
Clustering image data with a fixed embedding
1st Yan-Bin Chen

Institute of Statistical Science
Academia Sinica
Taipei, Taiwan

yanbin@stat.sinica.edu.tw

2nd Khong-Loon Tiong
Institute of Statistical Science

Academia Sinica
Taipei, Taiwan

kltiong@stat.sinica.edu.tw

3rd Chen-Hsiang Yeang
Institute of Statistical Science

Academia Sinica
Taipei, Taiwan

chyeang@stat.sinica.edu.tw

Abstract—Clustering unlabeled image data using deep neu-
ral network (DNN) models is under active investigation. Most
existing approaches transform the data through embedding
operations and cluster the embedded data, and the embedding
is learned to fit the data. In some applications, the embedding
model is explicitly given due to the concerns of generalizability,
transferability, privacy and security. Despite rapid progress in
self-supervised learning, clustering data with a fixed embedding is
rarely explored. We propose an Merge & Expand (ME) algorithm
to cluster image data using a fixed embedding and a DNN
classification model. ME achieves a comparable level of accuracy
with some state-of-the-art algorithms. It further demarcates the
“clean” and “unclean” images where their geometric relations in
the embedded space are compatible and incompatible with their
cluster structure respectively. Finally, we validate ME with three
datasets and discuss its potential extension.

Index Terms—Clustering, CNN, Embedding

I. INTRODUCTION

Extracting relevant information from unlabeled data is of
great importance as the vast majority of existing data lack
labels. Clustering is a representative topic in this domain.
Metric-based clustering algorithms are often sensitive to the
perturbations of the input data which do not alter their seman-
tic content [1]. By contrast, deep neural networks (DNNs)
extract features invariant with these perturbations, thus gen-
erate more robust outcomes. Yet they require proper loss
functions which do not use the label information. Recently,
an increasing number of self-supervised learning algorithms
obtain supervisory information from the data and adopt DNNs
to tackle unsupervised learning problems including cluster-
ing [2]. Self-supervised clustering algorithms of image data
roughly fall into two categories. Sequential (or representation
learning) methods first generate embeddings or feature repre-
sentations of the unlabeled data and then employ clustering
or classification algorithms to the embedded data [3]–[5].
The embedded feature vectors are generated by DNNs to
optimize certain tasks without requiring class labels, such as
predicting the patch context [6], solving jigsaw puzzles [7], or
colorizing images [8]. Joint (or end-to-end learning) methods
unite embedding learning and clustering in training the same
DNNs. These neural networks differ in their architectures
and loss functions, which often require images undergoing

This work is supported by the funding from Ministry of Science and
Technology, Taiwan, No: 108-2118-M-001-001-MY2, and seed grant from
Institute of Statistical Science, Academia Sinica, Taiwan.

perturbations to cluster together [9]. Combinations of both
sequential and joint methods are also proposed in several
studies [10], [11].

Despite the rapid progress in self-supervised image cluster-
ing, several major issues are overlooked in previous studies.
The embedding generated by customized algorithms may
better fit the data but is inadequate or unavailable in some
contexts. The embedding learned from a small data may
be difficult to generalize as it often contains the specific
features tied to the data but irrelevant to the semantic content
of the underlying class labels. For instance, one might use
the background colors and textures to separate the images
of wild and domestic animals. In contrast, the embedding
generated by pre-trained models can overcome data limitation
and become more transferable across different tasks. Examples
of pre-trained DNN models include VGG16 [12] for image
data and BERT [13] for language data. Furthermore, in some
applications, the raw data may not be directly accessible
for privacy or security concern or for its sheer size. Rather
than releasing the raw data, the providers may incur standard
embedding (such as VGG16) or dimension reduction (such as
PCA and t-SNE) operations to the raw data and distribute the
processed data. Clustering image data with a fixed embedding
is hence increasingly important but not well explored so far. In
addition, a general embedding may be only partially aligned
with the underlying cluster structure. It is important to chart
the limitation of the fixed embedding, i.e., to demarcate the
data points whose underlying cluster structure is compatible or
incompatible with their geometric relations in the embedded
space. This is a challenging problem since the class labels are
not given.

