
Chapter 5

Uniform LIL for Markov chains

with a general state space

5.1 Introduction

Let (S,G, P ) be a probability space and let F be a set of measurable functions
on S with an envelope function F finite everywhere. Let X1, X2, ... be a
strictly stationary sequence of random variables with distribution P . We say
the compact LIL holds over F with respect to {Xi} if there exists a compact
set K in l∞(F) such that, with probability one,

{(2n log log n)−
1
2

n
∑

j=1

(f(Xj)− Ef(X1)) : f ∈ F}∞n=1

is relatively compact and its limit set is K, and the bounded LIL holds over
F with respect to {Xi} if, with probability one,

sup
n

sup
f∈F

(2n log log n)−
1
2

∣

∣

∣

∣

∣

n
∑

j=1

(f(Xj)− Ef(X1))

∣

∣

∣

∣

∣

< ∞.

Alexander and Talagrand [1] proved compact and bounded LIL’s on VC
classes of functions in the i.i.d. case. Let F be a countably determined VC
graph class of functions on (S,G, P ) with envelope function F satisfying

E

(

F 2(X)

LLF (X)

)

< ∞.
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If
sup
f∈F

V ar f(X1) < ∞

then the bounded LIL holds over F . If

F is ρ-totally bounded,

where ρ(f, g) = ‖(f − g)− P (f − g)‖2, then the compact LIL holds over F .
We will extend the results to regenerative processes and Markov chains.

What we prove is as follows. Let {Xn} be a regenerative process with renewal
times Ni, taking values in S. Let Q be a measure on S, N2(ε,F , Q) be
the minimum m for which there exists g1, ..., gm in L2(Q) such that, for all
f ∈ F , ‖ f − gi ‖L2(Q)< ε, for some 1 ≤ i ≤ m, and

N2(ε,F) = sup
Q

(N2(ε,F , Q))

where the sup is taken on all the measures on S with finite support. Suppose
E(N2 −N1)

2 < ∞. Let F be a countable family of functions on S satisfying

∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞

and its envelope function F satisfies

E

[

Y 2
1 (F )

LL(Y1(F ))

]

< ∞,

where
Y1(f) =

∑

N1<j≤N2

f(Xj).

If
sup
f∈F

V ar Y1(f) < ∞

then the bounded LIL hold over F . If

F is ρπ-totally bounded,

where the metric ρπ(f, g) = [E[
∑

N1<j≤N2
(f − g)(Xj) − π(f − g)]2]

1
2 , then

the compact LIL holds over F .
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Let {Xn} be a Markov chain wth ergodicity of degree 2 and let F be a
countable family of functions on S satisfying

∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞, (5.1)

and assume its envelope function F satisfies
∫

C

π(dx)Exmax
n≤τC

(

S2
n(F )/LLSn(F )

)

< ∞. (5.2)

Here the notation is as in Chapter 4. If

sup
f∈F

E[
∑

N1<j≤N2

f(Xj)]
2 < ∞ (5.3)

then from Theorem 5.10 below the bounded LIL holds over F .
Chen [2, Theorem 4.3 of Chapter 3] has LIL results on ergodic Markov

chains taking values in a separable Banach space B. Let {Xn} be an ergodic
Markov chain with a finite order. Then the necessary and sufficient conditions
for the bounded LIL, i.e.

lim sup
n→∞

‖Sn‖√
2nLLn

< ∞ a.s.,

are
(i) the CLT holds for every f ∈ B∗,
(ii) for some small set C,

∫

C

π(dx)Exmax
n≤τC

(
∥

∥S2
n

∥

∥ /LL ‖Sn‖
)

< ∞,

(iii) {Sn/
√

2nLLn} is bounded in probability.
Let F be a family of bounded functions on S and define the metric

d(f, g) = sup
x∈S

|f(x)− g(x)|

If F is compact with respect to d, then C(F ,R) with sup norm is a separable
Banach space and we can consider the S valued Markov chain taking values in
C(F ,R) given by X(f)(·) = f(·). Thus we are able to apply Chen’s Theorem
above. However, if F satisfies (5.1), then using Theorem 5.10 below we
don’t have to check Chen’s conditon (iii) that {Sn/

