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Transcription Factors
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ABSTRACT

A considerable fraction of gene promoters are bound by multiple transcription factors. It
is therefore important to understand how such factors interact in regulating the genes. In
this paper, we propose a computational method to identify groups of co-regulated genes
and the corresponding regulatory programs of multiple transcription factors from protein-
DNA binding and gene expression data. The key concept is to characterize a regulatory
program in terms of two properties of individual transcription factors: the function of a
regulator as an activator or a repressor, and its direction of effectiveness as necessary or
sufficient. We apply a greedy algorithm to find the regulatory models which best explain
the available data. Empirical analysis indicates that the inferred regulatory models agree
with known combinatorial interactions between regulators and are robust against various
parameter choices.
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1. INTRODUCTION

The combinatorial interactions of multiple transcription factors play an essential role in
transcriptional regulation. For instance, many genes are regulated by protein complexes comprised of

multiple transcription factors (McNabb et al., 1995). To model the combinatorial interactions of transcrip-
tion factors, it is necessary to relate the activity states of transcription factors to the expression levels of
regulated genes. Finding this relation—a regulatory program—between regulators and regulated genes is
a challenging problem since the number of possible regulatory programs grows rapidly with the number
of transcription factors involved. The set of possible regulatory programs has to be simplified so as to be
able to infer reasonable candidate programs from the available data.

In this paper, we present a computational method that identifies the regulatory programs of multiple
transcription factors and the genes they regulate from both protein-DNA binding and gene expression data.
The results are regulatory models; each contains a set of transcription factors, genes putatively regulated
by these factors, and the regulatory program specifying the relation between regulators and regulated
gene expressions. We simplify a regulatory program by characterizing it in terms of the functions and

1Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064.
2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA

02139.

463



464 YEANG AND JAAKKOLA

directions of effectiveness of individual regulators. This characterization gives a simple interpretation of
the mechanisms underlying a regulatory program and greatly reduces the model complexity.

Modeling the transcriptional regulation of multiple transcription factors has been addressed in a consider-
able number of previous works. Most Bayesian network models of gene expression analysis (e.g., Friedman
et al. [2000], Hartemink et al. [2001], and Segal et al. [2002]) focused only on the structure of a reg-
ulatory model and did not directly infer the regulatory program. Some authors considered the effects of
single regulators separately and avoided identifying the combinatorial interactions of multiple regulators
(e.g., Bar-Joseph et al. [2003]). Some works limited the scope to synergistic or complementary effects of
regulator pairs, for example, Pilpel et al. (2001) and Tong et al. (2004). Others attacked the combinatorial
functions of multiple regulators with different computational models, such as Boolean networks (Tanay
et al., 2001), regression trees (Segal et al., 2003), system identification (Gardner et al., 2003), and many
others. However, since these models targeted only functional relations in the data, the resulting models
can be sometimes difficult to interpret in terms of the underlying mechanisms. Some authors modeled
the dynamic, physical-chemical processes of gene regulation with differential equations (e.g., Shea et al.
[1985]). Although physical mechanisms were explicitly addressed in these models, it is difficult to apply
them to large-scale systems due to the complexity of models and the lack of sufficient dynamic data.
Another approach of modeling the circuitry of multiple regulators is to systematically generate different
input states by perturbation and measure the response of regulated genes (for instance, Yuh et al. [1998]).
This approach, though more reliable, can be expensive and time-consuming.

The remainder of the paper is organized as follows. We first introduce key hypotheses and concepts in
our regulatory model and provide a mathematical formulation of the problem. We subsequently describe
an algorithm to learn the models from binding and gene expression data, demonstrate the algorithm on
the basis of CHIP-chip binding data and two large-scale gene expression datasets, and discuss the results
and how to validate them. Finally, we summarize the pros and cons of the proposed method and provide
possible directions to extend the approach.

2. MODELS OF TRANSCRIPTION REGULATION

2.1. Modeling hypotheses and concepts

We adopt several common hypotheses in the analysis of CHIP-chip and microarray data (Friedman
et al., 2000; Hartemink et al. 2001; Segal et al., 2003). First, given that a transcription factor binds to
a specific promoter, the activity of the factor is modulated by the factor’s mRNA abundance. Second,
genes co-regulated by a set of transcription factors (i.e., genes appearing in the same module) share the
same regulatory program. For computational convenience, we also assume that the relative changes of
mRNA levels with respect to a reference condition can be quantized into three states: up-regulation, down-
regulation, and no change. Moreover, since microarrays measure gene expression levels over a population
of cells, a lack of observed change may be due to a mixture population, where the same gene in some
cells is up-regulated while down-regulated in others. We do not distinguish between insignificant changes
in expression and those that cannot be predicted from the model.

The key idea of our model is to characterize a regulatory program in terms of two (assumed) properties of
individual transcription factors. First, a transcription factor possesses a consistent function as an activator
or a repressor so that the function is not inverted in the context of combinatorial control. Second, a
transcription factor may have an effect only if its expression changes in certain direction. We categorize
the direction of effectiveness into four types. A regulator is necessary if decreasing its expression level
leads to responses opposite to its function (e.g., reducing the presence of an activator leads to repression).
A regulator is sufficient if increasing its expression level leads to responses consistent with its function
(e.g., higher concentrations of repressors cause further down-regulation of relevant genes). A regulator
can be both necessary and sufficient, or neither necessary nor sufficient. Unlike the function of a single
regulator, we allow the direction of effectiveness of each transcription factor to vary across different
regulatory models that it participates in.

The regulatory program involving only a single regulator is uniquely determined by these two properties.
Table 1 summarizes the predicted responses of different types of regulators in our categorization.
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Table 1. Responses of Regulated Genes in Each Combinatorial Category

Necessary Sufficient Both Neither

Activator f ↓⇒ g ↓ f ↑⇒ g ↑ f ↓⇒ g ↓, f ↑⇒ g ↑ g any value
Repressor f ↓⇒ g ↑ f ↑⇒ g ↓ f ↓⇒ g ↑, f ↑⇒ g ↓ g any value

To specify a combinatorial function of multiple regulators, we have to define a response for each possible
input state. The input state refers to the measured changes in the regulator expression levels relative to
control. By assuming the function and the direction of effectiveness of each regulator are preserved in
all input states, we can construct the combinatorial function from the predicted response of individual
regulators. For each joint input state, the combinatorial function reports the consensus prediction if the
individual predictions from applicable factors agree, and an uncertain output otherwise. Note that the
consensus is nontrivial since not all factors make a prediction in all states. For example, a necessary
activator (which is not also sufficient) makes no prediction in cases when its mRNA expression level
has increased relative to a control. The rules of generating the output of the combinatorial function from
predictions of individual regulators are described in Section 2.2.

