2x
−bdx

)a−1
a

= (c2 (b− 1))
a−1

a k
(1−b) a−1

a
n ,

and

∑

k>kn

p
a−1

a
+ 1

ab

k ≥
∫ ∞

kn+1

c1x
−b(a−1

a
+ 1

ab)dx =
c1a

(b− 1) (a− 1)
(kn + 1)(1−b) a−1

a .

Thus
(
∑

k>kn

pk

)a−1
a

≤ M
∑

k>kn

p
a−1

a
+ 1

ab

k ,

where M is a constant depending on c1,c2, a and b. The previous argument
works if we modify (3.36) by

4−j−1 < p
1
2(

a−1
a

+ 1
ab)

k ≤ 4−j j = 0, 1, 2, ...

Let βk ≈ k−a for some a > 1. Then we combine Proposition 3.8 and
Theorem 5 in [1] for general state spaces to obtain that

∞∑

k=1

F (k)(P (X1 = k))
1
p < ∞ (3.37)

for p = 2a
a−1

is a sufficient condition for the compact LIL over F = {1A :

A ⊆ S}. However, since Arcones’ condition
∑∞

k=1 βkk
2

p−2 log log k < ∞ is
equivalent to p > 2a

a−1
, Arcones’ theorem for discrete state spaces requires

that (3.37) holds for some p > 2a
a−1

. In the case P (X1 = k) ≈ k−b, our

condition is b > 2a−1
a−1

and is less restrictive than Arcones’ condition b > 2a
a−1

.
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