
Chapter 4

Uniform CLT for Markov

chains with a general state

space

4.1 Introduction

Let (S,G, P ) be a probability space and let F be a set of measurable functions
on S with an envelope function F finite everywhere. Let X1, X2, ... be a
strictly stationary sequence of random variables with distribution P , and
define the empirical measures Pn, based on {Xi}, as Pn = n−1

∑n
i=1 δXi

. We

say the uniform CLT holds over F , if n
1
2 (Pn − P ) converges in law, in the

space l∞(F) to a Gaussian process. Of course, l∞(F) is not separable unless
F is a finite set, but Giné and Zinn [7, p56] includes a suitable definition of
weak convergence in non-separable spaces.

Define the covering number of F with respect to Lp(S, Q) by letting, for
ε > 0, Np(ε,F , Q) be the minimum m for which there exists g1, ..., gm in
Lp(Q) such that, for all f ∈ F , ‖ f − gi ‖Lp(Q)< ε, for some 1 ≤ i ≤ m.
Pollard [12] defined a combinatorial entropy

N2(ε,F) = sup
Q

(N2(ε,F , Q))

where the sup is taken on all the measures on S with finite support, and
proved a uniform CLT for the functions class F with envelope F in L2(P )
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satisfying
∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞. (4.1)

Dudley [6] proved the above combinatorial condition (4.1) is satisfied
in the case where the subgraphs of the functions in F are a VC class of
sets. Levental [9] extended Pollard’s result to regenerative processes, whose
renewal times satisfy

E(N2 −N1)
2+γ < ∞ for some γ > 0,

for a uniformly bounded family of functions satisfying the condition (4.1).
He also applied the regenerative process result to Harris recurrent Markov
chains by embedding Markov chains into a regenerative structure [2, chapter
1].

More precisely, Levental proved a uniform CLT for Markov chains over
uniformly bounded classes of functions satisfying (4.1), provided

sup
x∈C

Ex(τC)2+γ < ∞ (4.2)

for some γ > 0 where τC = min{k : Xkm ∈ C}, C is a small set, and m is
the order of C [2, section 1 of chapter 1].

We will weaken the condition (4.2) to ergodicity of degree 2 and generalize
the family of functions from uniformly bounded to the condition that its
envelope function F is in L2 and the CLT holds for F.

Using an empirical process CLT for stationary sequences satifying a mix-
ing condition [1], one can obtain similar results. However, these results re-
quire the envelope function of the function class in Lp(P ) for some p > 2. We
will give a example such that our conditions hold, but the envelope function
F /∈ Lp(P ) for all p > 2. For a uniformly bounded family of functions, the
mixing approach needs the absolutely regular mixing coefficient

βk = O(k−γ) for some γ > 1. (4.3)

We also give another example such that E(N2−N1)
2 < ∞ i.e. our condition

holds, but (4.3) fails.
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4.2 Uniform CLT for regenerative processes

Let (S,G) be a measurable space and let F be a family of G/B(R) measurable
real functions on S, where B(R) is the borel σ-algebra of R. Since we need to
take a supremun over F and F is not necessary countable, some restrictions
have to be made on F for measurability considerations. (see [8, p8] and [13,
appendix C])

Definition 4.1.

(i) We call a set analytic if it is a subset of Polish space which is a continuous
image of some Polish space. (A Polish space is a complete separable metric
space, and see [5, chapter 3] for properties of analytic sets.)
(ii) F is called a permissible set of functions if
(a) F can be identified (set theory isomorphism) as an analytic subset of a
compact metric space and
(b) the function g : S×F →R defined by g(s, f) = f(s) for f ∈ F and s ∈ S
is G × B(F)/B(R) measurable, where B(F) is the borel σ-algebra generated
by the metric on F .

With the above definitions, the measurability problems in this chapter
can be treated as in [8, p8]. For examples of permissible sets, observe that
a countable collection of measurable functions is permissible, and also that
F = {1(a,b) : a, b ∈R, b > a} is a permissible set.