The functional class generated by this characterization represents only a small subset of all possible
combinatorial functions: the number of possible combinations of these two properties for n inputs is 8n,
whereas the number of all possible tri-state Boolean functions with n inputs is 33n

. The drastic reduction
of possible functions helps in estimating the functions from limited data. While the number of possible
functions is still exponential in n, we can enumerate the possibilities for small n.

Despite its simplification, characterization of a regulatory program with properties of single regulators
still retains some combinatorial interactions between regulators. Some of these combinatorial effects have
clear mechanistic interpretations. For example, if all regulators in a model are necessary, then they are
likely to form a complex or cooperatively bind together on promoters. In contrast, if all regulators are
sufficient, then they may independently act on promoters. In general, we can view a necessary regulator
as essential for maintaining the basal transcription level and a sufficient regulator as providing an additive
boost (activator) or inhibition (repressor) of gene expression.

2.2. Definition of a regulatory model

We define a model of transcription regulation to have three components: a set of transcription factors,
a set of genes controlled by these transcription factors, and a regulatory program specifying the relation
between the expression of regulators and genes they regulate. We first define a deterministic regulatory
program as a function which maps the mRNA state of transcription factors into the mRNA state of a
“typical” response of regulated genes,

f : Sn → S (1)

where S = {−1, 0, +1} is the quantized state expression changes and n the input size. According to the
module assumption, all regulated genes in a model are controlled by the same regulatory program.

The function of each regulator is uniquely determined by the type and the direction of effectiveness, as
shown in Table 1. We adopt the following rules to synthesize the predicted response from responses of
individual regulators. If the individual responses are all +1s or 0s, then the output is +1. If the predicted
responses are all −1s or 0s, then the output is −1. If the predicted responses contain both +1s and −1s,
or are all 0s, then the output is 0. These rules simply report the consensus of predicted responses and
output 0 if consensus cannot be reached. Note that we do not distinguish between uncertain individual
responses (insignificant changes) and responses that are uncertain due to conflicting predictions. We can
thus construct the combinatorial function f from Table 1 and the consensus rules. An example of a
deterministic combinatorial function of two necessary activators is shown in Table 2.

Relying on the deterministic mapping from states to responses is too rigid in the biological context. We
instead construct a probabilistic regulatory program

P : Sn × S → [0, 1] (2)
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Table 2. The Combinatorial Function
of Two Necessary Activators

f1 f2 g

−1 −1 −1
−1 0 −1
−1 +1 −1

0 −1 −1
+1 −1 −1
o.w. o.w. 0

Table 3. The Table of P(cge|f (cRe))

f (cRe) P(cge = −1| f (cRe)) P(cge = 0| f (cRe)) P(cge = +1| f (cRe))

−1 1 − α α 0
0 1

3
1
3

1
3+1 0 α 1 − α

on the basis of the deterministic one. The conditional probability of responses is related to the deterministic
function in the following way. Denote cge as the expression state of regulated gene g in experiment e and
cRe as the expression state of regulator set R in experiment e. The conditional probability P(cge|cRe, f ) ≡
P(cge|f (cRe)) depends on the regulated gene expression cge and the output of the deterministic function
f (cRe). The response cge that agrees with f (cRe) is assigned a high probability, whereas the cge that
directly contradicts f (cRe) has zero probability. However, when f (cRe) = 0, each cge state is assigned an
equal probability, consistent with not distinguishing between insignificant and uncertain responses. Table 3
shows the conditional probability table, where α < 1 is an adjustable parameter.

3. IDENTIFYING REGULATORY MODELS

In this section, we describe a method of identifying regulatory models from protein-DNA binding
and gene expression data. We first define a scoring function (log likelihood function) for binding and
expression data. Subsequently, we will adopt a greedy algorithm to find high scoring models and evaluate
the significance of the resulting models.

3.1. Likelihood function of a regulatory model

The log likelihood function measures how well the regulatory model fits the relevant binding and
expression data. It contains two terms. The term corresponding to binding data is the log likelihood ratio
between the regulatory model, where each regulator binds to each regulated gene, and the null model that
the binding of each (protein,promoter) pair occurs with probability 1

2 . The term corresponding to expression
data is the log likelihood ratio between the regulatory model where the expression states of the regulators
govern the responses, and the null model where no such relation exists. The joint scoring function is a
weighted sum of these two terms.

More formally, let M = (R, G, f ) denote a regulatory model, where R and G are the regulators and
regulated genes, respectively, and f is the (deterministic) regulatory program. For each r ∈ R and g ∈ G,
define brg as a binary random variable indicating whether r binds to g. State brg is observed only through
noisy measurements xrg from binding data. Let E be a collection of expression experiments. For each
r ∈ R and e ∈ E, cre is the expression change of regulator r in experiment e; cre is linked to noisy
microarray measurements xre. For each g ∈ G and e ∈ E, cge, xge is defined analogously. Furthermore,
define {brg} as the joint state of all indicator variables brg, r ∈ R, g ∈ G; {cre} and {cge} are defined
analogously. Also denote cRe as the state of all cre, r ∈ R in experiment e.
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The marginal likelihood function of binding data under a hypothesis H is

P({xrg}|H) =
∑
{brg}

P({brg}|H)P ({xrg}|{brg}). (3)

The conditional probability P(xrg|brg) corresponding to each protein-DNA interaction defines our confi-

dence in the measurements. The conditional probability ratio P(xrg |brg=1)

P (xrg |brg=0)
is quantified as in Yeang et al.

