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A probabilistic graphical model is proposed in order to detect the coevolution between different sites in biological
sequences. The model extends the continuous-time Markov process of sequence substitution for single nucleic or amino
acids and imposes general constraints regarding simultaneous changes on the substitution rate matrix. Given a multiple
sequence alignment for each molecule of interest and a phylogenetic tree, the model can predict potential interactions
within or between nucleic acids and proteins. Initial validation of the model is carried out using tRNA and 16S rRNA
sequence data. The model accurately identifies the secondary interactions of tRNA as well as several known tertiary
interactions. In addition, results on 16S rRNA data indicate this general and simple coevolutionary model outperforms
several other parametric and nonparametric methods in predicting secondary interactions. Furthermore, the majority of
the putative predictions exhibit either direct contact or proximity of the nucleotide pairs in the 3-dimensional structure of
the Thermus thermophilus ribosomal small subunit. The results on RNA data suggest a general model of coevolution
might be applied to other types of interactions between protein, DNA, and RNA molecules.

Introduction

Understanding the evolution of biological systems at
different levels is a central question of biological science.
Selective constraints often operate on the functions of the
entire molecular system, which requires coordinated inter-
actions of its components. The evolution of those compo-
nents is thus likely coupled.

Perhaps, the most well-known example of dependent
evolution is the coevolution between the components of
a molecular apparatus. Examples include the compensatory
substitution of nucleic acids in RNA molecules (Noller and
Woese 1981; Gutell et al. 1986; Rzhetsky 1995; Hofacker
et al. 1998; Knudsen and Hein 1999; Eddy 2001; Rivas
et al. 2001; di Bernardo et al. 2003; Coventry et al.
2004; Washietel, Hofacker, and Stadler 2005; Washietl,
Hofacker et al. 2005; Pedersen et al. 2006), the coevolution
of amino acid residues between ligand receptor pairs (Goh
et al. 2000; Ramani and Marcotte 2003), protein–protein
interactions (Barker and Pagel 2005), intramolecular inter-
actions (Pollock et al. 1999; Fares and Travers 2006), and
the copresence of enzymes in the same metabolic pathways
(Bowers et al. 2004). Detecting the coevolution of biose-
quences is important in determining the structure of protein
and RNA molecules, predicting molecular interactions and
the functions of genes. At conceptual level, it is the first step
toward a comprehensive understanding of the evolution of
molecular systems.

Coevolution of genes has been investigated in various
previous studies. Some of these have demonstrated the co-
evolution of genes by correlating their sequence sub-
stitution rates with functional properties such as their
physiological functions (Wall et al. 2005), the number of
interactions (Fraser et al. 2002), their interacting partners
(Fraser et al. 2002), and their coexpressed genes (Jordan
et al. 2004). Others have applied different correlation met-

rics to capture the covariation of sequences, including cor-
relation coefficients (e.g., Goh et al. 2000; Dutheil et al.
2005; Fares and Travers 2006), mutual information (e.g.,
Atchley et al. 2000; Ramani and Marcotte 2003; Gloor
et al. 2005), multiple dependency score (Tillier and Lui
2003), and the deviance between marginal and conditional
distributions (e.g., Lockless and Ranganathan 1999).

A major drawback of these approaches is that they did
not give a quantitative measure of how likely covariation is
to arise from neutral evolution. Many authors have thereby
extended the continuous-time Markov process to coevolv-
ing sequences in the problems of predicting RNA second-
ary structures (e.g., Knudsen and Hein 1999; Eddy 2001;
Rivas et al. 2001; Pedersen et al. 2006), amino acid residue,
and protein–protein interactions (e.g., Pollock et al. 1999;
Barker and Pagel 2005). However, the number of parame-
ters in those models grows quadratically with the number of
possible joint states. For instance, the dimension of a sub-
stitution rate matrix of 2 amino acids is 400 � 400. It is
computationally expensive to estimate those large numbers
of parameters, and the estimated parameters are subject to
overfitting limited sequence data. Previous approaches ad-
dress these problems by reducing the number of states (e.g.,
Pollock et al. 1999; Barker and Pagel 2005), specifying the
rules of interactions in the substitution rate matrix (e.g.,
Rzhetsky 1995) or restricting to RNA–RNA interactions
(e.g., Knudsen and Hein 1999; Eddy 2001; Rivas et al.
2001; Pedersen et al. 2006).