√
2nLLn} is bounded in

probability.
Dudley [3] proved the above combinatorial condition (5.1) is satisfied in

the case where the subgraphs of the functions in F are a VC class of set.
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5.2 Uniform LIL for regenerative processes

Let {Xn} be a regenerative process with renewal times Ni, taking values in
S. We assume that E(N2−N1) < ∞ and denote µ = E(N2−N1) throughout
the paper. Define

π(A) =
1

µ
E(

∑

N1<j≤N2

1A(Xj)) for all A ⊆ S.

Then π is a probability measure on S (called a steady state distribution).
For all f ∈ L1(S, π)

n−1
n

∑

k=1

f(Xk) → π(f) a.s.

Define the centered sum

Sn(f) =
n

∑

j=1

(f(Xj)− π(f)) ,

and
Yk(f) =

∑

Nk<j≤Nk+1

f(Xj).

Then {Yk(f)} are i.i.d. and EY1(f) = µπ(f). Define

LLx = log log(max{x, ee}).

Theorem 5.1. Suppose E(N2 −N1)
2 < ∞. Let F be a countable family of

functions on S satisfying
∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞, (5.4)

sup
f∈F

V ar Y1(f) < ∞, (5.5)

and such that its envelope function F satisfies

E

[

Y 2
1 (F )

LL(Y1(F ))

]

< ∞. (5.6)
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Then

sup
f∈F

1√
2nLLn

n
∑

k=1

[Yk(f)− µπ(f)] → 0 in probability.

Proof. We denote

S ′ =

∞
⋃

n=1

Sn

and define
Zk = (XNk+1, ..., XNk+1

)

for k = 1, 2, 3, .. on S ′. Let P ′ = L(Z1), and P ′
n be the n-th empirical measure

of P ′. For f : S →R, f ′ : S ′ → R is defined by

(y1, ..., yn) →
∞

∑

k=1

f(yk).

Then Yk(f) = f ′(Zk). Define

F ′ = {f ′ : f ∈ F},

and

vn(f ′) = n−
1
2

n
∑

k=1

[f ′(Zk)− Ef ′(Z1)] .

Denote bn =
√

2LLn and ‖·‖F ′ = sup
f∈F

(·)(f ′). We need to show that

∥

∥

∥

∥

vn

bn

∥

∥

∥

∥

F ′

→ 0 in probability.

Let {εi} be a Rademacher sequence, define

v0
n(f ′) = n−

1
2

n
∑

k=1

εkf
′(Zk).

By Lemma 5.1 in Alexander and Talagrand [1] we have the following lemma.

Lemma 5.2. For all η > 0 and α2 ≥ sup
f ′∈F ′

V ar(f ′(Z1)), we have

P [‖vn‖F ′ > η] ≤ 2P
[
∥

∥v0
n

∥

∥

F ′
> η/2− α

]

.
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So we can replace vn by v0
n.

Let PX , EX and Pε, Eε denote the probability and expection with respect
to the sequence {Xi} and {εi}. The probability space on {Xi} and {εi} are de-
fined as a product space (Ω1,A1, PX)× (Ω2,A2, Pε). Let d be a pseudometric
on F and N(ε,F , d) be the minimum m for which there exists g1, ..., gm ∈ F
such that for all f ∈ F , d(f, gi) < ε for some 1 ≤ i ≤ m. By Lemma 5.2 in
Alexander and Talagrand [1] we have the following lemma.

Lemma 5.3. There exists a universal contant R1 such that for all f0 ∈ F ′

Eε

∥

∥v0
n

∥

∥

F ′
≤ R1

[

∫ ∆n(F ′)

0

(

ln N(u,F ′, eP ′

n
)
)

1
2 du + ∆n(F ′) +

(

P ′
n(f 2

0 )
)

1
2

]

where eP ′

n
(f ′, g′) = [n−1

∑n
k=1(f

′ − g′)2(Zk)]
1
2 and ∆n(F ′) is the diameter of

F ′ for metric eP ′

n
.