(2004) through a Bayesian model selection criterion. We omit the details.
We are interested in two P({brg}|H) priors. The only setting of {brg} consistent with the regulatory

model M is that each factor binds to all of the regulated genes. We refer to this hypothesis as H1:

H1 : P({brg}|H1) =
∏

r∈R,g∈G

δ(brg = 1) (4)

where δ(.) is the indicator function. In contrast, for the null model H0 under which the regulators do not
have any specific relation to the genes, the prior probability of {brg} is uniform

H0 : P({brg}|H0) = 1

2|R||G| . (5)

Based on the priors, and assuming that each measurement xrg is independent of the others, the log likelihood
ratio becomes

Lb(R, G) = log P({xrg}|H1) − log P({xrg}|H0)

= |R||G| log 2 +
∑
(r,g)

[log P(xrg|brg = 1) − log(P (xrg|brg = 1) + P(xrg|brg = 0))]. (6)

The log likelihood ratio of expression data can be constructed similarly. The marginal likelihood function
of the expression data under any hypothesis H (H0 or H1 discussed below) is given by

P({xre}, {xge}|H) =
∑

{cre},{cge}
P({cre}, {cge}|H)P ({xre}|{cre})P ({xge}|{cge}). (7)

As in the case of binding data, we use a uniform null model over the possible expression states {cre} and
{cge}:

H0 : P({cre}{cge}|H0) = 1

3|E|(|R|+|G|) . (8)

The alternative model H1 relates cge and cRe in each experiment e. It is specified by function f and
Table 3. Each state of the regulators cRe is again assigned a uniform prior probability (as in H0) but the
responses are now governed by f :

H1 : P({cre}{cge}|H1) =
∏
e∈E

⎡
⎣ 1

3|R|
∏
g∈G

P (cge|f (cRe))

⎤
⎦ . (9)

The conditional probabilities P({xre}|{cre}) and P({xge}|{cge}) relating the discrete variables to mea-
surements are again specific to each dataset and assumed to be independent of the regulatory model.
We will discuss the choice of measurement error models in Section 4.
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Combining Equations (7), (8), (9), we evaluate the log likelihood ratio of expression data. Skipping
intermediate steps,

Le(R, G, f ) = log P({xre}, {xge}|H1) − log P({xre}, {xge}|H0)

= −|E||R| log 3 +
∑
e∈E

⎡
⎣log

⎛
⎝ ∑

v∈{−1,0,+1}
Pv(e) ·

∏
g∈G

∑
cge

P (cge|v)P (xge|cge)

⎞
⎠
⎤
⎦

+ |E|(|R| + |G|) log 3 −
∑
e∈E

×
⎡
⎢⎣∑

r∈R

log(P (xre|cre = +1) + P(xre|cre = −1) + P(xre|cre = 0))

+
∑
g∈G

log(P (xge|cge = +1) + P(xge|cge = −1) + P(xge|cge = 0))

⎤
⎦

(10)

where Pv(e) denotes the probability of the regulator states in experiment e which generate deterministic
output v:

Pv(e) =
∑
{cRe}

δ(f (cRe) = v) · P(xRe|cRe). (11)

We define the joint log likelihood ratio as the weighted sum of the log likelihood functions of binding and
expression data:

L(R, G, f ) = Lb(R, G) + λLe(R, G, f ). (12)

Parameter λ is a free parameter specifying the relative importance of expression data with respect to
binding data. Since the number of expression experiments far exceeds the number of binding experiments,
we have to down-weight the importance of expression data in order to keep the binding data relevant.

3.2. Algorithm for identifying regulatory models

We discuss here a greedy algorithm for optimizing the scoring function in Equation (12). The problem
is difficult to solve exactly due to the enormous number of possible combinations of regulators and the
genes that they potentially regulate. Our algorithm proceeds by incrementally incorporating regulated genes
while, at each stage, identifying the optimal regulatory program. The key steps in the algorithm are the
following:

1. Find a collection of regulator sets which co-bind to a set of genes according to the CHIP-chip data.
The thresholds of determining significant binding events (the p-value threshold of binding data) and the
minimum number of co-bound genes that constitute a module are free parameters. We use p ≤ 0.005
and require regulators to co-bind to ≥ 10 genes. To simplify the computations involved, we consider
only modules with ≤ 3 regulators.

2. For each candidate regulator set, we identify the highest scoring set of genes regulated by these factors
and optimize the corresponding regulatory program. We are able to exhaust all possible regulatory
programs due to the many simplifications discussed earlier. For each regulatory program, we incremen-
tally add genes into the regulated set, so as to maximize the log likelihood score. Since Equation (12)
increases with the number of regulated genes, we use a significance measure to stop adding genes. The
p-value is discussed in in Section 3.3 and Appendix 2. Note that each gene may participate in multiple
regulatory models. We then compare the scores of regulatory programs (each has a different gene set).
Because the log likelihood score grows with the number of genes, we compare the scores of fixed sized
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gene sets by choosing the top n (n is the fixed size) genes according to the order of adding genes. The
fixed size is the size of the smallest gene set among all regulatory programs. The result of step 2 is a
regulatory program and a regulated gene set for each regulator set.

3. Some of the regulatory programs may be spurious or do not have functional roles. We evaluate the
p-value of a regulatory program log likelihood score by using a permutation test. Details will be
discussed in Section 3.3 and Appendix 3.

4. Due to insufficient data, there are many regulatory programs which fit the data equally or nearly equally
well. Thus, reporting one regulatory program may not be very informative. We report the direction of
effectiveness for each regulator, which is the consensus among the estimated regulatory programs.
We also evaluate the p-value of each reported direction of effectiveness. Details will be discussed in
Section 3.3 and Appendix 4.

Step 2 has to be elaborated. Each regulatory program induces a different set of regulated genes. Because
the log likelihood score in Equation (12) increases with the number of regulated genes, the regulatory
program with the largest set of regulated genes will always be chosen if we maximize the joint log
likelihood score. To remove the effect of different regulated gene set sizes, we fix the size of regulated
gene sets in the following way. Recall each gene is incorporated in the model in a greedy fashion, so the
first n genes of a regulatory program are the top n genes which best conform with the regulatory program.
We discard the regulatory programs with small regulated gene sets (< 5 genes) and identify the minimum
size among the remaining regulated gene sets. We then compare the log likelihood scores of regulatory
programs on the fixed-sized regulated gene sets. This procedure is a tentative solution to alleviate the
effect of gene set size on the log likelihood score. In the long run, a more principled way of normalizing
Equation (12) in terms of regulated gene set size is needed.

