
Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

Exploring the Relationship Between the Geometry
of a Fixed Embedding of Image Data and Its
Underlying Cluster Structure

Yan-Bin Chen, Khong-Loon Tiong & Chen-Hsiang Yeang

To cite this article: Yan-Bin Chen, Khong-Loon Tiong & Chen-Hsiang Yeang (05 Feb 2025):
Exploring the Relationship Between the Geometry of a Fixed Embedding of Image Data and
Its Underlying Cluster Structure, Journal of Computational and Graphical Statistics, DOI:
10.1080/10618600.2024.2444321

To link to this article: https://doi.org/10.1080/10618600.2024.2444321

View supplementary material

Published online: 05 Feb 2025.

Submit your article to this journal

Article views: 137

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2024.2444321
https://doi.org/10.1080/10618600.2024.2444321
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2444321
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2444321
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2444321?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2444321?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2444321&domain=pdf&date_stamp=05%20Feb%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2444321&domain=pdf&date_stamp=05%20Feb%202025
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2025, VOL. 00, NO. 0, 1–17
https://doi.org/10.1080/10618600.2024.2444321

Exploring the Relationship Between the Geometry of a Fixed Embedding of Image
Data and Its Underlying Cluster Structure

Yan-Bin Chena,b, Khong-Loon Tionga, and Chen-Hsiang Yeanga

aInstitute of Statistical Science, Academia Sinica, Taipei City, Taiwan; bMaster Program in Statistics, National Taiwan University, Taipei City, Taiwan

ABSTRACT
Standard self-supervised clustering algorithms transform input data via embedding models that are trained
to fit the data and then cluster the embedded vectors. Despite its flexibility, a data driven embedding model
may not be applicable when the raw data are unavailable due to privacy or security concerns, and it cannot
be adapted to the increasingly common framework of transfer learning. We previously proposed a Merge
& Expand (ME) framework for clustering images using a fixed embedding model. In this study, we have
substantially modified our ME framework and conducted a series of experimental analysis to explore the
relationship between the geometry of a fixed embedding space and the underlying cluster structure. We
demonstrate that the clustering outcomes are robust against varying hyperparameter values. We assessed
the heterogeneity of predicted labels in each region, revealing that it is a strong indicator of the quality
of clustering outcomes. We further exploited the heterogeneity information to modify the ME framework,
improving clustering accuracy by introducing a second embedding. Moreover, we provide intuitive expla-
nations for sources of confusion in merged seed regions. Comparisons with numerous other clustering
methods on five datasets indicate that our ME framework performs competitively despite employing a fixed
embedding, a simple CNN architecture, and a common loss function. Thus, our ME framework enables users
to better understand the relationship between the geometry of the embedding space and the underlying
cluster structure. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received August 2023
Accepted December 2024

KEYWORDS
Clustering; Convolutional
neural network; Fixed
embedding; Self-supervised
learning

1. Introduction

Clustering unlabeled high-dimensional data is an age-old prob-
lem but remains a challenge as the vast majority of existing data
lack labels. Recently, the self-supervised learning approaches
have been applied in many image clustering algorithms that
adopt deep neural network (DNN) models such as convolutional
neural networks (CNN) (LeCun et al. 1998) and transformers
(Garg et al. 2022). Such approaches acquire supervisory infor-
mation by integrating the original and augmented data, often
requiring that the data share the same semantic content. Gener-
ally, a self-supervised clustering algorithm comprises two major
components: embedding and clustering/classification. Raw data
are first embedded or transformed into feature vectors typically
through a DNN. The requirement for clustering together orig-
inal and augmented images is often encoded in the embedding
operations. The embedded data is then passed through a cluster-
ing or classification algorithm. Pseudo labels are assigned to the
embedded images when a classification algorithm is employed.
Self-supervised image clustering algorithms fall into two general
categories in terms of the links between the two components:
(a) sequential methods (or representation learning) separately
optimize the embedding and clustering components (Bengio,
Courville, and Vincent 2013; Xie, Girshick, and Farhadi 2016;
Som et al. 2018; van den Oord, Li, and Vinyals 2018); and

CONTACT Chen-Hsiang Yeang chyeang@stat.sinica.edu.tw Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nangang District,
Taipei City, 115, Taiwan.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

(b) joint methods (or end-to-end learning) unite embedding
learning and clustering in training the same DNNs (Xie, Gir-
shick, and Farhadi 2016; Yang, Parikh, and Batra 2016; Hu et al.
2017; Chang et al. 2017; Glasmachers 2017; Caron et al. 2019;
Ji, Henriques, and Vedaldi 2019; Vedaldi, Asano, and Rupprecht
2020). A combination of both sequential and joint methods has
also been proposed (Van Gansbeke et al. 2020; Park et al. 2021).

In most current self-supervised image clustering algorithms,
the embedding models are trained to fit the input data. Hence,
we term such embedding models “data driven”. An alternative
approach is to generate “fixed embeddings”, where the model
parameters are pre-specified rather than learned from the
input data. Instances of fixed embeddings include dimension
reduction algorithms such as PCA (Hotelling 1933), t-SNE
(Maaten and Hinton 2008) and UMAP (McInnes, Healy, and
Melville 2018), as well as pre-trained DNN models such as
VGG (Tammina 2019), ResNet (He et al. 2016), BERT (Kenton
and Toutanova 2019), Vision Transformer (Cordonnier, Loukas,
and Jaggi 2020; Dosovitskiy et al. 2020), GPT-1 (Vaswani et al.
2017; Radford et al. 2018), GPT-2 (Radford et al. 2019), and
GPT-3 (Brown et al. 2020). Both embedding approaches have
advantages and disadvantages. Data driven embeddings are
flexible in meeting the specific requirements and hypotheses of
self-supervised learning and better fit the input data, yet they are

© 2025 American Statistical Association and Institute of Mathematical Statistics

https://doi.org/10.1080/10618600.2024.2444321
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2444321&domain=pdf&date_stamp=2025-02-01
mailto:chyeang@stat.sinica.edu.tw
http://www.tandfonline.com/r/JCGS

2 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

also severely restricted by the input data. Fixed embeddings are
less tuned to fit the input data, but they are also less dependent
on it and they can incorporate powerful pre-trained models.
For instance, there are three scenarios where we assert that
fixed embeddings are either beneficial or essential. First, the
raw data may not be directly accessible in some applications due
to privacy or security concerns or the data size is too large for
convenient transfer. Consequently, providers may compress or
project the raw data and then distribute the embedded data
of much smaller dimensions or have sensitive information
removed. Second, in transfer learning, a large DNN model
pre-trained on extensive existing data can be applied to the
input data to generate fixed embeddings (Xian, Schiele, and
Akata 2017; Han et al. 2021). Third, parallelization is difficult
to achieve for data driven embedding given that the embedding
is trained on the entire input data. Nevertheless, the data are
readily parallelizable with a fixed embedding as the embedding
parameters can be independent of the input data.

Previously, we proposed a “Merge & Expand” (ME) algorithm
that uses a fixed embedding and a CNN classifier to cluster unla-
beled image data (Chen, Tiong, and Yeang 2022). In that short
conference proceeding paper, the respective concepts, algorithm
and experimental analysis were all preliminary. Herein, we have
substantially developed the concepts, modified and improved
the algorithm, and conducted a more thorough experimental
analysis. The major advancement of the present study is our
scrutiny of the relationship between the geometry of a fixed
embedding space and the underlying cluster structure of the
data, allowing us to improve clustering by exploiting this link.
The current paper differs from that of Chen, Tiong, and Yeang
(2022) in five specific aspects. First, we have simplified the pro-
cedures for generating and merging seed regions by considerably
reducing the number of free parameters. Second, we demon-
strate that the ME clustering outcomes are robust against varying
hyperparameter values. Some hyperparameters yield invariant
clustering outcomes against a wide range of values. We fixed
the values of these hyperparameters and further reduced the
number of free parameters. Third, we have assessed three more
image datasets in our experimental analysis and validate the
conclusions from all five datasets. Fourth, we have leveraged the
heterogeneity characteristics of predicted class labels to devise a
novel method for improving cluster accuracy by integrating two
embedding models. Fifth, we provide intuitive explanations for
the source of confusion arising from two datasets by inspecting
representative images of the erroneously merged seed regions.

2. Methods

The bulk of our ME algorithm is dedicated to identifying a
training set that represents the entire data and annotations of
its labels for CNN predictions. We partitioned the data into
small and tight clusters termed “regions”, and solicited some
regions as the training data and assigned them pseudo labels.
Information about the underlying class structure was revealed by
both the geometry of the entire embedded space and patterns in
subsets of features. We extracted these two types of information
via a sequential process. In brief, a number of representative
“seed regions” was selected according to the geometry in the

embedded space. The pseudo labels of these seed regions were
determined by comparing the CNN prediction outcomes with
various combinations of seed regions as training data. The ini-
tial training data of the seed regions and their pseudo labels
were then iteratively expanded according to CNN predictions.
Overall, our ME framework comprises five phases as illustrated
in Figure 1. In Phase 0 (preparation), the raw data are trans-
formed by a fixed embedding into feature vectors. In Phase 1, the
embedded data are clustered into many regions. In Phase 2, some
of these regions are selected as the seeds for the training data
in subsequent phases. In Phase 3, four types of pairwise scores
between seed regions are evaluated according to the CNN pre-
diction outcomes from numerous combinations of seed regions
as the training data. In Phase 4, the seed regions are merged and
assigned to distinct pseudo labels by integrating the pairwise
scores. Finally, in Phase 5, the merged seed regions are treated
as the initial training data, and the training data is expanded by
iteratively applying the CNN classifier to the entire dataset. We
give a more intuitive explication of the algorithms in each phase
in this section and place the pseudo-code description of these
algorithms in supplementary text S1.