A regenerative process, informally speaking, is a stochastic process that
can be divided into blocks which are identically distributed and independent.
To state the results, we need a formal definition and some notations [9].
(i) S is a set and G is a σ-algebra of subsets in S.
(ii) Ω stands for the set of all sequences {yi}1≤i<∞ such that yi = (xi, φi)
where xi ∈ S and φi ∈ {0, 1}.
(iii) Σ is the minimal σ-algebra that makes all the coordinate maps Xn : Ω →
S defined by Xn({yi}) = xn and Φn : Ω → {0, 1} defined by Φn({yi}) = φn,
Σ/G and Σ/2{0,1} measurable respectively.
(iv) P is a probability measure on {Ω, Σ}.
(v) Ni = min{j ≥ 1 :

∑

1≤k≤j Φk = i}, i = 1, ... or Ni = ∞ if the set
that we minimize over is empty. {Ni} are called renewal times. For every
i ≥ 1 Ni is a stopping time relative to the increasing sequence of σ-algebras
(σ{W1, ..., Wn})1≤n where by Wn we denote the coordinate maps Wn({yi}) =
yn. GNi

is the σ-algebra associated with the stopping time Ni, i.e. : GNi
=
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σ{Wk∧Ni
: k = 1, 2, ...}. θk is a shift operator: θk : {yi}i≥1 → {yi+k}i≥1 for

every k ≥ 1.

Definition 4.2. {Xi} will be called a regenerative process if Ni < ∞
almost surely for every i ≥ 1 and if for every f : Ω →R which is bounded
and Σ/B(R) measurable,

E[f(θNi
) | GNi

] = E[f(θN1)].

The following two properties of the process {Wi} are equivalent to the
above definition:
(i) The post Ni+1 process is independent of the occurence up to and including
Ni, and
(ii) L((WN1+1, ...)) = L((WNi+1, ...)) for all i = 1, 2, ....

We assume that E(N2−N1) < ∞ and denote µ = E(N2−N1) throughout
the paper. Define

π(A) =
1

µ
E(

∑

N1<j≤N2

1A(Xj)) for all A ⊆ S.

Then π is a probability measure on S (called a steady state distribution), and
by [10, chapter 10] is the usual invariant probability measure for a Markov
chain. For all f ∈ L1(S, π)

n−1
n

∑

k=1

f(Xk) → π(f) a.s..

See [3, theorem 1, p92] for the proof. (where the statement is formulated
for Markov chains but the same proof will work for regenerative processes).
Define the centered sum

Sn(f) =

n
∑

j=1

(f(Xj)− π(f)) .

We have the following theorem.

Theorem 4.3. Suppose E(N2 − N1)
2 < ∞. Let F be a permissible family

of functions on S satisfying
∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞, (4.4)

4



and such that the envelope function F satisfies

E[
∑

N1<j≤N2

F (Xj)]
2 < ∞. (4.5)

Then the uniform CLT holds over F . That is, {n− 1
2 Sn(f)}f∈F converges in

law, as random elements of l∞(F), to a Gaussian process indexed F whose
sample paths are bound and uniformly continuous with respect to the metric
L2(S, π).

Remark. The condition (4.5) implies F ∈ L2(S, π) as in the remark af-
ter Theorem 2.2 in Chapter 2. Hence suppose {Xi} is a positive recurrent
Markov chain taking values in a countable state space and let Ni be the i-th
hitting of a fixed state. Then {Xi} is a regenerative process with renewal
times Ni and we can apply Theorem 4.3 to it.

Proof of Theorem 4.3. We follow the proof of Theorem 4.9 in [9]. First
we denote

S ′ =
∞
⋃

n=1

Sn

and define
Zk = (XNk+1, ..., XNk+1

)

for k = 1, 2, 3, .. on S ′. Let P ′ = L(Z1), and P ′
n be the n-th empirical measure

of P ′. For f : S →R, f ′ : S ′ →R is defined by

(y1, ..., yn) →
n

∑

k=1

f(yk).