The following lemma is from the proof of Lemma 4.2 in Levental [6].(Also
see the proof of Lemma 4.4 in chapter 4, there N2(u,F ′, P ′

n) = N(u,F ′, eP ′

n
).)

Lemma 5.4. Suppose E(N2−N1)
2 < ∞. Then for u > 0 and λ > 0 we have

P (N(u,F ′, eP ′

n
) > N(u/2[E(N2 −N1)

2]
1
2 ,F)) < λ

for n large enough.

¿From Lemma 5.4 in Alexander and Talagrand [1].
Lemma 5.5. If

E

[

Y 2
1 (F )

LL(Y1(F ))

]

< ∞

then
1

LLn
P ′

n(F
′2) → 0 in probability.

Proof of Theorem 5.1. Let δ, θ > 0 and let

Gn = {ω1 ∈ Ω1 : [P ′
n(F ′2)]

1
2 ≤ θbn}.
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Then by Lemma 5.2, for large n

P
[
∥

∥

∥

vn

bn

∥

∥

∥

F ′

> δ
]

≤ 2P
[
∥

∥

∥

v0
n

bn

∥

∥

∥

F ′

> δ
2

]

≤ 2PX(Gc
n) + 2 sup

ω1∈Ω1

Pε

[
∥

∥

∥

v0
n

bn

∥

∥

∥

F ′

> δ
2

]

≤ 2PX(Gc
n) + 4

δbn
sup

ω1∈Ω1

Eε ‖v0
n‖F ′

(5.7)

Clearly, ∆n(F ′) ≤ [P ′
n(F ′2)]

1
2 , and from Lemma 5.4 outside a set of small

probability λ we have

∫ ∆n(F ′)

0

(

ln N(u,F ′, eP ′

n
)
)

1
2 du ≤

∫ ∞

0

[

ln N(
u

2[E(N2 −N1)2]
1
2

,F)

]
1
2

du = R2 < ∞.

Thus for ω1 ∈ Gn, from Lemma 5.3

Eε

∥

∥v0
n

∥

∥

F ′
≤ R1[R2 + 2θbn + θbn],

and hence by (5.7), for large n

P

[
∥

∥

∥

∥

vn

bn

∥

∥

∥

∥

F ′

> δ

]

≤ 2PX(Gc
n) +

4R1R2

δbn
+

12θR1

δ
+ λ.

Since θ, λ are arbitrary and PX(Gc
n) → 0 by Lemma 5.5, we have

P

[
∥

∥

∥

∥

vn

bn

∥

∥

∥

∥

F ′

> δ

]

→ 0 as n →∞ in probability.

Theorem 5.6. Suppose E(N2 −N1)
2 < ∞. Let F be a countable family of

functions on S satisfying
∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞

and such that its envelope function F satisfies

E

[

Y 2
1 (F )

LL(Y1(F ))

]

< ∞.

If
sup
f∈F

V ar Y1(f) < ∞,
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then the bounded LIL holds over F , i.e.

sup
n

sup
f∈F

| Sn(f) |√
2nLLn

< ∞ a.s..

If
F is ρπ-totally bounded, (5.8)

where the metric ρπ(f, g) = [E[
∑

N1<j≤N2
(f − g)(Xj) − π(f − g)]2]

1
2 . Then

the compact LIL holds over F .

Remark. Arcones obtained an empirical process compact LIL over VC graph
classes F under the condition that the envelope function of F is in Lp for
some 2 < p < ∞ and the β-mixing coefficients satisfy

∞
∑

k=1

k2/(p−2)(log k)2(p−1)/(p−2)(log log n)−(2p−1)/(p−2)βk < ∞.

But in Example 4.10 of chapter 4 the conditions of Theorem 5.6 hold and the
envelope function of F is not in Lp for any p > 2, and Arcones‘ conditions
fail.