We selected three fixed embeddings for the current study. t-
SNE projects each raw image into a three-dimensional vector,
whereas ResNet-18 (He et al. 2016) and VGG-16 (Tammina
2019) are large CNN models pre-trained on 14 million images of
1000 categories from the ImageNet database (Deng et al. 2009).
These models transform a raw image into a 1000-component
feature vector, indicating the activation strength of these cate-
gories.

2.1. Phase 1: Clustering and Filtering the Embedded Data
into Regions

We applied spectral clustering (using the R package “kknn” with
parameter nn=30, default otherwise) to group the embedded
data into 200 regions. Ideally, data points of the same regions
should possess the same hidden class labels. However, this
property is not guaranteed. Without knowing the true class
labels, two procedures (geometry-based and informative
marker-based, see below) were used to prune the “periphery
members” of each region likely possessing true class labels
differing from those of the majority of “region members” and to
discard regions likely possessing data points of heterogeneous
true class labels. If the dimensions of the embedded space do
not have obvious interpretations, such as from PCA, t-SNE, and
UMAP, then we filtered the data points and regions according to
their geometry in the embedded space. Otherwise, such as from
ResNet-18 and VGG-16, we filtered the data points and regions
based on the output values of selected informative markers.

Geometry-based filtering procedure: This procedure examines
the subcluster structure of a region in the embedded space and
prunes the periphery members that are relatively differentiated
from the majority of region members. In Figure 2, we present a
schematic of the procedure. The data points of a region comprise
a large “central subcluster” and two smaller subclusters (Fig-
ure 2(a)). The two smaller subclusters are treated as periphery
members and are pruned when building the training data for

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 3

Figure 1. A schematic of the ME algorithm. Gray dots denote the images that have not yet been assigned to pseudo labels or have not been confidently classified. Colored
dots denote the images that have been assigned to pseudo labels.

Figure 2. (a) The center and periphery members are assigned to the same region. (b) An undirected graph is built that connects data points whose distances are within
the threshold, and define the connected components C0 − C3 of the graphs as subclusters. (c) Subsumption relationships of subclusters represented as a tree. (d) The two
smaller subclusters C2 and C3 (blue boxes) are pruned as periphery members and the central subcluster C1 (black box) is retained. Branch width (green bars) reflects the
size of split data points.

CNN classifiers. To detect these periphery members, we apply
a hierarchical clustering-like process to construct a family of
subclusters whose relationships are represented by a tree. We
vary the distance threshold with a decreasing order (θ0 − θ2 in
Figure 2(b)), build an undirected graph connecting data points
whose distances are within the threshold, and find the connected
components of the graph. These subclusters constitute sub-
sumption relations and are represented by a tree (Figure 2(c)).

All the data points form one subcluster C0 at the largest distance
threshold θ0. C3 splits from C1 ∪C2 at threshold θ1, and C2 splits
from C1 at threshold θ2. We iteratively traverse along the largest
branches of the tree, stop when encountering a major split where
no single child dominates other children in terms of their sizes,
and assign the parent subcluster of the major split as the central
subcluster. In Figure 2(d), C1 is the central subclusters and C2
and C3 are periphery members.

4 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

Figure 3. (a) The VGG-16 outputs of 1000 features for 60,000 CIFAR-10 images. The 200 regions have been sorted according to their true dominant class labels, and the
images have been sorted by those regions. The true dominant class labels of the sorted regions are displayed in the colored vertical panel at right. (b) The same data
restricted to 282 selected markers. (c) The VGG-16 outputs of the augmented CIFAR-10 data for the selected markers. (d) The VGG-16 outputs of one separating marker in
region 24. The majority group has high output values for the marker and is dominated by class label 8 (ship). The minority group has low output values for the marker and
displays heterogeneous true class labels. The minority group is deemed to comprise periphery members and is removed from the training data.

Informative marker-based filtering procedure: In this proce-
dure, a few markers of the embedded data are assumed to
carry relevant information about the underlying class labels.
The “informative markers” in each region are determined and
then periphery members likely possessing nondominant class
labels in terms of those markers are identified and removed, to
create the training set for Phase 2. We illustrate this procedure in
Figure 3. In Figure 3(a), we present the full VGG-16 activation
outputs of 1000 features, which display considerable variations
between images of different regions. Candidate markers mani-
festing selective activation in each targeted region are selected
(282 selected markers in Figure 3(b)). In order to be informa-
tive markers, these candidate markers should not be sensitive
to data augmentation, hence, should display similar levels of
activation in their corresponding data augmented by rotations
and translations (Figure 3(c)). Candidate markers which exhibit
differential output values in the augmented data are removed. In
the similar fashion, periphery members are assumed to be sen-
sitive to data augmentation, and are the minority in a region by

definition. For a given marker, the member images are grouped
according to the marker’s output values. Markers that exhibit
large gaps between the high-value and low-value portions of
member images in the original and augmented data are selected,
allowing the construction of a partition informed by the selected
marker (Figure 3(d)). The member images which consistently
belong to the minory group across all selected markers form
the periphery data points. However, if there are too many or no
separating markers, then the assumption about the informative
markers is likely invalid and so the periphery members are not
reported.

2.2. Phase 2: Selecting Seed Regions

Seed regions serve as the initial training data for subsequent
CNN predictions. To make complete but compact training data
and pseudo labels they should have two desirable properties: (a)
they represent the entire data as every region is similar to at least
one seed region, (b) they are mutually dissimilar.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 5

In Phase 2, ME selects two widely-separated regions
attracting similar numbers of members, and then iteratively
adds regions distinct from all other existing seed regions. The
distinctiveness between a candidate region and existing seed
regions is quantified according to two criteria: (a) the candidate
region is distant from all existing seed regions in the embedded
space; (b) the classifier trained on the existing seed regions
differs substantially from the modified classifiers upon replacing
any seed region with the candidate region.

More precisely, we introduce the following notations and
equations. Denote X as the collection of data points in the
embedded space, R1, R2, . . . , RK the K (K = 200) regions
generated by spectral clustering where each Ri ⊂ X is a subset of
data points, and Ri ∩ Rj = ∅ for each (i, j) pair. Define d(Ri, Rj)
as the average Euclidean distance between members of regions
Ri and Rj:

d(Ri, Rj) ≡ 1
|Ri||Rj|

∑

{x∈Ri,x,∈Rj}
d(x, x,) (1)

We also build classifiers by incorporating the data points of
selected regions as the training data. Suppose r1, . . . , rl are l
selected regions. Denote f (r1, . . . , rl) : X → {0, . . . , l − 1} as an
l-class classifier built from members in r1, . . . , rl as the training
data. Here, we employ a simple and fast k-nearest neighbor (k-
NN) classifier with k = 10 because f (r1, . . . , rl) is incurred many
times in seed region selection.

The first two seed regions are selected based on the criteria
that: (a) their average distance is large among all region pairs;
and (b) they attract similar numbers of data points. Criterion 2
is included in order to avoid selecting outlier regions that are
distant from most other regions in the dataset. Specifically, we
evaluate d(Ri, Rj) for all pairs of regions, sort them in a decreas-
ing order, and choose the first region pair for which the ratio
of the numbers of images assigned to the two regions is below a
threshold θJ . The selected region pair S = {r1, r2} constitutes the
initial seed regions. From these initial seed regions we iteratively
select the next seed region by a max–min criterion, and add
r̂ to S:

r̂ = arg max
r/∈S∪F

min
r,∈S

d(r, r,), (2)

where the candidate regions exclude the existing seed regions S
and the filtered regions F. A filtered region within the set F may
contain data points having mixed class labels or those that do
not share class labels with their neighboring regions. The max–
min criterion iteratively selects the region which is the most
dissimilar to all existing seed regions in terms of their average
Euclidean distances. We impose max–min selection on a fixed
number of iterations to obtain a list S of seed regions.

Because seed regions are chosen to facilitate accurate pre-
dictions of underlying class labels, we also filter seed regions in
terms of classification outcomes. We treat each seed region as a
unique class and train a reference classifier from the unfiltered
members of the existing seed regions (obtained in Phase 1).
When a new seed region is added, we check whether it can
replace any existing seed region in a modified classifier and yield
similar prediction outcomes. A seed region remains on the list
only if it cannot be replaced by any preceding seed regions in
terms of the classification outcomes.

Here, we give a more concrete description of the criteria
for filtering seed regions. Denote f0 ≡ f (r1, . . . , rK) as
the reference k-NN classifier trained from data points in
the K existing seed regions. A modified classifier fr−i,r ≡
f (r1, . . . , ri−1, r , ri+1, . . . , rK) replaces members of region ri
with members of region r in the training data. Region r is distinct
from K existing seed regions if fr−i,r yields different classification
outcomes from f0 for each i = 1, . . . , K. We consider the
differences of the prediction outcomes in the entire dataset and
restricted to each class. For each class i, define ndiff

i (r) (3) as the
number of data points with different predicted labels between f0
and fr−i,r , nconf

i (r) (4) as the number of data points with predicted
label i by either f0 or fr−i,r but not both, ncons

i (r) (5) as the number
of data points with predicted label i by both f0 and fr−i,r , and
rconf

i (r) (6) as the size difference between the incompatible and
compatible prediction sets restricted to class i and normalized
by the size of the compatible prediction set.

ndiff
i (r) ≡

∣∣∣{x : f0(x) 	= fr−i,r(x)}
∣∣∣. (3)

nconf
i (r) ≡

∣∣∣{x : f0(x) = i, fr−i,r(x) 	= i}
∣∣∣

+
∣∣∣{x : f0(x) 	= i, fr−i,r(x) = i}

∣∣∣. (4)

ncons
i (r) ≡

∣∣∣{x : f0(x) = fr−i,r(x) = i}
∣∣∣ (5)

rconf
i (r) ≡ nconf

i − 2ncons
i

ncons
i

. (6)

The aforementioned indicators enable us to quantify the
similarity between a newly incorporated seed region r and all
other previously incorporated seed regions r1, . . . , rK in terms
of their classification outcomes. We select several existing seed
regions Sc(r) whose confusion ratios rconf

i (r) surpass a threshold.
Members of Sc(r) are the most similar to r among the existing
seed regions. We then pick the member in Sc(r) that gives the
smallest ndiff

i (r) and denote this quantity ndiff
min(r). Among the list

S of seed regions selected by the max-min criterion, we keep the
ones that have sufficient high ndiff

min(r) scores. The procedure of
selecting seed regions is reported in Algorithm 1 of supplemen-
tary Text S1. The hyperparameters of the Phase 2 algorithm and
their default values are explained in supplementary Text S1.