3.3. Evaluating the significance of regulatory models

We have introduced three significance measures (p-values) in the algorithm. The first p-value evaluates the
significance of adding a new gene in the regulated gene set. This p-value is calculated by comparing the in-
crement of the log likelihood score generated from empirical data to the increment from random expression
data. We consider a randomization scenario where P(xge|cge = 0), P (xge|cge = ±1) of the newly added
gene are uniformly sampled from the simplex P(xge|cge = 0)+P(xge|cge = −1)+P(xge|cge = +1) = 1.
In contrast to sampling methods that use different data permutations, the p-value we have defined can be
approximated with an analytic expression. Details about the approximation are described in Appendix 2.

The second p-value evaluates the significance of a specific regulatory model. It is calculated from the
following permutation test procedure. The expression data of regulated genes are randomly permuted (over
genes and experiments). The optimal regulatory program and its log likelihood score from each permuted
data are calculated, and the p-value is the fraction of optimal log likelihood scores from random data that
exceed the empirical score. Details about the procedure are reported in Appendix 3.

The third p-value calculates the significance of the combinatorial property of a regulator. It is calculated
according to the gap of log likelihood scores between the best model where this property holds and the best
model where this property does not hold. For example, to evaluate the significance of “r1 is a necessary
activator,” we find the optimal model M1 among the models where r1 is a necessary activator and the
optimal model M0 among the models where r1 is not a necessary activator. We compare the empirical gap
score with the gap scores obtained by randomly permuting gene expression data. Notice the gap score of
each permuted data is obtained by reoptimizing the regulatory models to fit the permuted data. The p-value
is the fraction of the random gap scores exceeding the empirical gap. Details about the procedure also can
be seen in Appendix 4.

4. EMPIRICAL ANALYSIS

We applied the algorithm of identifying regulatory models to the protein-DNA interaction data of 106
transcription factors (Lee et al., 2002) and two sets of large-scale gene expression data: Rosetta Com-
pendium data of gene knock-outs (Hughes et al., 2000) and stress response gene expression data published
by Gasch et al. (2000). Rosetta data contains the log ratios and p-values of steady-state measurements,
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whereas Gasch data provides log ratios of time-course measurements. For simplicity, we fix the regulatory
functions (activators or repressors) of single regulators according to previous studies curated in the Incyte
Yeast Proteome Databases (www.incyte.com/login.html).

The conditional probabilities P({xrg}|{brg}) of binding data and P({xre}|{cre}) and P({xge}|{cge}) of
Rosetta gene expression data were evaluated using the approximation described by Yeang et al. (2004).
The conditional probabilities P({xre}|{cre}) and P({xge}|{cge}) of the Gasch data were evaluated from
Gaussian and exponential distributions of the time-course responses of perturbations. Details are described
in Appendix 1.

We summarize and analyze the inferred models in the following aspects. We first visualize the regula-
tory models inferred from two expression datasets and discuss their inferred combinatorial properties. We
then validate the inferred models with gene function ontology, literature survey, sensitivity analysis, and the
agreement between the models inferred from the two datasets. Finally, we compared the models inferred
from Rosetta and Gasch data to check whether certain regulatory models were manifested in multiple datasets.

4.1. Models inferred from Rosetta and Gasch data

Figures 1 and 2 summarize the information about regulatory models inferred from Rosetta and Gasch
data. We consider only the regulatory models with up to three regulators and report only the models with
significant p-values of likelihood scores (p ≤ 0.02 for Rosetta data and p ≤ 0.001 for Gasch data). We set
a more stringent cutoff on Gasch data because more significant responses appear in Gasch data according
to the quantization method described in Appendix 1. There are 110 valid models inferred from Rosetta
data and 144 valid models inferred from Gasch data. We represent a regulatory model as a bipartite graph
between regulators (circles) and a regulated gene set (a square). The color of a regulator indicates its
regulatory function as an activator (red) or a repressor (green). The color of a regulated gene set indicates
the MIPS functional categories enriched in the regulated gene set (p ≤ 0.06 according to a hypergeometric
test with Bonferroni correction). The color of an edge indicates the direction of effectiveness of a regulator
in a model: red for necessary, green for sufficient, and black for neither. Two edges can exist between two
nodes since a regulator can be both necessary and sufficient. The width of an edge indicates the confidence
about about necessity or sufficiency as described in Section 3.3. We use the visualization software Cytoscape
(www.cytoscape.org) to draw the graphs. The complete list of inferred regulatory models is also tabulated
in the Supplementary Webpage Section.

We found the combinatorial properties of many inferred regulatory models to be consistent with the
knowledge about the combinatorial interactions of these transcription factors. We summarize these inter-
actions into three categories and draw a number of illustrative examples for each category.

• Each regulator is necessary for a regulated gene set. This pattern appears in regulator pairs such as
(Ino2,Ino4), (Swi4,Swi6), (Swi6,Mbp1), and (Fkh1,Fkh2) in Rosetta models. These regulator pairs are
known to be components of protein complexes for transcriptional activation. Ino2-Ino4 complex regulates
genes involved in phospholipid synthesis (Ambroziak et al., 1994). Protein complexes Swi6-Swi4, Swi6-
Mbp1, and Fkh1-Fkh2 activate genes expressed during G1/S, S/G2, or G2/M phases of the yeast cell
cycle (Simon et al., 2001).

• Each regulator is sufficient for a regulated gene set. This pattern is common for stress response reg-
ulators, for example, (Msn4,Yap1), (Msn2,Yap1), (Msn2,Hsf1) pairs in Rosetta data and (Msn4,Hsf1),
(Msn4,Yap1) in Gasch data. This pattern is consistent with the property that each stress response regu-
lator either activates the gene under a different stress condition (for example, Hsf1 for heat shock and
Yap1 for hyperoxia) or contributes in an additive or redundant fashion (for example, Msn2 and Msn4)
(Gasch et al., 2000).