In this work, we present a self-supervised learning algo-
rithm to cluster image data and simultaneously address the
aforementioned issues. Like most sequential methods, we
project the data onto the embedded space and cluster the
embedded feature vectors. However, unlike other methods,
we employ standard embedding operations, simple convolu-
tional neural network (CNN) architectures and straightforward
cross entropy loss functions for classification, but achieve
a comparable level of accuracy with some state-of-the-art
algorithms. Furthermore, the algorithm demarcates the “clean”
and “unclean” images where the geometric relations in the
embedded space are compatible and incompatible with the
underlying cluster structure respectively.

II. METHOD

A. Overview

The proposed algorithm, named “Merge & Expand” (ME),
comprises 5 phases, as illustrated in Fig. 1. In the preparation
phase, Phase 0, the raw data are transformed into feature
vectors with a pre-selected embedding operation. In Phase 1,
the embedded data are grouped into small and tight clusters,
termed “regions”, by using a metric-based clustering algo-
rithm. We apply spectral clustering in this work. In Phase 2, we
select a number of regions, termed “seed regions” that likely
cover all the underlying class labels. Seed regions should be
tight, so that it is safe to assign members of a region with the
same pseudo label; and distinct from each other so that they
cover all the underlying class labels. In Phase 3, we merge
seed regions and assign members of each merged seed region
to a distinct pseudo label through the 7-layer LeNet-5 CNN
architecture [14]. In Phase 4, using the merged seed regions as
the initial training data, we iteratively apply the CNN classifier
to predict the labels of the whole data and expand the training
data by including the regions containing the dominant pre-
dicted labels. Iteration continues until no regions are included
in the training data. Cluster assignments are determined by
the final classification outcomes. The regions which are not
included in the training data comprise heterogeneous predicted
labels, and their members are marked as unclean images.

B. Merge & Expand (ME) Procedures

1) Phase 0: Embedding the raw data: The embedding
operation is selected from well-known dimension reduction
algorithms or pre-trained DNN models. A standard dimension
reduction projection is the t-Distributed Stochastic Neighbor
Embedding (t-SNE) projection that preserves the conditional
probabilities specifying the inter-image distances [15]. The
raw image data, which is a vectorized matrix of pixel values,
are projected onto low dimensional vectors. A well-known
transfer learning DNN model of images is the VGG16 model
pre-trained from 14 million images of the ImageNet database
belonging to 1000 categories [16]. The raw image data are fed
into the model and the 1000-component feature vectors before
the final decision step are reported. An embedded feature
vector thus quantifies resemblance of a raw image with each of
the 1000 categories. Other off-the-shelf embedding algorithms
can also be used.

2) Phase 1: Clustering the embedded data into regions:
The embedded data are grouped into regions – small and tight
clusters – using a metric-based clustering algorithm. Since
the class labels of data are not given, we can only control
the homogeneity of the underlying class labels by the size
and geometry of the region members. We employ the spectral
clustering algorithm [17] to subdivide the embedded data into
nR (200 in our work) regions. The following notations are
introduced. Denote X = {x1, · · · ,xN} the input data of N
images, R(x) ∈ {1, · · · , nR} the region label of each data
point, and ri ≡ {x ∈ X : R(x) = i} the members of region
i. The input data could be the raw data or the embedded data,

according to the applications. In this phase, we further consider
periphery members, informative markers, and use spectrum
clustering to generate initial regions. The algorithm of it is
depicted in supplement 1.