2.3. Phase 3: Calculating Four Pairwise Scores

Multiple seed regions may share the same underlying class labels
because some of their differences in the entire embedded space
may reflect non-semantic attributes of images such as the light-
ing conditions of the background or the geometric transfor-
mations of objects. Therefore, to provide more precise pseudo
label assignments to the training data, it is necessary to merge
seed regions that likely share the same underlying class labels.
Information about the true class labels typically resides in local
patterns of subsets of features rather than the global patterns of
all features. Accordingly, deep neural networks such as CNNs
better capture these local patterns. Therefore, we reason that
semantic similarities between seed regions can be inferred from
CNN classification outcomes. We propose four types of pairwise
scores for seed regions, based on CNN classification outcomes,

6 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

Figure 4. Illustration of the procedures of computing four types of pairwise scores (a) M1, (b) M2, (c) M3, (d) M4.

to provide information for merging seed regions that likely share
the same underlying class labels, as shown in Figure 4.

Co-contribution score M1: The most direct way to build a
CNN classifier from K seed regions is to treat each seed region
as one class. CNN generates a normalized activation output
vector f (x) ≡ (f1(x), . . . , fK(x)) representing the probabilities
of all class predictions. Intuitively, two seed regions are similar if
their prediction probabilities are concurrently high among many
images. We translate this intuition into a K × K co-contribution
score matrix M1 with the following procedure. According to the
training data of K seed regions, we run CNN classifiers nr rounds
(nr = 5 in this work), and then the CNN classifier of each round
maps the embedded vector of an image x to a K-component
vector f l(x), where l is from 1 to nr . The nr CNN classifiers share
the same training data but may not give identical outputs due to
the stochastic gradient descent (SGD) procedure of parameter
estimation. The co-contribution score m1

ij is proportional to the
sum of the output values of class j over the data points with
consensus label i among the nr predictions:

M1 = [m1
ij] ≡ 1

|Ti| · nr

∑

x∈Ti

nr∑

l=1
f l
j (x), (7)

where i and j are from 1 to K; Ti denotes the set of data points
with consensus label i; and f l

j (x) is the jth component of f l(x).
The score is normalized to make the entries range in [0, 1].

Leakage score M2: The next simplest way to rearrange pseudo
labels of seed regions is to combine each pair of seed regions into
one class in the training data and build

(K
2
)

predictors with (K −
1) classes accordingly. Similarity of seed regions is indirectly
revealed by the prediction outcomes of the merged classes. Some
data points assigned to a third class in the K-class predictor will
“leak” to the merged class in a (K −1)-class predictor if the third
class shares the same true label with either one of the merged
classes. Consequently, we construct a leakage score matrix M2

to formalize this observation. First, we build a K-class predictor
f0(x) by assigning each seed region a unique class. f0(x) is trained
by the same procedure as the CNN classifiers in calculating M1,
but reports only the most probable predicted class label rather
than the probability vector of class predictions for each image,
and it is generated once instead of nr times. For each pair (i, k)
of seed regions, we consider a (K − 1)-class predictor fi∪k(x)

merging seed regions i and k in the same class. By comparing
f0(x) with each fi∪k(x), we construct a

(K
2
) × K leakage matrix

Li∪k,j to count the number of data points that are assigned to class
j according to f0(x) and to the combined class i ∪ k according to
fi∪k(x):

Li∪k,j ≡
∣∣∣{x : f0(x) = j, fi∪k(x) = (i ∪ k)}

∣∣∣. (8)

If seed regions i and j share the same true class labels, then a
considerable number of data points will leak from class j in f0(x)

to the combined class i ∪ k in fi∪k(x) for multiple third classes k.
Consequently, on the jth column of L, the high leakage counts
should be enriched in the combined classes containing seed
region i. We quantify this enrichment by comparing two subsets
of L matrix entries on column j. L(Ri, j) denotes the leakage
counts from class j to all merged classes containing seed region
i, and L(R1:K , j) denotes the leakage counts of the entire column
j. We quantify enrichment of high leakage counts in L(Ri, j) by
calculating W(L(Ri, j), L(R1:K , j)), the Wilcoxon rank sum test
(Wilcoxon 1945) of L(Ri, j) against the background L(R1:K , j)),
and its p-value PW(L(Ri,j),L(R1:K ,j)). The leakage score m2

ij becomes:

M2 = [m2
ij] ≡ PW

(
L(Ri,j), L(R1:K ,j)

), (9)

Replacement score M3: Apart from merging seed region pairs
in the same class, we also remove each seed region from the
training data and build (K −1)-class predictors accordingly. The
prediction outcomes of these reduced classifiers readily manifest
similarity between seed regions. After removing a seed region
from the training data, the images originally assigned to the
removed seed region are then reassigned to its most similar
seed regions. Consequently, the replacement score m3

ij is the
fraction of data points that are reassigned from pseudo class i
in the original K-class predictor f0(x) to pseudo class j in the
(K − 1)-class predictor f−i(x) with seed region i removed from
the training data:

M3 = [m3
ij] ≡

∣∣{x : f0(x) = i, f−i(x) = j}∣∣∣∣{x : f0(x) = i}∣∣ . (10)

Confusion score M4: An even simpler way to quantify seed
region similarity without rearranging pseudo labels is to inspect
the confusion matrix in the training data of f0(x). Seed regions i
and j likely share the same true class labels if many seed region
i members are assigned to seed region j by f0(x). Formally, we
define the confusion score matrix M4 as

M4 = [m4
ij] ≡

∣∣{x : x ∈ ri, f0(x) = j}∣∣∣∣{x : x ∈ ri}
∣∣ . (11)

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

2.4. Phase 4: Merging Seed Regions from Pairwise Scores

We propose an algorithm to merge seed regions by using the
four pairwise scores in a hierarchical manner. It consists of
three steps. First, we combine M1 − M4 by calculating their
sums and rank sums, and apply graph-theoretical algorithms
to the combined matrices to subdivide seed regions into a few
coarse-grained components of smaller sizes. Second, for each
component we enumerate all partitions respecting conditions
derived from the pairwise scores, and select the best partition(s)
according to several criteria derived from those pairwise scores.
Third, we refine the selected partitions by identifying potential
singletons, seed regions which likely possess class labels distinct
from all others. Below, we elaborate on each step of its algorithm.
The hyperparameters of the Phase 4 algorithm and their default
values are explained in supplementary Text S1.

2.4.1. Subdividing Seed Regions into Coarse-Grained
Components

The first step is to subdivide the seed regions into a few coarse-
grained components so that the inter-component members are
unlikely to share the same underlying class labels. To do so,
we convert the nonnegative valued M1 − M4 matrices into a
binary symmetric matrix Gs specifying potentially mergeable
relationship. Gs(i, j) = 1 if seed regions i and j potentially share
the same underlying class labels. The connected components of
Gs constitute the outputs of this step.

We construct Gs using three criteria derived from the pair-
wise scores. First, two seed regions are adjacent if members of
one seed region tend to be confused for the other seed region in
CNN predictions according to M4. Second, we rank-transform
M1 − M3 of each row separately, add their ranks to form the
reduced rank scores Mr , and make Gs(i, j) = Gs(j, i) = 1 if
i and j are on the top nτ (nτ = 3 in our setting) partners of
each other in Mr . Third, we complement the second criterion
by taking the values of M1 − M3 scores into account beyond
their ranks. We construct another reduced sum score matrix
W, where w(i, j) = m1(i, j) + − log(m2(i,j)+ 1

nperms)

log(nperms)
+ m3(i, j),

and nperms denotes the number of random permutations for the
Wilcoxon rank sum test (100,000 in our setting). We then apply
a variation of the spectral clustering algorithm (Ng, Jordan, and
Weiss 2002) to W and add links between members within the
same clusters to Gs. The connected components of the modified
Gs graph are the outputs of step 1. The procedure for generating
the coarse-grained components is described in Algorithm 2 in
supplementary text S1.

2.4.2. Identifying Optimal Partitions of Coarse-Grained
Components

The coarse-grained components separate the seed regions that
unlikely share the same underlying class labels, yet they do
not possess sufficient resolution to delineate the seed regions
of distinct class labels. In the second step, we enumerate all
unique and valid partitions of each coarse-grained component
by introducing additional constraints. Then, we propose several
scores and apply them to narrow down the valid partitions.
The outputs of this step are the refined partitions of all coarse-
grained components.

Gs specifies mergeable relationships between pairs of seed
regions. To complement Gs we construct another matrix Gr of
“repulsive relationships” of seed region pairs. Gr(i, j) = 1 if
m2(i, j), the p-value of the leakage score, exceeds a threshold
value (θp = 0.2 in our setting). For each coarse-grained com-
ponent, we enumerate all unique partitions and narrow down
the valid partitions by introducing two additional constraints
pertaining to Gr . First, no two repulsive seed regions could be
assigned to the same cluster. Second, if two seed regions are
assigned to the same cluster, then they are connected by at least
one shortest path in Gs, such that all seed regions along the
path are assigned to the same cluster and comprise no repulsive
relations.

The resulting valid partitions are all compatible with the
mergeable and repulsive relations Gs and Gr but may be too
numerous to report in the final output. We reduce the number
of valid partitions to just a few by introducing several metrics
for the quality of valid partitions. Intuitively, a good partition
should possess two properties: (a) intra-cluster seed region pairs
are generally more similar than inter-cluster pairs in terms of
reduced rank and sum score matrices Mr and W; and (b) it
prefers a few large clusters to many small clusters.