• Some regulators are both necessary and sufficient, and the others are not strongly effective in either
direction. Examples in Rosetta models include several small modules co-regulated by Gcn4 and one of
the following regulators involved in amino acid synthesis: Leu3, Cbf1, Abf1, and several ribosome gene
sets regulated by Rap1, Fhl1 and several other factors in Gasch models. In these examples, there exist
some “master regulators” which control genes in both directions, while other regulators are not correlated
with regulated genes at expression levels. This property does not necessarily exclude the functional role
of these “inactive” regulators. They may be possible cofactors which regulate transcription via other
mechanisms.
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FIG. 1. Models inferred from Rosetta data.

FIG. 2. Models inferred from Gasch data.
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Since our regulatory models are based on simplifying assumptions, many true combinatorial interactions
of regulators are not retrieved. It is difficult to assess the false negatives of the algorithm due to the lack of
complete knowledge about combinatorial gene regulation. Instead, we draw several illustrative examples
from known combinatorial interactions of yeast genes.

• The well-known interaction of Gal4-Gal80 complex on galactose metabolic genes does not appear in
Figs. 1 and 2. The Rosetta module regulated by Gal4 (m473) is not enriched with galactose metabolic
genes, and Gal80 does not appear in Figs. 1 and 2. This is because the expression level of Gal4 is low even
under active state (Hartemink et al., 2001). Hence, its regulatory function on galactose metabolic genes
cannot be revealed by expression data alone. Although Gal80 expression level is known to modulate in
certain datasets (e.g., Hartemink et al. [2001]), it does not vary significantly in either Rosetta or Gasch
data.

• The combinatorial interaction of Ste12 and Dig1 on pheromone response genes is only partially retrieved.
Dig1 inhibits the phosphorylation of Ste12 (Bardwell et al., 1998); hence, the inhibitory function of Dig1
is valid only when Ste12 is present. This combinatorial function cannot be captured by our models since
the effectiveness of a regulator depends on the state of other regulators.

• Sok2 is known to be both an activator and repressor for different genes (Shenhar et al., 2001). We assign
it as a repressor since it represses more genes. However, this assignment also excludes the regulatory
models where Sok2 is an activator.

4.2. Validation of inferred models

In addition to the qualitative properties described in Section 4.1, we validated the inferred models using
four quantitative tests. First, we investigated whether regulated genes are enriched with functional cate-
gories according to Munich Information Center for Protein Sequences (MIPS) database (http://mips.gsf.de/).
Second, we checked from previous works whether regulators participating in the same model were known
to have functional interactions. Third, we demonstrated that the inferred models were robust against the
variation of free parameter values.

For each regulatory model, we evaluated the hypergeometric p-values of the enrichment of MIPS cate-
gories with Bonferroni correction. We considered the models with significant log likelihood values (permu-
tation p-value ≤ 0.02 for Rosetta models and p-value ≤ 0.001 for Gasch models, including the models of
single regulators). Overall, about half of the inferred models are enriched with at least one MIPS category
(p ≤ 0.06): 46% of the Rosetta models (51 out of 110) and 45% of the Gasch models (65 out of 144) are
enriched. Due to the incompleteness of the MIPS database and the conservative estimation of Bonferroni
correction, more inferred models are expected to be involved in specific cellular processes.

We also searched PubMed and Incyte Yeast Proteome Databases (www.incyte.com/login.html) to check
whether regulators participating in the same model were known to jointly control one or multiple genes.
More than two-thirds of the regulator sets in the significant models were verified in previous works:
60% of the significant Rosetta models with multiple regulators (46 out of 77) and 67% of the significant
Gasch models with multiple regulators (46 out of 69) contain regulators whose interactions were reported
in previous works. The functional enrichment of regulated genes and previously reported combinatorial
interactions of regulators in inferred models are reported in the Supplementary Webpage Section.

We further demonstrated that the inferred models were robust against the variations of three free pa-
rameters: λ, which appeared in the joint log likelihood function (Equation (12)), is the relative weight
between expression and binding data; α in Table 3 relates the the prediction of a regulatory program to the
hidden states of expression changes; and pstop in the greedy algorithm specifies the stopping criterion of
the p-values of adding genes (Section 3.2). The default settings of these parameters are λ = 0.1, α = 1

3 ,
pstop = 0.1. We performed robustness tests by varying each parameter while fixing the other two as the
default values. Inferred models generated from the new parameter settings were compared to the default
models in two aspects. First, we calculated the average overlap rate of regulated gene sets (with respect to
the default models) over all models. Second, we counted the fraction of new models which had identical
inferred directions of effectiveness to the default models. Figure 3 shows the sensitivity of parameters in
the Rosetta and Gasch models. Both sensitivity measures are very robust against each parameter in each
dataset except α on Rosetta data. For example, when varying λ from 0.01 to 0.9, the average overlap
rate of Gasch models ranges between 90% and 100%, and more than 85% of inferred models agree on
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FIG. 3. Robustness tests on parameters. Top: Rosetta data. Bottom: Gasch data. Solid line: overlap of combinatorial
labels. Dashed line: overlap of regulated gene sets.

directions of effectiveness. In contrast, models inferred from Rosetta data are sensitive to α: the average
overlap rate drops to 50% when α varies from 1

3 to 0.1.

4.3. Overlap between Rosetta and Gasch models

The quality of inferred models can also be judged by the robustness of models with respect to different
datasets. We have generated two sets of regulatory models from Rosetta and Gasch expression data,
respectively. A natural question is to what extent these models are overlapped. The consensus parts of the
models suggest they are more likely to reflect the underlying system. The parts where they differ may be
due to condition-specific properties of gene regulation: certain regulatory systems are revealed only in one
dataset. However, without further validation, these results are less confident.

We investigate the overlapped parts between Rosetta and Gasch models. There are 110 significant Rosetta
models (permutation p-value ≤ 0.02) and 144 significant Gasch models (permutation p-value ≤ 0.001).
We consider the interesection of the regulator sets of these models and find 42 regulator sets appear in
both sets of models. We then compare Rosetta and Gasch models corresponding to these 42 regulator sets
in two aspects. First, we check the overlap between the regulated gene sets of the corresponding models.
Second, we inspect the consensus of inferred directions of effectiveness of the corresponding models.