Denote Yk(f) = f ′(Zk). Let F ′ = {f ′ : f ∈ F}. Levental showed that F ′ is
permissble if F is permissble in his Lemma (2.11) (d). Define

[δ] = {(f, g) : f, g ∈ F, ‖ f − g ‖L2(π)< δ}

and
[[δ]] = {(f, g) : f, g ∈ F, ‖ f − g ‖L2(P ′)< δ}.

The main step of the proof is the following lemma.
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Lemma 4.4. Suppose E(N2 − N1)
2 < ∞, and (4.4) and (4.5) hold. Then

for every ε > 0, there exists δ > 0 such that

lim sup
n

P (sup
[δ]

n−
1
2 |

n
∑

k=1

(Yk − µπ)(f − g) |> ε) < ε.

Proof. We follow the proof of Lemma 4.2 in [9]. The main new step of the
proof is to show that for every λ > 0, there exists δ > 0 such that [δ] ⊆ [[λ]].

Fix λ > 0 and choose M > 0 such that

E[(
∑

N1<j≤N2

2F (Xj))
21{N2−N1>M}] <

λ2

2
.

Take δ = λ/
√

2Mµ, let (f, g) ∈ [δ], we have to show (f, g) ∈ [[λ]]. Write
h = f − g, then h′ = f ′ − g′ and ‖ h ‖L2(π)< δ. Now

(‖ h′ ‖L2(P ′))
2 = E[

∑

N1<j≤N2
h(Xj)]

2

= E[(
∑

N1<j≤N2
h(Xj))

21{N2−N1>M}] + E[(
∑

N1<j≤N2
h(Xj))

21{N2−N1≤M}].

The left term is less than λ2

2
since | h |≤ 2F. The right term

E[(
∑

N1<j≤N2
h(Xj))

21{N2−N1≤M}] ≤ E[(
∑

N1<j≤N2
h2(Xj))(N2 −N1)1{N2−N1≤M}]

≤ ME[
∑

N1<j≤N2
h2(Xj)],

and

ME[
∑

N1<j≤N2

h2(Xj)] = M(‖ h ‖L2(π))
2µ < Mδ2µ =

λ2

2
.

Thus ‖ h′ ‖L2(P ′)< λ and hence (f, g) ∈ [[λ]].
We need to show that for every ε > 0, there exists δ > 0 such that

lim sup
n

P (sup
[δ]

n−
1
2 | (P ′

n − P ′)(f ′ − g′) |> ε) < ε.

It is enough to show proved that for every ε > 0, there exists λ > 0 such that

lim sup
n

P (sup
[[λ]]

n−
1
2 | (P ′

n − P ′)(f ′ − g′) |> ε) < ε. (4.6)
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We use Lemma 15 in [13, p150]. Since F ′ has an envelope F ′ in L2(P ′) by
(4.5), we only have to show that for every ε > 0 there exists a > 0 such that

lim sup
n

P

(
∫ a

0

[log N2(u,F ′, P ′
n)]

1
2 du > ε

)

< ε. (4.7)

Since

‖f ′‖L2(P ′

n) =
(

1
n

∑n
k=1[

∑

Nk<j≤Nk+1
f(Xj)]

2
)

1
2

≤
(

1
n

∑n
k=1[

∑

Nk<j≤Nk+1
f 2(Xj)][Nk+1 −Nk]

)
1
2

= ‖f‖L2(Q) ·
(

1
n

∑n
k=1[Nk+1 −Nk]

2
)

1
2 ,

where Q =
∑n

k=1[
∑

Nk<j≤Nk+1
δXj

· (Nk+1−Nk)]/
∑n

k=1[Nk+1−Nk]
2, we have

‖f ′ − g′‖L2(P ′

n) ≤ ε

for f, g satisfying ‖f − g‖L2(Q) ≤ ε/[ 1
n

∑n
k=1[Nk+1 −Nk]

2]
1
2 . Thus for n large

enough, outside of a set of small probability, we have

N2(ε,F ′, P ′
n) ≤ N2(ε/[ 1

n

∑n
k=1[Nk+1 −Nk]

2]
1
2 ,F , Q)

≤ N2(ε/2[E[N2 −N1]
2]

1
2 ,F , Q)

≤ N2(ε/2[E[N2 −N1]
2]

1
2 ,F).