We quantify property 1 for each valid partition by check-
ing whether the top-ranking entries in Mr and W matrices
are enriched with intra-cluster links. For Mr , we sort the off-
diagonal entries in increasing order and assign each entry a
binary indicator for intra-cluster links. Then we construct a step
function y(x) of the rank of the sorted entries x, and y(x) counts
the number of intra-cluster links among the top x entries. Strong
enrichment of intra-cluster pairs among the top entries would
rapidly increase the value of y(x). Thus, the enrichment score ζ1
is the difference between areas under y(x) and a linear function
y0(x) connecting the (0, 0) and (xmax, y(xmax)). The enrichment
score ζ2 of W is constructed analogously by sorting the entries in
decreasing order. The joint enrichment score is ζ = ζ1+ζ2. This
enrichment score is derived from Gene Set Enrichment Analysis
(GSEA) commonly used in bioinformatics (Subramanian et al.
2005).

Given the enrichment scores and the selection criteria we
choose a valid partition based on the following procedure. First,
we find all valid partitions with the minimum number of isolated
seed regions. Among the selected partitions, we select the ones
with the maximum enrichment score ζ . If multiple partitions
remain, then we choose the ones that maximizes the size of
the smallest cluster in the partition. The procedure for step 2 is
described in Algorithm 3 in supplementary Text S1.

2.4.3. Identifying Singletons and Refining the Partitions
Accordingly

The partitions generated by steps 1–2 (Algorithms 2 and 3 in
supplementary Text S1) disfavor singletons because the par-
simony criterion prefers the partitions with smaller numbers
of clusters. In step 3, we propose a procedure to identify the
potential singletons and to refine the partitions accordingly.

If the marker information of the fixed embedding is not used
to merge seed regions, then we repeat Algorithm 3 in supple-
mentary Text S1 for each cluster induced from the reported
partitions. In each cluster, we enumerate all valid subpartitions

8 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

with the same procedure for step 2. For each subpartition, we
identify the seed region pairs within the same subclusters and
assign their sum of the W entries as the subpartition score. We
then retain only the valid subpartitions with the maximal score.
A seed region is labeled as a singleton if it is isolated in all the
valid subpartitions.

If the marker information of the fixed embedding is used to
merge seed regions, then we find singletons by checking whether
each seed region possesses a substantial number of markers
distinguishing it from all other seed regions. More concretely,
for each ordered pair of seed regions (i, j) and each feature
k of the embedded data, we extract the members of regions
ri and rj and their feature k values X(k, ri) and X(k, rj). We
employ a previously proposed statistic pdiff (i, j, k) (Tiong et al.
2022) in Algorithm 4 in supplementary Text S1 to quantify the
difference between the distributions of X(k, ri) and X(k, rj). A
high pdiff (i, j, k) denotes that feature k has significantly higher
values in seed region i than in seed region j. Feature k is a
singleton marker of seed region i if: (1) pdiff (i, j, k) exceeds a
threshold value for each j 	= i; and (2) the median of X(k, ri)
is within a top percentile of all feature k values. Finally, a seed
region is labeled as a singleton if its number of singleton markers
exceeds a threshold.

2.5. Phase 5: Expanding Training Data and Clustering
Images

After Phase 4, each seed region is assigned to a pseudo label.
Hence, the clustering challenge is transformed into a classifica-
tion problem that can be solved using CNN algorithms. CNNs
require a relatively large training set, but the initial training data
induced by seed regions is usually small. Therefore, we iteratively
expand the training data by including other regions that give
homogeneous prediction labels. For each iteration, we train 5
CNN classifiers with the same training data and report the
consensus labels of the five prediction outcomes for all images
(−1 if no consensus labels exist). To justify the choice of running
the CNN classifiers on the same training data five times, we
varied the number of CNN rounds from 1 to 15 and reported the
fractions of images with consensus predictions in a subset of the
“PlantVillage” dataset in supplementary Table S2. The fraction
of images with consensus labels declines with the number of
CNN rounds, yet the rate of decline is quite mild. We found that
84% of the images have consensus labels in 15 CNN rounds. We
chose the 5 CNN rounds as it was in the first relatively stable
regime. The difference in consensus rates between consecutive
CNN rounds, as shown in column 3 of supplementary Table S2,
drops below 0.006 when the number of CNN rounds exceeds 5,
whereas the difference varies between 0.008 and 0.06 for fewer
rounds.

For each region outside the training data, we count the frac-
tion of members possessing the dominant (the most frequent)
prediction labels. If the fraction of these members exceeds
a threshold value, then this region can be more confidently
included in the training data. Consequently, we select the
regions with homogeneous prediction labels, and add their
members with the dominant prediction labels to the training
data for the CNN predictions in the next iteration. Iterations

continue until no additional training data are included. The
cluster assignments represent the final classification outcomes.
Images without consensus predicted class labels are not assigned
to any cluster.

The expansion procedure subdivides regions into two groups
according to the criterion whether a region is included in the
training data or not. Regions that are included in the training
data possess homogeneous prediction labels across their mem-
bers. We mark their members with the dominant prediction
labels “clean” images. All other images (including the mem-
bers of regions with heterogeneous prediction labels and mem-
bers of regions with homogeneous prediction labels but that
are assigned to nondominant labels) are marked as “unclean”
images. We elaborate further on the importance of prediction
homogeneity in the Results section. The iterative expansion
algorithm is described in Algorithm 5 in supplementary Text S1.

Note that we have slightly modified the Phase 2 algorithm
and substantially modified the Phase 4 algorithms compared
to the previous version (Chen, Tiong, and Yeang 2022). In
the previous ME framework, we added a procedure in Phase
2 to filter out periphery members of regions using their sil-
houette values, which has been excluded from the procedure
described herein. Although the formulas of the three pairwise
scores (M1 − M3) remain intact (Phase 3), the current version
of the Phase 4 algorithm incorporates more information about
pairwise scores, yet is simpler in terms of its procedures and
the numbers of hyperparameters. In the previous version, the
coarse-grained components were connected components of a
graph Gs in which edges denoted seed region pairs with top-
ranking pairwise scores with respect to each other. In the current
version, apart from the rankings we also considered the mag-
nitudes of the pairwise scores when constructing Gs. To avoid
imposing threshold values on the pairwise scores, we employed
spectral clustering to the weight matrix W constructed by sum-
ming over the three pairwise scores, and then connected seed
regions belonging to the same spectral clusters. In the previous
version, we deployed a sequence of filters to select one remaining
partition after enumerating all valid partitions of seed regions.
In the current version, we quantify the strength of a valid parti-
tion based on the enrichment of intra-component pairs among
the top-ranking pairs of the pairwise scores, and identify the
partitions with the highest enrichment scores. In the previous
version, we uncovered the seed region pairs with contradictory
information about proximity (i.e., they were nearest neighbors in
the embedded data but were assigned to different components
according to the CNN prediction outcomes), and selected one
member as a singleton. In the modified version, we apply the
partition-finding algorithm (Algorithm 3 in supplementary Text
S1) again to each component of a valid partition and identify the
singletons from the subpartitions.

3. Results

We have validated our improved ME framework on five datasets,
and conducted several analyses to justify its utility in clustering
images and to specify clustering quality for different subsets
of images. We found that clustering outcomes were robust for
various hyperparameters at Phases 1, 2, and 4. Next, we assessed

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

Table 1. Details of the five assessed datasets and their characteristics.

Dataset Size Raw pixels Embedded vector Classes

MNIST 55,000 28 × 28 1 × 3 10
CIFAR-10 60,000 32 × 32 1 × 1000 10
NCT 100,000 224 × 224 1 × 1000 9
PlantVillage 43,217 256 × 256 1 × 1000 9
RVL 50,000 1000 × 750 1 × 1000 10

NOTE: The embedded vector refers to the fixed embedded vector size. For experimental convenience, we reduced the PlantVillage dataset from 54,303 to 43,217 images
and the number of classes from 38 to 9. We also reduced the RVL dataset from 440,000 to 50,000 images and the number of classes from 16 to 10.

Table 2. Time complexity and actual running time of each phase of the ME frame-
work for the PlantVillage dataset. Numbers within parentheses denote the running
times for the original ME framework (Chen, Tiong, and Yeang 2022). n: number of
images; r: total number of regions; K : number of seed regions; l: maximum size of
coarse-grained components in Phase 4; m: size of each (raw or embedded) image;
T : maximum number of epochs in training CNNs.

Phase Time complexity Running time

1 O(n3) 7 hr
2 O(mn2) 1.5 hr (2.47 hr)
3 O(K2nmT) 4 hr
4 O(ll) 30 sec (1 min)
5 O(nmT) 30 min

heterogeneity of predicted class labels in all regions, labeling
them as “clean” and “unclean” regions accordingly. The dras-
tically different clustering accuracy between these clean and
unclean regions highlights a major benefit of our algorithm. We
modified the ME framework by employing a second embedding
to expand the clean regions and improve clustering accuracy.
We further examined the embedded data of the merged seed
regions in two datasets, pointing out the sources of confusion
in their clustering outcomes. Finally, we compared the cluster-
ing accuracy of our ME framework with a number of baseline
and state-of-the-art methods, demonstrating that ME performs
better or at least competitively against all these methods. In
Table 1, we summarize the size and dimensionality of the five
datasets encompassing various application domains. MNIST
consists of images of ten handwritten digits (LeCun, Cortes,
and Burges 2021). CIFAR-10 consists of color images of ten
object classes, including several types of animals and artifacts
(CIFAR-10 2021). NCT comprises the microscopic images of
nine cell types from colorectal cancer tissues (Kather, Halama,
and Marx 2018). PlantVillage consists of images of crop plant
leaves with infectious diseases (Hughes and Salathé 2015), from
which we selected 43,217 images from nine crops species. The
RVL dataset harbors grayscale images of 16 types of documents
(Harley, Ufkes, and Derpanis 2015), from which we selected
50,000 images of ten document classes.