3) Phase 2: Selecting seed regions: To apply CNN to clus-
ter the embedded data, we need to acquire a reliable training
data and assign its pseudo labels. To fulfill this goal, we select
the seed regions – a minimal set of regions that cover all the
underlying class labels – as the initial training data. Since the
class labels are not given, we alternatively seek a minimal
set of regions that yield a stable partition of the embedded
data. The algorithm starts with two regions which are far apart
and attract similar numbers of data points, and then iteratively
adds the regions which are distinct from all existing seed
regions. Define d(ri, rj) ≡ 1

|ri||rj |
∑

{x∈ri,x
,∈rj} d(x,x

,) the
average distance between members of regions ri and rj in
the embedded space. Given a collection of initial seed regions
S = {r1, r2}, the next seed region is selected by a max-min
criterion:

r̂ = arg max
r/∈S∪F

min
r,∈S

d(r, r,), (1)

where the candidate regions exclude the existing seed regions
S and the filtered regions F . A filtered region in F may
comprise members of mixed class labels or the ones which
do not share class labels with their neighboring regions. The
max-min criterion iteratively selects the region which is the
most distinct from all existing seed regions.

In addition, the newly selected seed region is skipped if
it can replace one of the existing seed regions and incur
similar partitions of the embedded data. Seed region selection
stops when 5 consecutive newly selected seed regions are
skipped. The algorithm of selecting seed regions is reported
in supplement.

4) Phase 3: Merging seed regions: Despite their distinc-
tiveness, multiple seed regions may share the same underlying
class labels because regions are tight clusters in the embedded
space. For instance, images of the same digit written with
different tilted angles or images of the same class of objects
with different colors are likely represented by distinct seed
regions. To give more precise pseudo label assignments to
the training data, it is necessary to merge the seed regions
that likely share the same underlying labels. We reason that
relative similarity between seed regions can be captured by
DNN classification outcomes using combinations of the seed
regions as training data because well-designed DNNs may give
robust predictions against various perturbations. For example,
the training data combining red and blue cars in the same
class has better generalization power than the training data
combining red cars and birds in the same class since the former
share more common features than the latter.

a) Co-contribution score M1: As the seed region set S
is prepared from Seed Region Selection Algorithm in the main
paper, we build nr CNN classifiers with K seed regions as

1http://staff.stat.sinica.edu.tw/chyeang/ME/MESupplement.pdf

Fig. 1: An illustration of the ME algorithm. Gray dots denote the images which have not yet been assigned to pseudo labels
(phases 0-2) or are not confidently classified (phase 4). Colored dots denote the images which are assigned to pseudo labels.

Fig. 2: Illustration of three pairwise scores in Phase 3. (a) Co-contribution. Each “spectrum” denotes the CNN outputs of a data
point which is labeled to class i (thus possessing the highest output value in ci as shown in blue spikes). m1

ij is proportional to
the sum of output values in cj component (as shown in red spikes) over the data points labeled to ci. (b) Leakage. Combine each
pair of seed regions into one class i∪ k. A number of data points originally assigned to class j (red dots before combination)
will “leak” to the combined class i ∪ k (light blue dots in region rj after combination). Construct a (K2)×K matrix to count
the leakages from each class j to all combined classes (the marked column in the matrix). m2

ij quantifies the leakages from j
to the combined classes containing i (the shaded entries in the column) with respect to the leakages from j to all the combined
classes (the entire column). (c) Replacement. Remove each seed region ri from the training data and rebuild a (K − 1)-class
CNN. m3

ij quantifies the fraction of data points which are originally assigned to i (blue dots in the left) and are re-assigned
to j after removal (uncircled red dots in the right). (d) Integration. Similarity graph Gs (solid black lines) and dissimilarity
graph Gr (dashed red lines) of seed regions are constructed according to M1, M2 and M3. Partition the seed regions into
a small number of merged seed regions that respect both Gs and Gr.

the training data of K classes (nr = 5 in this work). The
nr sets of result from CNN may not give identical prediction
outcomes as the stochastic gradient descent (SGD) parameter
estimation operates randomly. The co-contribution score m1

ij

is proportional to the sum of the output values of class j over
the data points with consensus label i:

M1 = [m1
ij] ≡

1

|Ti| · nr

∑
x∈Ti

nr∑
l=1

f l
j(x), (2)

where Ti denotes the set of data points with consensus label
i, f l(x) the round l CNN outputs of data point x over K
classes, and f l

j(x) its jth component, as shown in Fig. 2(a).
The score is normalized by the size of Ti times the number of
CNN rounds nr. Intuitively, m1

ij is high if the images closest

to seed region i also possess high CNN outputs pertaining to
seed region j.