To prove Theorem 5.6 we define

Rn(f) =
∑

1≤j≤N1 or Ni(n)<j≤n

(f(Xj)− π(f))

where l(n) = max{k : Nk ≤ n}. Then

Sn(f) =

l(n)−1
∑

k=1

(Yk(f)− (Nk+1 −Nk)π(f)) + Rn(f).

Lemma 5.7. If E(N2 −N1)
2 < ∞ and

E

[

Y 2
1 (F )

LL(Y1(F ))

]

< ∞

then

sup
f∈F

| Rn(f) |√
2nLLn

→ 0 a.s..
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proof. We have

sup
f∈F

| ∑1≤j≤N1
(f(Xj)− π(f)) |

√
2nLLn

≤
∑

1≤j≤N1
F (Xj) + N1π(F )
√

2nLLn
→ 0 a.s..

and
(n−Nl(n)

)π(F )
√

2nLLn
→ 0 a.s..

from E(N2 −N1)
2 < ∞. Thus we only have to show that

∑

Ni(n)<j≤n F (Xj)
√

2nLLn
→ 0 a.s..

It’s enough to show
Yn(F )√
2nLLn

→ 0 a.s..

We have

E

[

Y 2
1 (F )

εLL(Y1(F ))

]

< ∞

for all ε > 0. Thus

∞
∑

n=1

P

(

Y 2
n (F )

LL(Yn(F ))
≥ nε

)

=
∞

∑

n=1

P

(

Y 2
1 (F )

εLL(Y1(F ))
≥ n

)

< ∞.

By Borel-Cantelli lemma, we have

P

(

Y 2
n (F )

LL(Yn(F ))
≥ nε i.o.

)

= 0,

that is

P

(

Y 2
n (F )

LL(Yn(F ))
< nε eventually

)

= 1.

Thus

P

(

Y 2
n (F )

LLn
< nε eventually

)

= 1.

So

lim
n

Y 2
n (F )

LLn
≤ ε a.s.

for all ε > 0.
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Proof of Theorem 5.6. Applying Theorem 9 in Ledoux and Talagrad [4]
and [5] to {Zk}, we have that the bounded LIL hold over F ′ with respect to
{Zk} by Theorem 5.1. i.e.

sup
n

sup
f∈F

1√
2nLLn

∣

∣

∣

∣

∣

n
∑

k=1

(f ′(Zk)− µπ(f))

∣

∣

∣

∣

∣

< ∞ a.s..

This is equivalent to

sup
n

sup
f∈F

1√
2nLLn

∣

∣

∣

∣

∣

∣

i(n)−1
∑

k=1

(f ′(Zk)− (Nk+1 −Nk)π(f))

∣

∣

∣

∣

∣

∣

< ∞ a.s.. (5.9)

since n/l(n) → µ a.s. and

sup
n

sup
f∈F

|π(f)|√
2nLLn

∣

∣

∣

∣

∣

n
∑

k=1

[(Nk+1 −Nk)− µ]

∣

∣

∣

∣

∣

< ∞.

¿From (5.9) and Lemma 5.7 we have the bounded LIL hold over F . The
proof of the compact LIL is similar.

5.3 Uniform LIL for Markov chains

Definition 5.8. Using the notations of section 2, we call {Xi} a weakly

regenerative process if Ni < ∞ almost surely for every i ≥ 1 and if for
every f : Ω →R which is bounded and Σ/B(R) measurable,

E[f(θNi+1
) | GNi

∨ σ(Ni+1 −Ni)] = E[f(θN1)].

The following two properties of the process {Wi} are equivalent to the above
definition:
(i) The post Ni+1 + 1 process is independent of the occurence up to and
including Ni, and
(ii) L((WN1+1, ...)) = L((WNi+1, ...)) for all i = 1, 2, ....

We put S∗ = S ∪ {∗} where ∗ denotes an ideal point which is not in S.
We define two processes {Ei} and {Oi}, taking values in S∗:
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Oi = Xi if N2k+1 < i ≤ N2k+2 for some k ≥ 0 and Oi = ∗ otherwise
Ei = Xi if N2k < i ≤ N2k+1 for some k ≥ 0 and Ei = ∗ otherwise.
Then {Oi} and {Ei} are regenerative processes taking values in S∗, with re-
newal times {N2i}i≥1 and {N1i+1}i≥1 respectively. Every function f : S →R

will be considered as defined on S∗ with the identification f(∗) = 0.