Our computing environment comprised a Dell Precision
Tower 7910 featuring an x64-based “Intel®Xeon®CPU E5-2667
v4 3.20 GHz” processor with 256 GB RAM, and an NVIDIA
GPU “Quadro P4000” graphics card. In Table 2, we present
crude estimates of time complexity for each phase of the ME
framework and actual running times on the PlantVillage dataset.
Time complexity is dependent on the bottleneck procedures
at each phase: spectral clustering for Phase 1, evaluation of
average distances between region pairs for Phase 2, training
the CNN models for combinations of seed region pseudo labels
for Phase 3, enumerating all valid partitions of coarse-grained

components for Phase 4, and training and applying CNNs
to a relatively small number of iterations for Phase 5. The
procedures in Phases 1 and 3 are the most time-consuming
given that spectral clustering and training CNNs O(K2) times
are computationally expensive. Our original ME algorithms
differ from those in the revised ME framework only for Phases 2
and 4. The previous Phase 2 algorithm requires about twice the
running time of the current Phase 2 algorithm since calculating
silhouette values also entails a time complexity O(mn2).

3.1. Robustness Analysis

First, we show that the ME clustering outcomes were robust for
variations of hyperparameter values in the algorithms. The sole
hyperparameter in Phase 1 is the number of regions generated
by spectral clustering. We split the data into 150, 200, and 250
regions and present the clustering outcomes from ME prediction
according to two criteria (Table 3(a)). The “consensus” criterion
(ACC5con) assigns an image to the consensus predicted label
if it exists and an unspecified mark otherwise. The “majority”
criterion (ACCmaj) reports the majority of the predicted labels
of every image.

To evaluate clustering accuracy, we generated a confusion
matrix C of CNN predictions where C (i, j) represents the num-
ber of images with true class label i and predicted class label j. We
then aligned the true and predicted labels by permuting columns
of C to maximize the sum of diagonal entries. The accuracy rate
is represented by the ratio of the sum of diagonal entries and the
sum of all entries in the permuted C .

In Table 3(a), we report the clustering accuracy rates of the
MNIST and CIFAR-10 datasets for varying numbers of regions
(K250, K200, K150) and two prediction criteria. The accuracy
rates remain stable (difference of approximately 3% or less)
across the numbers of seed regions for each dataset and predic-
tion criterion. In those three region sets (K250, K200, K150), the
accuracy rates for consensus predictions are moderately higher
than the majority predictions since the former is restricted to
the images with reliable predicted labels. However, the price for
a higher accuracy rate is a smaller coverage of valid predictions.
In the subsequent analyses, we set the number of regions to 200.

Most of the other hyperparameters occur in Phases 2 and 4.
Due to the computational costs of running “global robustness
tests” (e.g., varying parameter values and assessing clustering
accuracy rates as shown in Table 3(a)), we applied “local robust-
ness tests” for each hyperparameter separately. For each hyper-
parameter of interest, we varied its value while keeping default
values for all other hyperparameters. We reported the outputs
of the corresponding phase (seed region indices for Phase 2

10 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

Table 3. (a) Clustering accuracy rates of MNIST and CIFAR-10 data for three sets of regions (K150, K200, K250) according to two prediction criteria (ACC5con , ACCmaj).

Dataset Number of regions Accuracy

ACC5con ACCmaj

MNIST
K250 0.977 (48844) 0.937
K200 0.989 (50089) 0.964
K150 0.941 (49157) 0.904

CIFAR-10
K250 0.599 (47883) 0.554
K200 0.628 (51262) 0.586
K150 0.604 (46705) 0.556

(a) Clustering accuracy rates for three sets of regions (K150, K200, K250)

Phase Parameter Mean/Std Phase Parameter Mean/Std

2 maxnseeds (Nt) 0.749/0.172 4 prednumthre 0.991/0.011
2 diffratiothre (θd) 0.640/0.233 4 pvalthre (θp) 0.982/0.019
2 rthre (θJ) 0.629/0.318 4 ntoprankthre (nτ) 0.984/0.017
2 nclassesthre 1/0 4 smallclustersizethre 1/0
2 ratiothre (θr) 1/0 4 jumpfoldthre 1/0
2 foldthre 1/0 4 gapfoldthre (rγ) 1/0
4 sizethre (θS) 1/0 4 smallratiothre 1/0
4 confusionratiothre (θc) 1/0 4 reducedrankscorethre 0.976/0.018

(b) Local robustness test results

NOTE: The numbers of images reported by the five-consensus predictions (ACC5con) are also reported in parentheses. For example, an accuracy 0.977 for the 48,844
five-consensus images implies that approximately 47,720 images are correctly clustered. (b) Local robustness test results on the 16 hyperparameters of Phases 2 and
4 algorithms, represented by the mean and standard deviation of the similarity matrices.

Table 4. Accuracy results for clean and unclean images achieved by the ME framework.

Dataset ACC5con Clean Unclean ACCmaj

MNIST 0.989 0.973 (50721) 0.039 (4279) 0.964
CIFAR-10 0.628 0.756 (26236) 0.367 (33764) 0.586
NCT 0.789 0.871 (66083) 0.399 (32484) 0.749
PlantVillage 0.730 0.829 (27438) 0.214 (15779) 0.646
RVL 0.580 0.624 (36191) 0.193 (13809) 0.543

NOTE: CIFAR-10 refers to the CIFAR-10 embedded data generated by VGG-16. NCT, PlantVillage and RVL refer to the embedded data generated by ResNet-18. The numbers
of clean and unclean images reported according to the ACC5con criterion are also shown in the parentheses. For example, there are 50,721 clean images in the MNIST
dataset, and an accuracy of 0.973 indicates that 49,352 of them are correctly clustered.

and seed region partitions for Phase 4), and compared the
similarities of these outputs (Jaccard similarity scores for Phase
2 outputs and Rand Indices for Phase 4 outputs). Furthermore,
for each hyperparameter, we generated a similarity matrix by
comparing the outputs of pairs of hyperparameter values. In
Table 3(b), we present the summary statistics of the similarity
matrices for six hyperparameters in Phase 2 and 10 hyper-
parameters in Phase 4 of the PlantVillage dataset. The com-
plete similarity matrices of these hyperparametrs are reported
in supplementary Table S3. Among the six Phase 2 hyperpa-
rameters, maxnseeds, diffratiothrevals and rthre have relatively
higher fluctuations in their similarity matrices (mean/standard
deviation of 0.749/0.172, 0.640/0.233, and 0.639/0.318, respec-
tively), but the similarities centered on their default values are
relatively stable. The remaining three hyperparameters display
perfect similarities (mean/standard deviation of 1/0) among all
values considered. Among the ten Phase 4 hyperparameters, six
exhibited hyperparameters have perfect similarities among all
values considered and the remaining four present non-perfect
but still strong similarities among all values considered. For
instance, mean and standard deviation of the similarity matrix
for pvalthre are 0.982 and 0.019, respectively. Consequently,
ME outputs are robust to variations in hyperparameter values.
We have fixed the values of parameters presenting perfect local
robustness in the source code of the ME program, and allowed
users to vary the remaining parameter values. In the current

setting, for each hyperparameter, we identified the range of
values which gave rise to similar clustering outcomes. The value
with the largest range of robust values was selected. Similar
approaches for determining hyperparameter values have been
adopted in several major image clustering algorithms using deep
neural networks, such as IIC (Ji, Henriques, and Vedaldi 2019),
SCAN (Van Gansbeke et al. 2020), and TSUC (Han et al. 2020)

3.2. Heterogeneity of Predicted Labels Across Regions

A unique feature of our ME framework is how it demarcates
embedded images in terms of heterogeneity of predicted class
labels. A region is marked clean if the fraction of the members
assigned to the dominant predicted label exceeds a threshold
value, and marked unclean otherwise. Members of clean regions
with the dominant predicted labels are marked clean and other-
wise unclean. Intriguingly, the clustering accuracy rates between
clean and unclean regions are drastically different in all five
datasets we assessed, as shown in Table 4. For the MNIST
data, only a small number of images are unclean and have near
zero accuracy rates, whereas the vast majority of images are
clean and have near perfect accuracy rates. For the remaining
datasets, accuracy rates for clean images are approximately 2–4
fold those of unclean images, but there are substantial numbers
of unclean images, ranging from 30% to 60% of the datasets.
Therefore, the majority of clustering errors occur in unclean
regions.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 11

Figure 5. Distributions of the number of consistent labels among ten nearest neighbors.

We suspected that the unclean regions with heterogeneous
predicted labels were error-prone due to the incongruence
between the geometry of the embedded data and their true
cluster structure. To substantiate this speculation, we demon-
strated that members in clean regions were more likely to share
the same true class labels with their nearest neighbors than
unclean regions. For each image, we counted the fraction of
its ten nearest neighbors in the embedded space having the
same true class label, and then calculated the distributions of the
consistent neighbor counts (from 0 to 10) in the entire dataset,
clean image subset, and unclean image subset. In Figure 5, we
show that a considerably higher fraction of clean images tend to
have higher numbers of consistent neighbors. In the CIFAR-10
dataset with VGG-16 embedding, 37% of clean images share
the same true class labels with all 10 of their nearest neighbors,
but only 18% of unclean images do so. The difference in image
counts with consistent neighbors between clean and unclean
images is slightly lower but still substantial for the NCT dataset
with ResNet-18 embedding (79% vs. 50%). The distinction in
distributions between clean and unclean regions is also apparent
for the PlantVillage and RVL datasets.