b) Leakage score M2: We combine each pair of seed
regions into one class in the training data and build (K2)
predictors with (K − 1)-classes accordingly. Denote y(x) as
the predictor of data point x. For each pair (i, k) of seed
regions, we consider the original K-class predictor y0(x) and
a (K− 1)-class predictor yi∪k(x) merging seed regions i and
k in the same class. By comparing y0(x) with each yi∪k(x),
we construct a (K2) × K leakage matrix Li∪k,j to count the
number of data points which are assigned to class j according
to y0(x) and to the combined class i∪k according to yi∪k(x):

Li∪k,j ≡
∣∣∣{x : y0(x) = j, yi∪k(x) = (i ∪ k)}

∣∣∣. (3)

Intuitively, if seed regions i and j share the same underlying
class label, then a considerable number of data points orig-
inally assigned to pseudo class j will leak to the combined
pseudo class i with an arbitrary third pseudo class k, as shown
in Fig. 2(b). Consequently, on the jth column of L, the high
leakage counts should be enriched in the combined pseudo
classes containing seed region i. We calculate the leakage
score m2

ij as the p-value of this enrichment in (4):

M2 = [m2
ij] ≡ P

W
(
L(Ri,j), L(R1:K ,j)

), (4)

where Ri denotes the rows in L corresponding to the
pairs containing seed region i and R1:K all the rows in
L, W (L(Ri, j), L(R1:K , j)) the Wilcoxon rank sum test
[18] of L(Ri, j) against the background L(R1:K , j), and
PW (L(Ri,j), L(R1:K ,j)) its p-value. The value m2

ij is low if the
high leakage of the data points originally assigned to class j
is concentrated in the combined classes containing class i.

c) Replacement score M3: We remove each seed region
from the training data and build K (K − 1)-class predictors
accordingly. The replacement score m3

ij is the fraction of data
points which are reassigned from pseudo class i in the original
K-class predictor y0(x) to pseudo class j in the (K−1)-class
predictor y−i(x) with seed region i removed from the training
data:

M3 = [m3
ij] ≡

∣∣{x : y0(x) = i, y−i(x) = j}
∣∣∣∣{x : y0(x) = i}

∣∣ . (5)

Intuitively, if seed regions i and j share the same underlying
class labels, then pseudo class j will replace pseudo class i
when the latter is removed from the training data, thus yields a
high replacement score. This replacement is displayed in Fig.
2(c).

d) Integration of M1, M2, and M3: We integrate the
three pairwise score matrices M1, M2, and M3 to merge
seed regions. In brief, two undirected graphs Gs and Gr of
seed regions are constructed from the three score matrices.
Gs specifies similarity of seed regions where two nodes are
adjacent if one node is a top-ranking partner of the other in
terms of each score in both directions, and the pairwise scores
surpass certain threshold values. Gr specifies dissimilarity of
seed regions where two nodes are adjacent if their leakage
score m2

ij (rank sum p-value) is insignificant. The undirected
graph of seed regions is exhibited in Fig. 2(d). We then
enumerate all partitions of seed regions respecting the relations
in Gs (so that nodes in distinct connected components are
not merged together) and Gr (so that adjacent nodes are not
merged together), and identify the valid partition that minimize
loss functions pertaining to the number of singletons, the sum
of the reduced rank scores derived from the pairwise scores,
and the sum of the pairwise scores. The output of Phase 3 is
a partition of seed regions into a smaller number of merged
seed regions.