The last inequality will lead to (4.7) by (4.4).

Lemma 4.5. Let F be a permissible family of functions on S satisfying

1

n
log N1(ε,F , Pn) → 0 in probability for every ε > 0, (4.8)

and such that its envelope function F is in L1(S, π). Then

sup
f∈F

1

n

∣

∣

∣

∣

∣

n
∑

k=1

[Yk(f)− µπ(f)]

∣

∣

∣

∣

∣

→ 0 a.s..

Proof. Levental proved this result for F uniformly bounded in Lemma (3.2)
of [9]. Using the same method as in the first observation of the proof of
Lemma (3.6) in Levental we can obtain the desired result.
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With some easy modification of Levental’s proof, we also have the follow-
ing Lemma.

Lemma 4.6. Let E(N2−N1)
2 < ∞, and assume (4.4) and (4.5) hold. Then

for every ε > 0 there exists δ > 0 such that

lim sup
n

P (sup
[δ]

n−
1
2 | Sn(f)− Sn(g) |> ε) < ε.

Proof. This follows from Levental’s proof of Lemma (4.6), i.e.

|Sn(f)− Sn(g)| ≤
∣

∣

∣

∑N1

j=1 [(f − g)(Xj)− π(f − g)]
∣

∣

∣
+

∣

∣

∣

∑l(n)−1
k=1 (Yk − µπ)(f − g)

∣

∣

∣

+
∣

∣

∣

∑n
j=Nl(n)−1+1 [(f − g)(Xj)− π(f − g)]

∣

∣

∣
+

∣

∣

[

µ(l(n)− 1)−Nl(n)−1 + N1

]

· π(f − g)
∣

∣

where l(n) = max{k : Nk ≤ n}.
The first term on the right hand side of the inequality does not depend

on n, thus it converges to zero when divided by
√

n. The second term
goes to zero following Levental since Lemma 4.5 gives the uniform SLLN
for unbounded F . For the third term, applying the SLLN to the sequence
{Y 2

k (F ), k ≥ 1}, we have

n−1
n

∑

k=1

Y 2
k (F ) → EY 2

1 (F ) < ∞ a.s.

and hence n−
1
2 Yn(F ) → 0 a.s.. Since l(n)/n → 1/µ a.s., we have n−

1
2 Yl(n)−1(F ) →

0 a.s.. Note that

sup
[δ]

|
n

∑

j=Nl(n)−1+1

(f − g)(Xj) |≤ Yl(n)−1(2F ),

thus

sup
[δ]

n−
1
2 |

n
∑

j=Nl(n)−1+1

(f − g)(Xj) |→ 0 a.s..

Applying the constant function π(2F ) to the above function F , we can obtain

sup
[δ]

n−
1
2 |

n
∑

j=Nl(n)−1+1

π(f − g) |→ 0 a.s..
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Thus the third term is also done. The fourth term follows as in Levental’s
proof.

To finish the proof of Theorem 4.3, we now use [13, theorem 21, p157].
Following Levental’s proof, we have asymptotically stochastic equicontinuity
from Lemma 4.6, so only need to make sure that F is totally bounded in
L2(S, π). Note that to show that F is totally bounded in L2(S, π) in a
discrete space, we only need F ∈ L2(S, π). It is easy to show that if F is
totally bounded in L1(S, π) and its envelope function F is in L2(S, π), then
F is totally bounded in L2(S, π). We have F ∈ L2(S, π) from (4.5) and
Levental proved that F is totally bounded in L1(S, π) by letting K = {|
f − g |: f, g ∈ F} and Qn be the n-th empirical measure of an i.i.d. process
whose law is π. Since for every ε > 0

N1(ε,K, Qn) ≤
(

N2(
ε

2
,F)

)2

< ∞

we see that the conditions of the uniform SLLN for Qn are satisfied and we
have

sup
h∈K

|(Qn − π)h| → 0 a.s..

Hence it follows that F is totally bounded in L1(S, π).

4.3 Uniform CLT for Markov chains

We generalize Theorem 4.3 to weakly regenerative processes, which are needed
for application to ergodic Markov chains.