3.3. Improving Clustering Accuracy via a Second
Embedding

The close links between heterogeneity and the accuracy of pre-
dicted labels indicate a potential means of improving clustering

accuracy. Since the accuracy rates of clean images far exceed
those of unclean images, we could potentially improve the accu-
racy of our ME framework by converting some unclean regions
into clean ones. As previously mentioned, the geometry of the
embedded data in unclean regions is misaligned with the under-
lying cluster structure. Thus, applying another embedding to the
same image data may reshape their geometry to better align with
the underlying cluster structure. Consequently, we targeted the
unclean regions of the first embedding and attempted to clean
some of them in a second embedding. More concretely, first we
applied the ME framework to the first embedded data to iden-
tify clean and unclean regions and images. Then we retrained
the CNN with the second embedded data of the clean images
and reapplied Phase 5 to predict the pseudo class labels of the
unclean images, allowing us to identify unclean regions, which
became clean in the second embedding. We term these regions
“unclean-clean” since they are unclean and then clean in the first
and second embeddings, respectively. Analogously, “unclean-
unclean” regions are unclean in both embeddings. Finally, we
added the unclean-clean images to the training data of the
second embedding and classified all images accordingly.

In Figure 6, we display summary statistics in the process
of combining two embeddings in two datasets. For CIFAR-
10, we first applied VGG-16 and then ResNet-18 embeddings
to the data, generating 103 clean regions and 1 unclean-clean
region. For RVL, we first applied ResNet-18 and then VGG-
16 embeddings to the data, resulting in 136 clean regions
and 2 unclean-clean regions. Clustering accuracy rates were

12 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

Figure 6. Integration of two embedded datasets enables the ME framework to distinguish more clean images.

Table 5. Overall accuracy rates (based on the majority criterion) for various clustering algorithms and ME frameworks.

Method MNIST CIFAR-10 NCT PlantVillage RVL

K-means 0.572/0.733 0.229/0.527 0.367/0.572 0.218/0.466 0.192/0.308
SPECTRAL CLT 0.696/0.966 0.247/0.598 0.417/0.628 0.248/0.541 0.228/0.339
Triplets 0.525 0.205 N/A N/A N/A
AE 0.812 0.314 N/A N/A N/A
GAN2015 0.828 0.315 N/A N/A N/A
JULE2016 0.964 0.272 N/A N/A N/A
DEC2016 0.843 0.301 N/A N/A N/A
DAC2017 0.978 0.522 N/A N/A N/A
DEEP CLT2018 0.656 0.374 N/A N/A N/A
ADC2018 0.992 0.325 N/A N/A N/A
IIC 0.984 0.576 N/A N/A N/A
SCAN N/A 0.883 0.908 0.922 0.804
TSUC N/A 0.810 0.738 0.684 0.526
ME 0.964 0.586 0.749 0.646 0.543
ME second embedded data N/A 0.610 0.761 0.645 0.621

NOTE: For k-means and spectral clustering, accuracy rates on raw data or embedded data are presented as “raw data/embedded data.”For the MNIST dataset, its embedded
data was encoded by t-SNE. For the remaining datasets, the embedding data was encoded using either VGG-16 (CIFAR-10) or ResNet-18 (others). Accuracy rates were
calculated by running the corresponding methods of the top two and bottom four rows on the five datasets and copied from (Ji, Henriques, and Vedaldi 2019),
(Van Gansbeke et al. 2020), and (Han et al. 2020) for other methods on the MNIST and CIFAR-10 datasets. The values of SCAN and TSUC on the CIFAR-10 dataset were also
copied from prior studies. Missing entries denote either the respectively programs were unavailable or unnecessary to run advanced clustering algorithms on the MNIST
dataset.

marginally improved by introducing the second embedding
(the last two rows in Table 5). Only a few unclean regions were
cleaned by the second embedding, since the two embedding
models are trained on the same ImageNet data.

3.4. Sources of Confusion in the CIFAR-10 and NCT
Datasets

Clustering errors arise primarily in Phase 4 when seed regions
are merged to determine pseudo labels, with seed regions hav-
ing different true class labels potentially being merged or seed
regions with identical true class labels being assigned to distinct
pseudo labels. The effects of such confusion are amplified over
subsequent steps, as additional training data are incorporated
according to the initial assignments of merged seed regions. It
is difficult to deduce general rules about how such confusion
occurs. We inspected the t-SNE projections of the merged seed
regions in CIFAR-10 and NCT data and provide intuitive expla-
nations for how confusion arose from these two specific datasets.

First, we visualized the merged seed regions of CIFAR-10
dataset in Figure 7. The three-dimensional t-SNE projections of

26 seed region members are colored according to their dominant
true class labels. Confusion is apparent for two merged pseudo
label classes. In the upper-left corner, one seed region of images
of horses (gray) coalesces with two seed regions of deer (purple).
In the lower-central corner, two seed regions of airplanes (blue)
coalesce with two seed regions of ships (yellow–green). All other
merged seed regions possess identical dominant true class labels.
These two types of confusion are intuitive, as horses and deer
display similar physical builds and sometimes the same body
color, and airplanes and ships have similar streamlined shapes
and background blue hues of sky and sea.

Next, we visualized 16 merged seed regions of NCT dataset
in Figure 8. Representative thumbnails of all seed regions are
illustrated since tissue structures may not be easily interpreted
from their annotations. The only area of confusion is on the
middle-left portion of the plot where the seed region of cancer-
associated stroma (STR, gray) is merged with one seed region of
smooth muscle (MUS, brown), and this latter is separated from
another MUS seed region. The stromal images indeed resemble
the images of smooth muscle images in the upper seed region in
terms of their textures. In contrast, the smooth muscle images of

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 13

Figure 7. t-SNE projections of members from 26 seed regions in the CIFAR-10 embedded data. Colors denote the dominant true class labels of the seed regions they belong
to. Numbers alongside the colored bar indicate the numbers of dominant seed regions. Centroids of seed regions are connected by solid lines if they are merged together
in Phase 4. The erroneously merged seed regions are annotated by the representative thumbnail images.

the lower seed region are distinct from those of the upper seed
region as they are quite distinctly colored and fibrous. All of the
remaining merged seed regions share the same tissue class labels
and texture characteristics.

3.5. Accuracy of Clustering Results

Finally, we compared the accuracy rates of our ME frame-
work(using the majority criterion) against 13 other clustering
methods across five datasets in Table 5. We found that SCAN
outperforms other methods across four of the datasets (MNIST
was excluded for SCAN and TSUC since it was an easy task
for most of the clustering methods). The next best algorithms
include TSUC, the original ME framework and the revised ME
with the second embedding (presented herein). The two ME
algorithms proved superior to TSUC for the NCT and RVL
datasets, yet inferior to TSUC for the CIFAR-10 and PlantVillage
datasets. The two baseline methods (k-means and spectral clus-
tering) generally performed worse than SCAN, TSUC and both
ME approaches, though spectral clustering with the selected
fixed embeddings yielded comparable performance to the ME
approach on the MNIST and CIFAR-10 datasets. The accu-
racy rates for the other methods on MNIST and CIFAR-10 are
mostly comparable or inferior to the top-tier algorithms and the
baseline algorithms with fixed embeddings. Although the ME
approaches do not outperform all benchmark methods, they do

yield comparable or even superior performance relative to some
state-of-the-art self-supervised learning algorithms (TSUC and
IIC). This outcome is remarkable given the rigid constraints
(fixed embedding, a simple CNN architecture, a common loss
function) of the ME frameworks.

In addition to accuracy rates, we also assessed the quality of
clustering by the Rand index (Rand 1971), which determines
the fraction of data point pairs accurately assigned to identical
or different clusters. In Table 6, we report the Rand indices
for the clustering results by the two conventional clustering
methods and the two ME approaches. The Rand index values
were higher than the accuracy rates, yet their respectively orders
on different methods and datasets were generally congruent.
The Rand indices of other methods were not available as their
clustering labels were not provided. For instance, the SCAN and
TSUC packages only report overall accuracy rates rather than
the cluster labels of individual images.

4. Discussion

In this study, we presented a more complete and extended ver-
sion of the Merge & Expand framework to cluster image data
with a fixed embedding, and have conducted a more thorough
experimental analysis to justify its utility. First, we demonstrate
that the clustering outcomes are robust against varying values
of hyperparameters deployed in the ME framework. Then, after

14 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

Figure 8. t-SNE projections of members from 16 seed regions in NCT embedded data. Colors and representative thumbnail images are similarly presented as in Figure 7.
The nine class labels are: adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-
associated stroma (STR), and colorectal adenocarcinoma epithelium (TUM).

Table 6. Rand index values of two conventional clustering algorithms and ME frameworks.

Method MNIST CIFAR-10 NCT PlantVillage RVL

K-means 0.872/0.914 0.823/0.877 0.801/0.876 0.769/0.733 0.817/0.811
SPECTRAL CLT 0.905/0.987 0.821/0.882 0.827/0.845 0.752/0.863 0.818/0.826
ME 0.984 0.872 0.907 0.882 0.879
ME second embedded data N/A 0.878 0.912 0.881 0.893

NOTE: The Rand Index is a similarity score ranging from 0 to 1, inclusive, where 1 represents a perfect match.

assessing heterogeneity of predicted labels in each region, we
show that it is a strong indicator of alignment between the
geometry of the embedded space and the underlying cluster
structure, denoting regions as being “clean” or “unclean” accord-
ingly. Consequently, we modified ME framework by introducing
a second embedding to “clean” the unclean regions and improve
clustering accuracy. A major source of clustering error is the
confusion in merging seed regions. We examined the projections
of the merged seed region members and their representative
images in the CIFAR-10 and NCT datasets and provide intuitive
explanations for the discrepancies. Finally, we have evaluated the
clustering accuracy rates of several algorithms on five datasets
and found our enhanced ME framework performed competi-
tively despite using a fixed embedding, a simple CNN architec-
ture, and a common loss function.