5) Phase 4: Expanding training data, assigning cluster
memberships, and demarcating clean and unclean images:
Since seed regions constitute a minimal set of regions that
likely cover the underlying class labels, the training data
containing seed regions alone may be too small to generalize to
the whole data. To improve classification quality, we iteratively
include the regions with homogeneous predicted class labels
in the training data. Initially the training data includes only
the merged seed regions. In each iteration, we build a CNN
classifier with the training data and predict the class labels of
the all remaining “test data”. Homogeneity of predicted class
labels in a region is quantified by the fraction of member
images with the dominant (the most frequent) predicted class
label. We select the regions outside the training data whose
homogeneities exceed a threshold value, include the members
with the dominant predicted class labels of selected regions in
the training data, and update the CNN classifier accordingly.
Iteration stops when no more regions are added to the training
data. The predicted class labels of all images in the final iter-
ation are their cluster assignments. The regions not included
in the training data in the final iteration comprise members of
heterogeneous predicted class labels. The cluster assignments
of members in these regions are less confident since they are
incompatible with the proximity relations in the embedded
space; i.e., neighboring images in the embedded space possess
different cluster assignments. We thus mark these regions as
“unclean”. In contrast, the regions included in the training
data are marked as “clean” since their cluster assignments
are compatible with their proximity relations in the embedded
space.

III. RESULTS

We validate the ME algorithm on two common datasets
for machine learning – MNIST and CIFAR-10 – and compare
the accuracies of several unsupervised/self-supervised learning
algorithms on these datasets.

A. MNIST

Clustering MNIST, which is 60000 images of 10 handwrit-
ten digits, is considered an easy task as many recent unsu-
pervised learning algorithms give highly accurate outcomes.
Projections of the MNIST data with t-SNE clearly separate
the 10 digits [15]. Indeed, t-SNE projections can lift the
accuracy rates of k-means and spectral clustering algorithms
from 57.2% and 69.6% in the raw data (28×28 pixels) to 73.3%
and 96.6% in the embedded data (3D projections). The ME
algorithm clustering outcome achieves 91.5% accuracy rate
(Table I, column 1).

B. MNIST-TRAN

Despite its outstanding capability to separate digits, t-SNE
is not robust against simple perturbations such as translations
and rotations. To demonstrate that ME can still accurately
cluster images undergoing such perturbations, we augment
the MNIST data by adding 10000 images with translations.
500 images of each digit are randomly selected, and each

TABLE I: Overall accuracies of several clustering algorithms
on three datasets. All but the first two and last ones are
copied from [11], [19]. For k-means and spectral clustering
(SPECTRAL CLT), accuracy rates on MNIST raw data and
t-SNE embedded data are reported; accuracy rates on MNIST-
TRAN t-SNE embedded data are reported; accuracy rates
on CIFAR-10 raw data and VGG-16 embedded data are
reported. The accuracy rates of most methods on MNIST-
TRAN data are not reported. The clean and unclean accuracies
by ME are reported at the last row. DEEP CLT2018 refers to
DeepCluster2018.

METHOD (1)MNIST (2)MNIST-TRAN CIFAR-10

K-MEANS 57.2/73.3 66.7 22.9/52.7
SPECTRAL CLT 69.6/96.6 70.8 24.7/59.8
TRIPLETS 52.5 N/A 20.5
AE 81.2 N/A 31.4
GAN2015 82.8 N/A 31.5
JULE2016 96.4 N/A 27.2
DEC2016 84.3 N/A 30.1
DAC2017 97.8 N/A 52.2
DEEP CLT2018 65.6 N/A 37.4
ADC2018 99.2 N/A 32.5
IIC 99.2 N/A 61.7
TSUC+RUC N/A N/A 82.9
SCAN+RUC N/A N/A 89.5
ME 91.5 91.2 69.2

↓
ME CLEAN ; UNCLEAN 81.5; 35.6

image undergoes translations with two fixed displacement
vectors (total: (5500 + 500 + 500) × 10). We name this
dataset MNIST-with-translated-data (MNIST-TRAN). The per-
formance of both k-means and spectral clustering algorithms
substantially deteriorates on MNIST-TRAN data, as accuracy
rates on the embedded data (by t-SNE) drop to 66.7% and
70.8% for k-means and spectral clustering, respectively.