Definition 4.7. Using the notations of section 2, we call {Xi} a weakly

regenerative process if Ni < ∞ almost surely for every i ≥ 1 and if for
every f : Ω →R which is bounded and Σ/B(R) measurable,

E[f(θNi+1
) | GNi

∨ σ(Ni+1 −Ni)] = E[f(θN1)].

The following two properties of the process {Wi} are equivalent to the above
definition:
(i) The post Ni+1 + 1 process is independent of the occurence up to and
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including Ni, and
(ii) L((WN1+1, ...)) = L((WNi+1, ...)) for all i = 1, 2, ....

We put S∗ = S ∪ {∗} where ∗ denotes an ideal point which is not in S.
We define two processes {Ei} and {Oi}, taking values in S∗:
Oi = Xi if N2k+1 < i ≤ N2k+2 for some k ≥ 0 and Oi = ∗ otherwise
Ei = Xi if N2k < i ≤ N2k+1 for some k ≥ 0 and Ei = ∗ otherwise.
Then {Oi} and {Ei} are regenerative processes taking values in S∗, with re-
newal times {N2i}i≥1 and {N1i+1}i≥1 respectively. Every function f : S →R

will be considered as defined on S∗ with the identification f(∗) = 0.

Levental’s weakly regenerative process approach can now be applied to
unbounded F . That is, we have the following theorem.

Theorem 4.8. Let {Xi} be a weakly regenerative process with renewal
times Ni satisfying

E(N2 −N1)
2 < ∞.

Let F be a permissible family of functions on S with envelope function F . If
∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞,

and
E[

∑

N1<j≤N2

F (Xj)]
2 < ∞,

then the uniform CLT holds over F , i.e. {n− 1
2 Sn(f)}f∈F converges in law to

a Gaussian process indexed F in the sense of Theorem 4.3.

Proof. We need stochastic equicontinuity, i.e.

lim sup
n

P (sup
[δ]

n−
1
2 | Sn(f)− Sn(g) |> ε) < ε. (4.9)

Let SO
n (f) =

∑n
j=1(f(Oj)− 1

2
π(f)) and SE

n (f) =
∑n

j=1(f(Ej)− 1
2
π(f)). Since

f(Xj) = f(Oj) + f(Ej)

P (sup
[δ]

n−
1
2 | Sn(f)− Sn(g) |> ε) ≤ P (sup

[δ]

n−
1
2 | SO

n (f)− SO
n (g) |> ε/2)

+P (sup
[δ]

n−
1
2 | SE

n (f)− SE
n (g) |> ε/2).
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Thus (4.9) follows from applying Lemma 4.6 to {Oj} and {Ej}.

Consider a Markov chain {Xi}i≥0 with state space (S,G), transition prob-
ability P (x, A) and n-step transition probability P n(x, A) for each n ≥ 1.

The chain {Xi}i≥0 is called irreducible if there exists a σ-finite measure
ϕ on (S,G) which we call an irreducibility measure for {Xi}i≥0, such that for
every A ∈ G

ϕ(A) > 0 =⇒
∞

∑

n=1

P n(x, A) > 0 for all x ∈ S.

There exists a measure ϕ on (S,G) which we call maximal irreducibility mea-
sure for {Xi}i≥0, such that ϕ is an irreducibility measure and that all other
irreducibility measures are absolutely continuous w.r.t. ϕ [11, proposition
2.4]. Write

G+ = {A ∈ G : ϕ(A) > 0},
where ϕ is a maximal irreducibility measure.

The chain {Xi}i≥0 is called Harris recurrent if

Px(Xn ∈ A i.o.) = 1

for all x ∈ S and all A ∈ G+.
A σ-finite measure π is called invariant if

π(A) =

∫

P (x, A)π(dx) for all A ∈ G.

{Xi}i≥0 is called positive if the invariant measure exists uniquely and is
finite.

A irreducible Markov chain satisfies the following minorzation condition
[11, theorem 2.1]. That is, there exists C ∈ G+ such that

P m ≥ bIC ⊗ ν (4.10)

for some integer m ≥ 1, some b > 0, and some probability measure ν on
(S,G). In this case we call C a small set and the smallest m satisfying
(4.10) is called the order of C.