A major source of errors in the ME algorithm is the erroneous
assignment of pseudo labels in the training data. Since the true
class labels of images are not used in clustering, we alleviate this
problem through several indirect approaches. First, we attempt
to prune the peripheral members of a region that may possess
distinct class labels from the majority of members in that region.
We elaborate on this procedure in Phase 1 and Figure 2. Periph-
eral members of a region are images that differ from the majority
either in the entire embedding space or in selected markers.
Second, in Phases 2–4, we establish the initial training data,
where each merged seed region represents a unique class. Third,
in Phase 5, we iteratively incorporate regions with homogeneous
predicted class labels in the training data. Thus, in a general
sense, all five phases consist of procedures designed to handle
noise and outliers.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 15

A major issue for self-supervised learning algorithms is
misalignment between the geometry of the embedded data
and their underlying cluster structure. We tackled this issue
by two approaches. First, we found that heterogeneity of
predicted labels in a neighborhood of the embedded space was
informative about the clustering quality, and used this outcome
to demarcate the regions with good or poor alignments between
the embedded space and cluster structure. Second, we modified
our ME framework by introducing a second embedding to
recognize regions that had heterogeneous predicted class labels
in the first embedding and homogeneous predicted class labels
in the second embedding. These so-called “unclean-clean”
regions are likely to be accurately clustered in the second
embedding. In our experimental analysis, these unclean-clean
regions did display improved clustering accuracy but were
scarce in the data. Hence, the overall improvement in clustering
accuracy was limited. We suspect that this limited improvement
is attributed to the strong dependency of the two embedding
models in our experiments. Both embedding models—VGG-
16 and ResNet-18—were trained on the same ImageNet dataset.
Hence, the geometry of the embedded data from these models is
very similar, so the second embedding only marginally improves
the clustering accuracy. An optimal second embedding model
should capture orthogonal features from the first model, thereby
clustering images that are distinct in the first embedding. In
principle, we could substantially improve clustering accuracy
with fixed embeddings if multiple distinct DNN models pre-
trained on distinct large datasets were applied.

Heterogeneity is a natural factor that is difficult to avoid
and affects clustering outcomes. The unique feature of our ME
framework is that it demarcates embedded images into clean
and unclean regions based on heterogeneity. This is the key idea
behind the development of the ME framework. Furthermore, we
introduced a second embedding to select the subtle clean images
from the unclean images identified in the first embedding. We
summarize the logical flow of how we leverage the heterogeneity
of predicted labels to improve clustering accuracy. First, we
acknowledge that clean regions, characterized by homogeneous
predicted labels, have much higher clustering accuracy than
unclean regions, which are characterized by heterogeneous pre-
dicted labels, as shown in Section 3.2. Second, we aim to improve
clustering accuracy by converting some unclean regions into
clean regions through the introduction of a second embedding,
as detailed in Section 3.3. Specifically, we select images from the
clean regions of the first embedding and then use the second
embedding, training on the clean regions, to further classify
the unclean regions into clean ones. Third, we incorporate the
regions that become clean in the second embedding into the
training data to enhance the clustering of images. Fourth, this
procedure moderately improves clustering accuracy, as shown in
Figure 6. We discussed that the second embedding in our exper-
iment yields limited improvement in clustering accuracy since
the two embedding models are trained on the same ImageNet
data.

As mentioned in our Introduction, a fixed embedding is
beneficial or essential when the raw data are inaccessible for
privacy or security concerns, but did not explicitly show how
privacy could be preserved in the deep learning setting through
the fixed embedding experimental analysis. Here, we discuss

possible integration of the privacy preservation techniques with
the ME framework. Privacy is an important issue, especially
when multiple participants collaborate in certain deep learning
tasks but do not want to reveal their own data to others. Since
the participants wish to collaborate but may not necessarily trust
each other, there is a tradeoff between the model performance
and the extent of information sharing. In a review paper, Antwi-
Boasiako et al. (2021) assessed various distributed deep learning
techniques and classified them into two major categories. For
direct methods, participants share their data to a central server,
and the server builds a global model from the joint data from
all participants. To avoid revealing privacy information, partici-
pants apply certain privacy preservation operations to the raw
data before sending them to the server. Common techniques
include differential privacy and homomorphic encryption. The
former method injects random noise into the data such that
the output of the algorithm cannot reveal the private informa-
tion of the input. The latter method encrypts the data to erase
private information but also enables invariant under common
mathematical operations such as addition and multiplication.
For indirect methods, participants do not share their data to the
server. Instead, each participant trains a local model with her/his
own data and sends the weights or gradients of the model to the
server. The server aggregates the local weights/gradients to build
a global model and then sends the global weights/gradients to all
participants to update their local models. Direct methods can
be viewed as a special case of fixed embedding. The differential
privacy or homomorphic encryption operations are predefined
functions to protect privacy/security rather than being tuned
to fit a machine learning task. Therefore, our ME framework
is applicable to the direct methods. In our experimental anal-
ysis, all of the datasets underwent transformations, rendering it
difficult to convert the embeddings back to the raw images. In
an extreme case, the MNIST images had been projected by t-
SNE onto 3D vectors, but the clustering results on the projected
data were still almost perfect. Like other fixed embeddings, the
geometry of the encrypted data is not necessarily aligned with
the cluster structure of the raw data. Our ME framework marks
the clean/unclean regions, thereby indicating the quality of the
alignment. Nevertheless, designing an encryption operation that
simultaneously preserves the cluster structure and erases privacy
information remains a considerable challenge.

The four pairwise scores have their pros and cons. The main
advantage of M1 (co-contribution) is the computational effi-
ciency. Without exhausting combinations of seed regions for
classifications one only need to incur a K-class CNN classifier
(K denotes the number of seed regions) five times and report
the relative contributions from last layer neurons. The main
disadvantage is that it is tied to neural network models and
does not apply to other types of classifiers (k-NN, SVM, logistic
regression, etc). The main advantage of M2 (leakage) is the
statistical power in quantifying the similarity of each pair of seed
regions. Similarity of a seed region pair (i,j) is determined by
the leakage from j to the merged classes of i and each of the
remaining seed regions k, and the same operation by swapping i
and j. Furthermore, the M2 score is represented by the Wilcoxin
rank sum p-value, hence, M2 can better filter out dissimilar seed
region pairs with insignificant p-values. The main disadvan-
tage is the computational cost to perform CNN predictions by

16 Y.-B. CHEN, K.-L. TIONG, AND C.-H. YEANG

merging each pair of seed regions. The main advantage of M3

(replacement) is the complement of the disadvantages of M1 and
M2. M3 in principle can be applied to any multi-class classifiers
(in contrast to the shortcoming of M1), and the computational
cost is substantially lower than M2 (the number of replacements
is linear to the number of seed regions compared to the number
of pairwise merges which is quadratic). M4 (confusion) serves
primarily as a sanity check to remove the seed regions which
have high training errors. The computational bottleneck is on
M2 as it incurs

(K
2
)

CNN predictors.
Apart from incorporating multiple fixed embeddings, our

ME framework can be extended in multiple directions. First,
the pairwise scores of seed regions are currently generated by
applying CNN to all pairwise combinations (M2) and single-
ton removals (M3) of seed regions. To overcome the bottle-
neck in Phase 3, it would be possible to select a smaller sub-
set of these partitions that yields similar pairwise scores. This
approach bears some resemblance to multi-class classification
with binary classifiers using error-correction code design tech-
niques (Nguyen et al. 2021). Second, the ME framework could
be applied to diverse data modalities beyond images such as text,
speech, and graphs, and incorporate more powerful pre-trained
models such as GPT or more flexible DNN architectures such
as transformers. Third, it would be a natural next step to extend
the ME framework to tackle the problems of semi-supervised
learning where both labeled and unlabeled data are provided,
and of active learning where one could choose to label small
amount of data.

Supplementary Materials

Supplementary Text S1: Pseudo code description of the algorithms in
each phase of ME. Explanation of the hyperparameters and their default
values at each phase of the ME framework.

Supplementary Table S2: Consensus rates of CNN predictions on
PlantVillage dataset. We built a CNN model using the training data
obtained from Phase 5 of ME framework and applied the same CNN
model multiple times to predict the class labels. Column 1 shows the
number of CNN rounds and column 2 reports the fraction of images
that have identical predicted labels over multiple CNN rounds.

Supplementary Table S3: Local robustness test outcomes of hyperparam-
eters in Phases 2 and 4. The first sheet reports the hyperparameter
names, their phases, and their values in the local robustness tests.
Each subsequent sheet reports a similarity matrix by comparing the
Phase 2/4 outputs under a reference hyperparameter value with those
under another hyperparameter value. Rows and columns denote the
reference and varying hyperparameter values. Phase 2 outputs are
seed region indices, so similarities are represented by the Jaccard
similarities between two sets of seed region indices. Phase 4 outputs
are clustering of seed regions, so similarities are represented by the
Rand index values between two clustering outcomes of the same seed
regions.

Acknowledgments

We thank Dmytro Luzhbin and Vahid Golderzahi for reviewing the article
and providing comments.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

The work is partially supported by Institute of Statistical Science, Academia
Sinica, and National Science and Technology Council, Taiwan (grant num-
bers: NSTC 108-2118-M-001-001-MY2 and NSTC 113-2118-M-002-011).

Data Availability Statement

The codes, ReadMe, small data for test-running the codes, and information
necessary for obtaining the codes for the ME framework proposed in this
article are available at https://github.com/chyeang/ME. We also include an
explanation of the hyperparameters of the ME framework and their default
values in supplementary text S1.