Tables 4 and 5 shows the comparison results of Rosetta and Gasch models. They suggest that these two
sets of models are significantly overlapped. Among the 42 regulatory model pairs, about 60% of them
(25 out of 42) are significantly overlapped in their regulated gene sets (more than 40% of members with
respect to either model are overlapped). Moreover, the inferred directions of effectiveness are identical from
both datasets in 83% (35 out of 42) of the models. That means all necessary regulators or all sufficient
regulators in the two models coincide.

By inspecting the overlapped regulatory models, we find they correspond to the regulatory processes
which are better captured in both datasets. Among the 42 significant models whose regulator sets appear
in both datasets, 31 are enriched with genes belonging to certain MIPS categories. Moreover, the fraction
of enriched gene sets increases when we consider the 25 models which are significantly overlapped in the
regulated gene members (21 out of 25) and the 35 models which agree upon the directions of effectiveness
(29 out of 35). The regulatory processes involved in these overlapped models include stress responses,
mating responses, ribosomal regulation and cell cycle.
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Table 4. Overlap of Inferred Models between Rosetta and Gasch Data, Part 1a

Regulator

1 2 3 SizeR SizeG NeceR NeceG SuffR SuffG
Overlap

rate1
Overlap

rate2

Fkh2 7 50 1 1 0 1 42.9% 6%
Reb1 27 37 1 1 0 1 48.1% 35.1%
Sok2 54 44 0 1 1 1 5.6% 6.8%
Dig1 Ste12 57 46 11 01 10 01 31.6% 39.1%
Rap1 31 148 1 1 0 1 93.5% 19.6%
Rap1 Fhl1 28 121 11 10 00 00 100% 23.1%
Fkh1 12 9 1 1 0 1 16.7% 22.2%
Ste12 49 107 1 1 1 1 28.6% 13.1%
Hap4 24 40 0 1 1 1 95.8% 57.5%
Gcn4 125 12 1 0 1 1 6.4% 66.7%
Gal4 16 56 0 1 1 1 43.8% 12.5%
Msn4 Hsf1 8 22 00 01 11 11 37.5% 13.6%
Sum1 7 43 1 1 0 0 14.3% 2.32%
Fhl1 14 130 0 1 1 1 0% 0%
Msn4 13 16 0 1 1 1 23.1% 18.8%
Dig1 Ste12 Mcm1 19 25 010 010 000 010 57.9% 44.0%
Phd1 Swi4 9 15 01 00 10 10 11.1% 6.7%
Swi5 19 29 1 1 0 1 42.11% 27.59%
Rtg3 Gcn4 25 18 00 00 11 01 56% 77.8%
Msn2 Yap1 13 25 00 01 11 11 69.2% 36.0%
Yap5 7 62 1 0 1 1 0% 0%
Msn2 Msn4 55 31 00 11 11 11 36.4% 64.5%

aR: Rosetta, G: Gasch, rate1: wrt Rosetta modules, rate2: wrt Gasch modules.

Table 5. Overlap of Inferred Models between Rosetta and Gasch Data, Part 2a

Regulator

1 2 3 SizeR SizeG NeceR NeceG SuffR SuffG
Overlap

rate1
Overlap

rate2

Aro80 9 25 0 1 1 1 77.8% 28%
Ash1 48 22 1 1 0 1 18.8% 40.9%
Dig1 66 23 1 1 1 1 18.2% 52.2%
Rap1 Fkh2 17 16 10 11 00 00 64.7% 68.8%
Ste12 Mcm1 24 30 11 10 10 00 54.2% 43.3%
Dig1 Ste12 Msn2 8 15 010 010 010 000 75% 40%
Gcr2 7 12 0 1 0 1 0% 0%
Rap1 Gat3 Fhl1 20 61 100 100 000 000 100% 32.8%
Pdr1 Rap1 Fhl1 18 28 000 010 000 000 100% 64.3%
Msn2 Msn4 Yap1 17 24 000 000 111 011 70.6% 50%
Rap1 Fhl1 Yap5 20 52 000 100 000 000 100% 38.5%
Mac1 Cup9 5 10 000 000 010 001 0% 0%
Msn4 Yap1 22 22 00 01 11 11 59.1% 59.1%
Gat3 Yap5 7 38 00 10 00 11 0% 0%
Mac1 Yap5 5 18 00 11 00 01 0% 0%
Fzf1 6 24 0 1 1 1 0% 0%
Rtg3 47 29 1 1 1 1 31.9% 51.7%
Msn2 Hsf1 10 26 00 01 11 11 30% 11.5%
Fkh1 Fkh2 12 24 11 11 00 01 75% 37.5%
Msn4 Rap1 7 10 00 01 11 01 0% 0%

aR: Rosetta, G: Gasch, rate1: wrt Rosetta modules, rate2: wrt Gasch modules.
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5. DISCUSSION

We have described a simple computational approach to capture combinatorial effects of multiple tran-
scription factors in transcription control. We identify regulatory models—including subsets of regulators
and genes together with a regulatory program—from binding and expression data. We define regulatory
programs with multiple regulators according to two properties of single transcription factors: 1) the func-
tion of a regulator and 2) its direction of effectiveness. The inferred models agree substantially with known
functions and interactions. Moreover, the inferred models are robust against specific parameter values.

There are, however, many unresolved issues. Most combinatorial functions cannot be reduced to the
properties of individual regulators. For example, the direction of effectiveness of a regulator may depend
on the state of other regulators. The assumptions in our model are simplistic. For example, some regulators
are not modulated through mRNA (protein) levels but primarily by altering protein modification states
(Lee et al., 1999). Binding and expression data alone are unlikely to capture such regulatory effects. A
transcription factor can be both activator and repressor, depending on the cofactors it interacts with and
the sets of regulated genes. Finally, some of the inferred models do not correspond to known biological
functions and may be false positives. Better error models are needed to weed out a greater fraction of false
positives.

APPENDIX 1. QUANTIZATION OF TIME-COURSE EXPRESSION DATA

In this appendix, we will show a method of evaluating the conditional probabilities P(xre|cre) and
P(xge|cge) from time-course gene expression data. In the stress response dataset, xre and xge are time-
course measurements of expression responses under a stress condition. The goal is to convert xre into
conditional probabilities P(xre|cre = +1), P (xre|cre = −1), P (xre|cre = 0).