We apply ME to the MNIST-TRAN data. The 25 seed
regions are not robust against translations as they are derived
from clusters of raw images (Fig. 3(b)). For instance, digit
9 images undergoing two different translations clearly sep-
arate from the untranslated digit 9 images and each other,
but are closer to the images of other digits (Fig. 3(a)). By
training the CNN classifiers with the raw data rather than the
3-dimensional embedded vectors, the three pairwise scores
give rise to merged seed regions which are robust against
translations (Fig. 3(c)). The clustering accuracy rate 91.2%
remains almost invariant with the original MNIST data (Table
I, column 2). The accuracy rates of other methods are not
reported on the MNIST-TRAN data.

C. CIFAR-10

CIFAR-10 is an image dataset consisting of 60000 32×32
color images in 10 classes, with 6000 images per class. We
embed CIFAR-10 data by feeding it to the VGG16 model. The
embedded data of a CIFAR-10 image is the VGG16 output
prior to the decision step, which is a 1000-component vector.

This transformation greatly amplifies information about the
underlying class labels as all CIFAR-10 classes are either
encompassed or closely related in the 1000 categories in
VGG16. Indeed, the accuracy rates lift from 22.9% in the raw
data to 52.7% in the VGG16 embedded data for k-means,
and from 24.7% in the raw data to 59.8% in the VGG16
embedded data for spectral clustering. The overall clustering
accuracy rate is 69.2% (Table I, column 3). It is considerably
lower than those of the two best algorithms (SCAN+RUC
and TSUC+RUC; [11]) but substantially higher than all other
methods.

Although ME does not achieve the highest accuracy rate
compared to state-of-the-art algorithms, it possesses a unique
feature of demarcating the images with reliable and unreliable
cluster assignments, namely clean and unclean images. There
are 31879 clean and 28121 unclean images in the CIFAR-10
data. Surprisingly, these two sets of images exhibit drastically
different clustering accuracy rates: 81.5% for clean images
and 35.6% for unclean images. The 69.2% overall accuracy is
hence an aggregate from the sets of images with highly and
poorly reliable cluster assignments.

The cleanness of a region is determined by heterogeneity
of the predicted class labels among its members. We suspect
that this property holds for the true class labels as well.
Fig. 4(a) and 4(b) display examples of clean and unclean
images respectively. The clean image – the center image of
Fig. 4(a) – and its 8 nearest neighbors in the embedded data
– the 8 images in its periphery – all share the same class
label of horses. In contrast, the unclean image – the center
image of a dog in Fig. 4(b) – and its 8 nearest neighbors all
have distinct class labels. These examples are not exceptional.
Fig. 4(c) shows the distributions of the numbers of consistent
neighbors (neighbors sharing the same true class labels) in
the 10 nearest neighbors among clean (blue), unclean (red)
and all (black) images. Most clean images share the same true
class labels with most of their neighbors. In contrast, the true
class labels of unclean images are poorly correlated with the
true class labels of their neighbors for the numbers of their
consistent neighbors are uniformly distributed. The distribution
of numbers of consistent neighbors among all images is the
superposition of those of clean and unclean images.

IV. DISCUSSION

In this study, we propose a Merge & Expansion (ME)
algorithm to combine both metric-based clustering and deep
supervised learning algorithms to cluster unlabeled image data.
The ME algorithm does not give the most accurate cluster as-
signments compared to several state-of-the-art self-supervised
learning algorithms, but is superior to most other methods.
More importantly, ME provides several unique benefits and
features not found in other methods: (1) it clusters data with a
fixed embedding (or no embedding) model rather than learning
the embedding from the data, (2) it identifies clean and unclean
images where the geometric relations in the embedded space
are compatible/incompatible with the underlying cluster struc-
ture, (3) it employs simple, off-the-shelf CNN architectures

Fig. 3: (a). MNIST-TRAN t-SNE 2D projections. Digit 9 images are highlighted (dark blue dots). One large cluster in the lower
subspace and two small clusters in the upper subspace denote the untranslated digit 9 images and two sets of translated digit
9 images respectively. (b). t-SNE 3D projections of seed regions on MNIST-TRAN dataset. Tiny points refer to the translated
regions. (c). Heat maps of 3 pairwise scores of seed regions on MNIST-TRAN.