References

Antwi-Boasiako, E., Zhou, S., Liao, Y., Liu, Q., Wang, Y., and Owusu-
Agyemang, K. (2021), “Privacy Preservation in Distributed Deep Learn-
ing: A Survey on Distributed Deep Learning, Privacy Preservation Tech-
niques Used and Interesting Research Directions,” Journal of Information
Security and Applications, 61, 102949. [15]

Bengio, Y., Courville, A., and Vincent, P. (2013), “Representation Learning:
A Review and New Perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35, 1798–1828. [1]

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., et al. (2020), “Lan-
guage Models are Few-Shot Learners,” in Advances in Neural Information
Processing Systems (Vol. 33), eds. H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, pp. 1877–1901, Curran Associates, Inc. [1]

Caron, M., Bojanowski, P., Mairal, J., and Joulin, A. (2019), “Unsupervised
Pre-Training of Image Features on Non-Curated Data,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp.
2959–2968. [1]

Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C. (2017), “Deep Adaptive
Image Clustering,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pp. 5879–5887. [1]

Chen, Y.-B., Tiong, K.-L., and Yeang, C.-H. (2022), “Clustering Image Data
with a Fixed Embedding,” in 2022 21st IEEE International Conference on
Machine Learning and Applications (IEEE ICMLA), pp. 891–896. [2,8,9]

CIFAR-10. (2021), “The cifar-10 Dataset,” available at https://www.cs.
toronto.edu/~kriz/cifar.html. Accessed: 2021. [9]

Cordonnier, J.-B., Loukas, A., and Jaggi, M. (2020), “On the Relationship
between Self-Attention and Convolutional Layers,” in International Con-
ference on Learning Representations 2020 (ICLR 2020), pp. 1–22. Open
Review. [1]

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009),
“Imagenet: A Large-Scale Hierarchical Image Database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–255.
[2]

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J., and Houlsby, N. (2020), “An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale.” arXiv preprint
arXiv:2010.11929. [1]

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. (2022), “What Can Trans-
formers Learn in-Context? A Case Study of Simple Function Classes,”
in Advances in Neural Information Processing Systems (Vol. 35), eds.
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
pp. 30583–30598, Curran Associates, Inc. [1]

Glasmachers, T. (2017), “Limits of End-to-End Learning,” in Proceedings of
the Ninth Asian Conference on Machine Learning, Volume 77 of Proceed-
ings of Machine Learning Research, eds. M.-L. Zhang and Y.-K. Noh, pp.
17–32, Seoul, Republic of Korea: Yonsei University, PMLR. [1]

Han, S., Park, S., Park, S., Kim, S., and Cha, M. (2020), “Mitigating Embed-
ding and Class Assignment Mismatch in Unsupervised Image Classifi-
cation,” in Computer Vision – ECCV 2020, eds. A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, pp. 768–784, Cham: Springer International
Publishing. [10,12]

https://github.com/chyeang/ME
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 17

Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang,
A., Zhang, L., Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu,
Z., Qiu, X., Song, R., Tang, J., Wen, J.-R., Yuan, J., Zhao, W. X., and Zhu,
J. (2021), “Pre-Trained Models: Past, Present and Future,” AI Open, 2,
225–250. [2]

Harley, A. W., Ufkes, A., and Derpanis, K. G. (2015), “Evaluation of Deep
Convolutional Nets for Document Image Classification and Retrieval,”
in 2015 13th International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 991–995. [9]

He, K., Zhang, X., Ren, S., and Sun, J. (2016), “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778. [1,2]

Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables into
Principal Components,” Journal of Educational Psychology, 24, 417. [1]

Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama, M. (2017),
“Learning Discrete Representations via Information Maximizing Self-
Augmented Training,” in Proceedings of the 34th International Conference
on Machine Learning, Volume 70 of Proceedings of Machine Learning
Research, eds. D. Precup and Y. W. Teh, pp. 1558–1567, PMLR. [1]

Hughes, D. P., and Salathé, M. (2015), “An Open Access Repository of
Images on Plant Health to Enable the Development of Mobile Disease
Diagnostics.” arXiv preprint arXiv:1511.08060. [9]

Ji, X., Henriques, J. F., and Vedaldi, A. (2019), “Invariant Information
Clustering for Unsupervised Image Classification and Segmentation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 9865–9874. [1,10,12]

Kather, J. N., Halama, N., and Marx, A. (2018), “100,000 Histological Images
of Human Colorectal Cancer and Healthy Tissue,” accessed: 2023. [9]

Kenton, J. D. M.-W. C., and Toutanova, L. K. (2019), “Bert: Pre-Training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of NAACL-HLT, pp. 4171–4186. [1]

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), “Gradient-based
Learning Applied to Document Recognition,” IEEE, 86, 2278–2324. [1]

LeCun, Y., Cortes, C., and Burges, C. (2021), “Mnist Handwritten Digit
Database,” Available at http://yann.lecun.com/exdb/mnist. [9]

Maaten, L., and Hinton, G. (2008), “Visualizing Data Using t-SNE,” Journal
of Machine Learning Research, 9, 2579–2605. [1]

McInnes, L., Healy, J., and Melville, J. (2018), “Umap: Uniform Mani-
fold Approximation and Projection for Dimension Reduction.” arXiv
preprint arXiv:1802.03426. [1]

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002), “On Spectral Clustering: Anal-
ysis and an Algorithm,” in Advances in Neural Information Processing
Systems, pp. 849–856. [7]

Nguyen, H. D., Khan, M., Kaegi, N., Ho, S., Moore, J., Borys, L., and Lavalva,
L. (2021), “Ensemble Learning Using Error Correcting Output Codes:
New Classification Error Bounds,” in 2021 IEEE 33rd International Con-
ference on Tools with Artificial Intelligence (ICTAI), Los Alamitos, CA,
USA, pp. 719–723. IEEE Computer Society. [16]

Park, S., Han, S., Kim, S., Kim, D., Park, S., Hong, S., and Cha, M. (2021),
“Improving Unsupervised Image Clustering with Robust Learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12278–12287. [1]

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018),
“Improving Language Understanding by Generative Pre-Training.” [1]

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019),
“Language Models are Unsupervised Multitask Learners.” OpenAI blog
1.8: 9. [1]

Rand, W. (1971), “Objective Criteria for the Evaluation of Clustering Meth-
ods,” Journal of the American Statistical Association, 66, 846–850. [13]

Som, A., Thopalli, K., Ramamurthy, K. N., Venkataraman, V., Shukla, A.,
and Turaga, P. (2018), “Perturbation Robust Representations of Topo-
logical Persistence Diagrams,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 617–635. [1]

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,
and Mesirov, J. P. (2005), “Gene Set Enrichment Analysis: A Knowledge-
based Approach for Interpreting Genome-Wide Expression Profiles,”
Proceedings of the National Academy of Sciences of the United States of
America, 102, 15545–15550. [7]

Tammina, S. (2019), “Transfer Learning Using VGG-16 with Deep Convo-
lutional Neural Network for Classifying Images,” IJSRP, 9, 143–150. [1,2]

Tiong, K.-L., Sintupisut, N., Lin, M.-C., Cheng, C.-H., Woolston, A., Lin,
C.-H., Ho, M., Lin, Y.-W., Padakanti, S., and Yeang, C.-H. (2022), “An
Integrated Analysis of the Cancer Genome Atlas Data Discovers a Hier-
archical Association Structure Across Thirty Three Cancer Types,” PloS
Digital Health, 1, 1–53. [8]

van den Oord, A., Li, Y., and Vinyals, O. (2018), “Representation Learning
with Contrastive Predictive Coding.” arXiv preprint arXiv:1807.03748.
[1]

Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., and
Van Gool, L. (2020), “SCAN: Learning to Classify Images Without
Labels,” in Computer Vision – ECCV 2020, eds. A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, pp. 268–285, Cham: Springer International
Publishing. [1,10,12]

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017), “Attention Is All You Need,”
in Advances in Neural Information Processing Systems (Vol. 30), eds.
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, Curran Associates, Inc. [1]

Vedaldi, A., Asano, Y., and Rupprecht, C. (2020), “Self-Labelling via Simul-
taneous Clustering and Representation Learning,” in International Con-
ference on Learning Representations 2020 (ICLR 2020), pp. 1–22, Open
Review. [1]

Wilcoxon, F. (1945), “Individual Comparisons by Ranking Methods,” Bio-
metrics Bulletin, 1, 80–83. [6]

Xian, Y., Schiele, B., and Akata, Z. (2017), “Zero-Shot Learning – The Good,
the Bad and the Ugly,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 3077–3086,
IEEE Computer Society. [2]

Xie, J., Girshick, R., and Farhadi, A. (2016), “Unsupervised Deep Embed-
ding for Clustering Analysis,” in Proceedings of The 33rd International
Conference on Machine Learning, Volume 48 of Proceedings of Machine
Learning Research, New York, NY, eds. M. F. Balcan and K. Q. Wein-
berger, pp. 478–487, PMLR. [1]

Yang, J., Parikh, D., and Batra, D. (2016), “Joint Unsupervised Learning of
Deep Representations and Image Clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5147–5156. [1]

http://yann.lecun.com/exdb/mnist

	Abstract
	1. Introduction
	2. Methods
	2.1. Phase 1: Clustering and Filtering the Embedded Data into Regions
	Geometry-based filtering procedure:
	Informative marker-based filtering procedure:

	2.2. Phase 2: Selecting Seed Regions
	2.3. Phase 3: Calculating Four Pairwise Scores
	Co-contribution score bold0mu mumu MMdottedMMMM1:
	Leakage score bold0mu mumu MMdottedMMMM2:
	Replacement score bold0mu mumu MMdottedMMMM3:
	Confusion score bold0mu mumu MMdottedMMMM4:

	2.4. Phase 4: Merging Seed Regions from Pairwise Scores
	2.4.1. Subdividing Seed Regions into Coarse-Grained Components
	2.4.2. Identifying Optimal Partitions of Coarse-Grained Components
	2.4.3. Identifying Singletons and Refining the Partitions Accordingly

	2.5. Phase 5: Expanding Training Data and Clustering Images

	3. Results
	3.1. Robustness Analysis
	3.2. Heterogeneity of Predicted Labels Across Regions
	3.3. Improving Clustering Accuracy via a Second Embedding
	3.4. Sources of Confusion in the CIFAR-10 and NCT Datasets
	3.5. Accuracy of Clustering Results

	4. Discussion
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	Data Availability Statement
	References