Denote y ∈ {−1, 0, +1} as the actual, quantized expression change of a gene under one experimental
condition and x(t1), . . . , x(tn) as its n time-course measurements. We relate the discrete state y to measure-
ments x(t1), . . . , x(tn) with a two-level process. The discrete state y generates a continuous time-course
expression profile m(t1), . . . , m(tn); and x(t1), . . . , x(tn) are noisy measurements of m(t1), . . . , m(tn). We
model measurement errors x(t1) − m(t1), . . . , x(tn) − m(tn) as iid Gaussian random variables with zero
mean and variance σ 2.

The actual expression profile m(t1), . . . , m(tn) is a zero vector given y = 0. Thus, P(x(t1), . . . , x(tn)|
y = 0) is the product of normal densities:

P(x(t1), . . . , x(tn)|y = 0) =
(

1

2πσ 2

) n
2

n∏
i=1

e
− x(ti )

2

2σ2 . (13)

We model the prior probabilities P(m(t1), . . . , m(tn)|y = ±1) with an iid exponential distribution:

P(m(t1), . . . , m(tn)|y = +1) =
n∏

ti=1

P(m(ti)|y = +1),

P (m(ti)|y = +1) =
{
γ e−γm(ti ) if m(ti) ≥ 0,

0 otherwise.

(14)

The expression P(m(t1), . . . , m(tn)|y = +1) assigns a nonzero probability to each nonnegative expression
profile, and penalizes the expression profiles deviating from 0; P(m(t1), . . . , m(tn)|y = −1) is defined
analogously. By marginalizing over m(ti), the conditional probability P(x(t1), . . . , x(tn)|y = +1) becomes

P(x(t1), . . . , x(tn)|y = +1) =
n∏

i=1

∫ ∞

0
P(m(ti)|y = +1)P (x(ti)|m(ti))dm(ti)

=
n∏

i=1

γ e(−γ x(ti )+ 1
2 γ 2σ 2)

(
1 − �

(−(x(ti) − γ σ 2)

σ

)) (15)
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where �(.) is the standard normal cumulative distribution function. Similarly,

P(x(t1), . . . , x(tn)|y = −1) =
n∏

i=1

∫ 0

−∞
P(m(ti)|y = −1)P (x(ti)|m(ti))dm(ti)

=
n∏

i=1

γ e(γ x(ti )+ 1
2 γ 2σ 2)

(
�

(−(x(ti) + γ σ 2)

σ

)) (16)

where σ and γ are free parameters. In the empirical analysis, we set σ = γ = 0.5, for they are close to
the variance of the entire Gasch data.

APPENDIX 2. CALCULATING P-VALUES OF ADDING A NEW GENE
IN THE MODEL

The incremental algorithm of finding the regulated gene set stops when the p-value of adding a new
gene to the model becomes insignificant. In this appendix, we describe a method of analytically computing
the p-value of gene addition.

Recall the expression log likelihood score of the regulatory model (Equation (10)):

Le(R, G, f ) = −|E||R| log 3 +
∑
e∈E

⎡
⎣log

⎛
⎝ ∑

v∈{−1,0,+1}
Pv(e) ·

∏
g∈G

∑
cge

P (cge|v)P (xge|cge)

⎞
⎠
⎤
⎦

+ |E|(|R| + |G|) log 3 −
∑
e∈E

×
⎡
⎢⎣∑

r∈R

log(P (xre|cre = +1) + P(xre|cre = −1) + P(xre|cre = 0))

+
∑
g∈G

log(P (xge|cge = +1) + P(xge|cge = −1) + P(xge|cge = 0))

⎤
⎦ .

(17)

To simplify calculation, we assume P(xge|cge = +1)+P(xge|cge = −1)+P(xge|cge = 0) = 1. Hence,
we can ignore all the constant terms independent of f :

Le(R, G, f ) = C +
∑
e∈E

⎡
⎣log

⎛
⎝ ∑

v∈{−1,0,+1}
Pv(e) ·

∏
g∈G

∑
cge

P (cge|v)P (xge|cge)

⎞
⎠
⎤
⎦

= C +
∑
e∈E

Te

(18)

where Te = log[∑v∈{−1,0,+1} Pv(e) ·∏g∈G

∑
cge

P (cge|v)P (xge|cge)].
The p-value of adding a new gene is based on the randomization scenario of uniformly sampling condi-

tional probabilities P(xge|cge) of the newly added gene from the simplex P(xge|cge = +1)+P(xge|cge =
−1) + P(xge|cge = 0) = 1. The conditional probabilities of regulators and genes already in the regu-
lated set remain intact. If we are able to calculate the distribution of each Te, then we can approximate the
distribution of

∑
e Te using the central limit theorem and thereby evaluate the p-value of the empirical data.

However, Te depends on the conditional probabilities of other genes in the regulated set as well. The
distribution is more difficult to evaluate when the size of the regulated set grows. Instead, we replace Te
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with another statistic:

T
′
e = log

⎡
⎣ ∑

v∈{−1,0,+1}
Pv(e) ·

∑
cge

P (cge|v)P (xge|cge)

⎤
⎦ . (19)

Approximately, T
′
e corresponds to the contribution of the newly added gene on experiment e to the log

likelihood score. We introduce the following notations: pge = P(xge|cge = +1), qge = P(xge|cge = −1),
uge = P(xge|cge = 0). Unfold the equation with these notations:

T
′
e = log

(
P1(e)((1 − α)pge + αuge) + P−1(e)((1 − α)qge + αuge)

+ P0(e)

(
1

3
pge + 1

3
qge + 1

3
uge

))

≡ log(a1epge + a−1eqge + a0euge).