(a) (b)
(c)

Fig. 4: (a). An example of clean image. (b). An example
of unclean image. (c). Distributions of numbers of consistent
neighbors of clean, unclean and all images in CIFAR-10 data.

and loss functions instead of customized DNN models, (4) the
number of clusters is determined by the seed region merging
procedures rather than being explicitly given.

Using a fixed embedding model is a double-bladed sword.
On the positive side, a fixed embedding is less tied to specific
data and is thus more generalizable to other tasks, is amenable
for transfer learning, and allows users to perform clustering
without accessing the raw data. On the negative side, the
performance is compromised as the geometry in the embedded
space is unlikely fully aligned with the cluster structure. For
instance, two CIFAR-10 classes – dogs and cats – have quite
disparate representation coverages in the VGG16 model. The
1000 categories include many dog varieties but only a few
cats/felines. Therefore, cat images in CIFAR-10 may have high
values in the dog variety components of the embedded vectors
and are likely mislabeled as the dog class. Despite the limi-
tation of a fixed embedding, our method may circumvent this
limitation by pointing out the data points where the embedded
data can better predict the underlying cluster structure or not.

The ME algorithm can be improved and extended. To
enhance the explanatory power of a fixed embedding it is
desirable to build a hybrid model for embedding using both
pre-trained networks and data-specific DNNs, analogous to the
transfer learning models in classifications [20]. Furthermore,
the ME framework can be extended to data modalities beyond
images such as texts and graphs. Different embedding and

classification DNN models are required, yet the procedures of
generating and merging seed regions and expanding training
data may remain relatively intact.

REFERENCES

[1] B. Frey and N. Jojic, “Transformation-invariant clustering using the EM
algorithm,” IEEE TPAMI, vol. 25, no. 1, pp. 1–17, 2003.

[2] X. Liu et al., “Self-supervised learning: Generative or contrastive,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[3] A. Som et al., “Perturbation robust representations of topological per-
sistence diagrams,” in ECCV, Sep. 2018, pp. 617–635.

[4] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in 33rd ICML, vol. 48. PMLR, Jun. 2016, pp.
478–487.

[5] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE TPAMI, vol. 35, no. 8, pp. 1798–
1828, 2013.

[6] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual represen-
tation learning by context prediction,” in IEEE ICCV, Dec. 2015, pp.
1422–1430.

[7] M. Noroozi and P. Favaro, “Unsupervised learning of visual represen-
tations by solving jigsaw puzzles,” in ECCV, Oct. 2016, pp. 69–84.

[8] C. Vondrick et al., “Tracking emerges by colorizing videos,” in ECCV,
Sep. 2018, pp. 391–408.

[9] A. Vedaldi, Y. Asano, and C. Rupprecht, “Self-labelling via simultaneous
clustering and representation learning,” in ICLR, 2020, pp. 1–22.

[10] W. Van Gansbeke et al., “Scan: Learning to classify images without
labels,” in ECCV, 2020, pp. 268–285.

[11] S. Park et al., “Improving unsupervised image clustering with robust
learning,” in IEEE CVPR, Jun. 2021, pp. 12 278–12 287.

[12] S. Tammina, “Transfer learning using VGG-16 with deep convolutional
neural network for classifying images,” IJSRP, vol. 9, no. 10, pp. 143–
150, 2019.

[13] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” in NAACL, 2019, pp. 4171–4186.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[15] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[16] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in IEEE CVPR, Jun. 2009, pp. 248–255.

[17] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in NIPS, Jan. 2001, pp. 849–856.

[18] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[19] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering
for unsupervised image classification and segmentation,” in IEEE ICCV,
Oct. 2019, pp. 9865–9874.

[20] F. Zhuang et al., “A comprehensive survey on transfer learning,” IEEE,
vol. 109, no. 1, pp. 43–76, Jan. 2021.