In the case that S is a countable state space we can take C = {x0} and
ν(A) = P (x0, A), thus m = 1.
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Fix a small set C together with a probability measure ν on (S,G) such
that (C, ν) satisfies (4.10) for some m ≥ 1 and ν(C) > 0. Let d be the
greatest common divisor of the set

{m ≥ 1 : there exists b > 0 such that (4.10) holds}

By [11, theorem 2.2], d does not depend on the particular choise of (C, ν).
The chain {Xi}i≥0 is called aperiodic if d = 1.

The chain {Xi}i≥0 is called ergodic if it is positive, Harris recurrent and
aperiodic. Let

τA = inf{n ≥ 1 : Xn ∈ A}.
The chain {Xi}i≥0 is called ergodic of degree 2 [11, proposition 5.16 and
section 6.4] if it is ergodic and

EπτA < ∞ for all A ∈ G+, (4.11)

where π is the invariant measure.
Using the split chain technique [2, chapter 1], ergodic Markov chains can

be embedded in a weakly regenerative structure. That is, if {Xi} is a ergodic
Markov chain, then by Theorem 2.2 of chapter 1 in Chen, {Xi} is a weakly
regenerative process with renewal times

Ni = mτ(i) + m− 1,

where τ(i) is defined in [2, (2.19) of chapter 1] and m is the order of some
fixed small set.

¿From Proposition 5.16 of Nummelin [11], (4.11) is equivalent to
∫

A

π(dx)Exτ
2
A < ∞ for all A ∈ G+. (4.12)

Hence (4.31) of chapter 1 in Chen holds by taking ϕ(s) = s2 and ξ ≡ 1 in
Theorem 4.1 of chapter 1 in Chen. Furthermore, by Theorem 4.6 of chapter
1 in Chen we have E(N2 − N1)

2 < ∞. Thus ergodicity of degree 2 implies
E(N2 −N1)

2 < ∞.

By Theorem 2.3 of chapter 2 in Chen, F ∈ L2(π) and that n−
1
2 Sn(F )

converges in law to a normal distribution, imply

E[
∑

N1<j≤N2

(F − π(F ))(Xj)]
2 < ∞.
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Then, since E(N2 −N1)
2 < ∞, we have

E[
∑

N1<j≤N2

F (Xj)]
2 < ∞.

Hence we have the following theorem.

Theorem 4.9. Let {Xi} be a Markov chain which is ergodic of degree 2. Let
F be a permissible family of functions on S with envelope function F ∈ L2(π)
such that

∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞, (4.13)

and assume n−
1
2 Sn(F ) converges in law to a normal distribution. Then the

uniform CLT holds over F , i.e. {n− 1
2 Sn(f)}f∈F converges in law to a Gaus-

sian process indexed F in the sense of Theorem 4.3.

4.4 Compare to mixing results

First we introduce a combinatorial condition on a class of sets. Let C be a
class of subsets of S. For x1, · · ·, xn ∈ S, let

∆C(x1, · · ·, xn) := card {C ∩ {x1, · · ·, xn} : C ∈ C} ≤ 2n

and
mC(n) := sup{∆C(x1, · · ·, xn) : x1, · · ·, xn ∈ S}.

If mC(n) < 2n for some n ≥ 1, then C is called a Vapnik-Cervonenkis (or
VC) class. Many classes of interest in applications, such as the class of all
rectangles in Rd, are VC classes.

A class F of real functions on S is called a VC graph class if the class

R := {{(s, x) : 0 ≤ x ≤ f(s) or f(s) ≤ x ≤ 0} : f ∈ F}

of regions in S× R which lie between S × {0} and the graph of some f ∈ F
is a VC class of sets.

Dudley showed that the VC graph classes satisfy (4.13) in [6]. It is known
that an ergodic Markov chain satisfies some mixing conditions [4]. Using em-
pirical process CLT’s for stationary sequences satisfying some mixing condi-
tions one can also obtain a uniform CLT over the VC graph class. We will
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present examples such that our conditions for Markov chains are less restric-
tive than those required for a mixing process application to these problems.