(20)

We want to calculate the cumulative distribution of T
′
e when (pge, qge, uge) is uniformly sampled from

the simplex S ≡ {(pge, qge, uge)|pge + qge + uge = 1, 0 ≤ pge, qge, uge ≤ 1}. This is equivalent to
calculating the area of a polytope in the 3-D simplex. Without loss of generality, assume a1e > a0e > a−1e

and r as the empirical value of T
′
e . As shown in the left graph of Fig. 4, {(pge, qge, uge)|(pge, qge, uge) ∈

S, T
′
e (pge, qge, uge) ≤ r} is the shaded area within the simplex. Thus, the density function of exp(T

′
e ) is

a saw-tooth function as shown in the right graph of Fig. 4. The density of T
′
e is

π(ye) ≡ Pr(ye ≤ log(a1epge + a−1eqge + a0euge) ≤ ye + dye)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(eye − a−1)e
yedye

(a1 − a−1)(a0 − a1)
log(a−1) ≤ ye ≤ log(a0),

2(a1 − eye )eyedye

(a1 − a−1)(a1 − a0)
log(a0) ≤ ye ≤ log(a1).

(21)

The p-value of the approximated test statistic is

p = Pr

(
T =

∑
e

ye ≥ T 0

)
. (22)

FIG. 4. Density function of the test statistic.
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The density of T is the convolution of densities π(y1) � π(y2) � · · · � π(y|E|). Its calculation requires
the integrations of piecewise |E|-order polynomials and is tedious. We use the central limit theorem to
approximate the density of T as Gaussian. The mean and variance of the Gaussian density are the average
of the mean and variance of individual densities, which can be efficiently evaluated. Denote the mean and
variance as µ and σ , the p-value is

p = 1 − φ

(
T 0 − T

σ

)
. (23)

where φ is the standard Gaussian cumulative distribution.

APPENDIX 3. CALCULATING p-VALUES OF REGULATORY MODELS

The significance of a regulatory model is evaluated by comparing the empirical likelihood score with
the likelihood scores of randomly permuted data. Since we preselect candidate regulator sets and regulated
gene sets by thresholding on the p-values of binding data, the binding part of the empirical likelihood
score is expected to be significant. Hence, we focus on testing the expression part of the score.

We perform the following procedures to obtain permuted data. We fix the expression data of regulators
and randomly permute (both genes and conditions) the expression data restricted to the regulated gene
set. We then reoptimize the regulatory programs which best fit the permuted data. The p-value of the
empirical likelihood score is the fraction of random trials which yield likelihood scores higher than the
empirical value. Notice we do not regenerate regulated gene sets by using the incremental algorithm,
but fix the regulated gene set and reshuffle their expression data. This procedure may overestimate the
significance of the empirical value since randomization is limited to the selected subset. However, it also
avoids time-consuming randomization over the whole dataset.

APPENDIX 4. CALCULATING p-VALUES OF THE COMBINATORIAL
PROPERTIES OF REGULATORS

Often, expression data do not uniquely determine a combinatorial function: there are multiple functions
which fit the data equally or nearly equally well. It can be misleading to report only the optimal function(s)
since they may contain spurious information. For instance, suppose r is an activator that control gene
set G. In some experiments of dataset E, both r and G are down-regulated; r and G are unchanged in
the remaining experiments. In our construction, the models “r is necessary” and “r is both necessary and
sufficient” fit the data equally well. This is because no input states in E can test whether r is sufficient. If
the model that “r is both necessary and sufficient” yields a higher score due to noise in the data, then we
may draw a wrong conclusion from the reported model.

This problem is alleviated by also reporting the confidence pertaining to the combinatorial property of
each regulator. If the combinatorial property (whether a regulator is necessary or sufficient) is relevant in
the data, then it should contribute to fit the expression data. In other words, the likelihood score will be
substantially degraded if we remove this combinatorial property from the model.

Testing the contribution of a combinatorial property is the rationale for evaluating the significance of
this property. The gap between the likelihood score of the optimal model where this property holds and
the optimal model where this property does not hold measures the contribution of this property to fit the
data. In the previous example, the best model where “r is sufficient” holds is that r is both necessary and
sufficient, and the best model where “r is not sufficient” holds is that r is necessary. Obviously, these two
models yield very similar likelihood scores. Hence, the property that r is sufficient is not significant.

We apply a permutation test to calculate the p-value of a combinatorial property. We permute the
expression data of both the regulator set and regulated gene set together. In every permutation, we identify
the optimal model where a combinatorial property holds and the optimal model where it does not hold.
We then calculate the difference of likelihood scores between the two models. The p-value is the fraction
of random permutations which yield gap scores greater than the empirical gap score.
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Table 6. The Tested MIPS Functional Categories

Index Function Index Function

01 Metabolism 08 Cellular transport
02 Energy 10 Cellular communication
03 DNA processing 11 Stress response
04 Transcription 13 Regulation w/ environment
05 Protein synthesis 14 Cell fate, cell cycle
06 Protein fate

APPENDIX 5. EVALUATING FUNCTIONAL ENRICHMENT IN
REGULATED GENE SETS

We apply the standard hypergeometric test with multiple-hypothesis correction to evaluate the functional
enrichment in the regulatory models. Suppose there are a total of n genes with n1 genes belonging to
a specific functional category. A subset contains m genes with m1 genes belonging to this category.
The p-value of the hypergeometric test is the probability that by randomly drawing m genes (without
replacement) from the sample, ≥ m1 of them belong to this category. This probability is

p =
min(m,n1)∑

k=m1

(
n1

k

)(
n − n1

m − k

)
(

n

m

) . (24)

When there are multiple categories, there is a higher probability that a randomly drawn subset is enriched
with members in any of these categories. Suppose there are l categories and p′ is the minimum of the
empirical hypergeometric p-values among these categories. The overall p-value is the probability that at
least one of the randomly sampled p-values ≤ p′:

p = Pr((p1 ≤ p′) ∪ (p2 ≤ p′) ∪ · · · ∪ (pl ≤ p′)) ≤
l∑

i=1

Pr(pi ≤ p′) = lp′. (25)

The inequality arises from the union bound of random events, and Pr(pi ≤ p′) = p′ since a p-value
is uniformly distributed under the null hypothesis. Therefore, the p-value of enrichment in at least one
category is the minimum p-value of enrichment among each category multiplies the number of categories.

We apply the hypergeometric test on 11 MIPS functional categories shown in Table 6.

SUPPLEMENTARY WEBPAGE

Details about the inferred regulatory models can be found in the supplementary webpage www.csail.mit.
edu/∼tommi/suppl/jcb05/.
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