Lemma 5.9. Let {Xi} be a weakly regenerative process with renewal times
Ni satisfying E(N2−N1)

2 < ∞. Let F be a countable family of functions on
S with envelope function F . If

∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞,

sup
f∈F

E[
∑

N1<j≤N2

f(Xj)]
2 < ∞, (5.10)

and its envelope function F satisfies

E

[

[
∑

N1<j≤N2
F (Xj)]

2

LL
∑

N1<j≤N2
F (Xj)

]

< ∞, (5.11)

then the bounded LIL holds over F .
Proof. Since f(Xi) = f(Oi) + f(Ei), the proof follows from Theorem 5.6.

Using the split chain technique [2, chapter 1], ergodic Markov chains can
be embedded in a weakly regenerative structure. That is, if {Xi} is a ergodic
Markov chain, then by Theorem 2.2 of chapter 1 in Chen, {Xi} is a weakly
regenerative process with renewal times

Ni = mτ(i) + m− 1,

where τ(i) is defined in [2, (2.19) of chapter 1] and m is the order of some
fixed small set.

¿From Proposition 5.16 of Nummelin and Theorem 4.6 of Chapter 1 in
Chen (with ϕ(s) = s2 and ξ ≡ 1), ergodicity of degree 2 implies E(N2 −
N1)

2 < ∞. Applying Lemma 5.9 to Markov chains, we have the following
theorem.

Theorem 5.10. Let {Xi} be a Markov chain with ergodic of degree 2. Let
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F be a countable family of functions on S with envelope function F such
that

∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞,

sup
f∈F

E[
∑

N1<j≤N2

f(Xj)]
2 < ∞,

and its envelope function F satisfies
∫

C

π(dx)Exmax
n≤τC

(

S2
n(F )/LLSn(F )

)

< ∞, (5.12)

Then the bounded LIL holds over F .
Proof. We have to show (5.11). Using Theorem 4.6 of chapter 1 in Chen
with ξ ≡ F and ϕ(s) = s2/LLs, (5.12) implies

E





[
∑

N1<j≤N2
(F (Xj)− π(F ))]2

LL
∣

∣

∣

∑

N1<j≤N2
(F (Xj)− π(F ))

∣

∣

∣



 < ∞.

Let Y =
∑

N1<j≤N2
F (Xj) and Y ′ =

∑

N1<j≤N2
(F (Xj)− π(F )) = Y − (N2 −

N1)π(F ). Then

E
(

Y 2

LLY

)

= E
(

Y 2

LLY
1{Y ′≥0}

)

+ E
(

Y 2

LLY
1{Y ′<0}

)

≤ E
(

2Y ′2+2(N2−N1)2π2(F )
LL|Y ′|

1{Y ′≥0}

)

+ E
(

(N2 −N1)
2π2(F )1{Y ′<0}

)

< 0.

In Theorem 2.2 of chapter 3 of Chen if f ∈ L2(π) and

lim sup
n

|Sn(f)|√
2nLLn

< ∞ a.s.

then
n−

1
2 Sn(f) =⇒ N(0, σ2

f ).

In the case the order of the Markov chain m = 1 we have from Theorem 2.2
of chapter 2 in Chen

σ2
f = c · E[

∑

N1<j≤N2

f(Xj)]
2.
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Thus we have the following Corollary.

Corollary 5.11. Let {Xi} be a Markov chain with ergodic of degree 2 and
order 1. Let F be a countable family of functions on S with envelope function
F such that

∫ ∞

0

[log N2(ε,F)]
1
2 dε < ∞,

sup
f∈F

σ2
f < ∞,

and its envelope function F satisfies

∫

C

π(dx)Exmax
n≤τC

(

S2
n(F )/LLSn(F )

)

< ∞,

Then the bounded LIL holds over F .
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