Arcones and Yu [1] obtained an empirical process uniform CLT over VC
graph classes F under the condition that the envelope function of F is in Lp

for some 2 < p < ∞ and the β-mixing coefficients satisfy

kp/(p−2)(log k)2(p−1)/(p−2)βk → 0 as k →∞.

For uniformly bounded classes they need that βk = O(k−γ) for some γ > 1,
where the mixing coefficients βk are defined by

βk = 1
2
sup{

I
∑

i=1

J
∑

j=1

|P (Ai ∩ Bj)− P (Ai)P (Bj)| ; {Ai}I
i=1is a partition of the

sample space in σl
1, {Bj}J

j=1 is a partition of the sample space in σ∞l+k, l ≥ 1}.

The following example is a Markov chain such that the envelope function F
satisfies our condition for the uniform CLT, but F is only in L2.

Example 4.10. Let {Xi} be a stationary Markov chain with transition
probability

Pk2,k2+1 =
ka

42k+1 (k + 1)a , Pk2,1 = 1− Pk2,k2+1

and Pn,n+1 = 1 if n 6= k2 for some positive integer k. Let Ni be the i-th
hitting time of state 1. Let F be a function such that

F (j) = 2k2

for (k − 1)2 < j ≤ k2.

If a > 3, then we have E(N2 −N1)
2 < ∞ and

E(
∑

N1<j≤N2

F (Xj))
2 ≈

∞
∑

k=1

(2k − 1)2

ka
< ∞.

Hence the remark following Theorem 4.3 implies the uniform CLT for this
Markov chain provided F is a permissible VC graph classes with envelope
function F i.e. VC graph class satisfy condition (4.1) by Dudley’s work.
However,

E[F (X1)]
2+γ ≈

∞
∑

k=1

2γk2 (2k − 1)

ka
= ∞
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for any γ > 0, and hence the envelope function F /∈ Lp(P ) for all p > 2, and
the results from [1] fails.

For uniformly bounded classes of functions our result only needs E (N2 −N1)
2 <

∞. The following example show that we may have E (N2 −N1)
2 < ∞, but

βk 6= O(k−γ) for any γ > 1.

Example 4.11. Let {Xi} be a stationary Markov chain with transition
probability

Pn,n+1 = (
nLn

(n + 1)L(n + 1)
)2, Pn,1 = 1− Pn,n+1 for all n ≥ 1,

where Ln = ln(max{e, n}). Let Ni be the i-th hitting time of state 1. Then

P (N2 −N1 = n) = (1L1
2L2

)2(2L2
3L3

)2 · · · ( (n−1)L(n−1)
nLn

)2(1− ( nLn
(n+1)L(n+1)

)2)

= (nLn)−2(1− ( nLn
(n+1)L(n+1)

)2) ≈ n−3(Ln)−2,

since (1− ( nLn
(n+1)L(n+1)

)2) = O(n−1). Thus

E (N2 −N1)
2 =

∞
∑

n=1

n2P (N2 −N1 = n) ≈
∞

∑

n=1

n−1(Ln)−2 < ∞.

Recall that mixing coefficients βk is defined by

βk = 1
2
sup{

I
∑

i=1

J
∑

j=1

|P (Ai ∩ Bj)− P (Ai)P (Bj)| ; {Ai}I
i=1is a partition of the

sample space in σl
1, {Bj}J

j=1 is a partition of the sample space in σ∞l+k, l ≥ 1}.

We take

l = 1, A1 = {X1 = 1}, A2 = Ac
1,

Bj = {Xk+1 = k + 1 + j} for j = 1, 2, · · ·, J and BJ+1 = (
J
⋃

j=1

Bj)
c.

Note that P (A1 ∩Bj) = 0 for j = 1, 2, · · ·, J. Thus

βk ≥
1

2
sup

J

J
∑

j=1

P (A1)P (Bj) ≈
∞

∑

j=1

(
1

(k + 1 + j)L(k + 1 + j)
)2 ≈ 1

k(log k)2
.
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