We propose a general continuous-time Markov model
to detect coevolution from aligned biomolecular sequences.
Sequence substitution of the 2 sites is modeled by a joint
continuous-time Markov process. The null (independent)
model hypothesizes that 2 sites evolve independently.
The alternative (coevolutionary [CO]) model is obtained
from the null model by reweighting the independent sub-
stitution rate matrix to favor double over single changes.
The model hypothesizes that coevolving sites have a posi-
tive, fixed rate for double changes and smaller rates for
single changes relative to the null model. The spatial depen-
dency of adjacent site pairs is captured by a hidden Markov
model (HMM), where the hidden variables are the
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interaction states of the site pairs and the observables are
their sequences across species. Similar to other continu-
ous-time Markov models, it incorporates the information
of sequence substitution and phylogeny, thus reduces the
spurious covariations arising from common phylogeny.
Furthermore, it applies a simple reweighting scheme on
the substitution rate matrix that requires neither simplifica-
tion of states nor prior knowledge about interactions. It al-
lows us to detect various types of interactions (e.g.,
noncanonical RNA tertiary interactions, interactions of
amino acid residues, protein–protein, and protein–DNA in-
teractions) without incorporating the complex interaction
rules in the model or learning a large number of parameters.

As a proof-of-concept demonstration, we applied the
model to predict the secondary and tertiary interactions of
16S rRNA and tRNA molecules. The results indicate a general
model of coevolution achieves an accuracy level comparable
or superior to specific models encoding the RNA base pairing
rules and various nonparametric scores of covariation. Fur-
thermore, it also detects the tertiary interactions of the
RNA molecules that do not necessarily follow typical base
pairing rules. This is encouraging for the model’s applicability
to other types of coevolution such as protein–protein and pro-
tein–DNA interactions, where even less is known a priori.

Materials and Methods
Overview of the CO Model

The CO model we developed operates on the 2 paired,
aligned families of sequences along 2 orthogonal dimen-
sions. The first dimension is time, with a continuous-time
Markov process modeling the sequence substitution of the
2 entities considered. This model operates at each of the
paired positions across species. The second dimension is
space, with an HMM operating along the consecutive
paired positions and determining that regions of the 2 en-
tities are coevolving. It belongs to a class of probabilistic
models termed graphical models (Jordan et al. 1999), which
includes a wide range of models such as Bayesian networks,
Markov random fields, HMMs, and so on. Similar graph-
ical models were introduced by Yang (1995), Felsenstein
and Churchill (1996), and have been recently adopted
for instance by Siepel and Haussler (2004) to detect the
conserved regions of DNAs. The inputs of the model con-
sist of 2 families of aligned sequences (one for self in-
teractions), a phylogenetic tree of the species with branch
lengths, and theparameters pertaining to thecontinuous-time
Markov process and the HMM. The outputs of the model are
the coevolving position pairs.

Sequence Substitution Model of Single Molecular
Entities

The sequence substitution of a single site is modeled
by a continuous-time Markov process (Yang 1995). Denote
by x(t) the sequence composition at time t. For an RNA nu-
cleotide x(t) 2 {A, C, G, U}. The probability vector P(x(t))
follows a Markov process at an infinitesimal time interval:

dPðxðtÞÞ
dt

5PðxðtÞÞQ: ð1Þ

where Q is the substitution rate matrix. It is a 4 � 4 matrix
for nucleic acids. Each row of Q must sum to 0 in order to
make P(x(t)) a valid probability vector. Additional con-
straints may be applied to Q. In this work, we use the
HKY model of nucleotide substitution (Hasegawa et al.
1985). It characterizes Q by 5 (coupled) parameters: a sta-
tionary distribution (pA, pC, pG, pU) and a transition/trans-
version ratio j:

Q5

0
BB@

� pC jpG pU
pA � pG jpU
jpA pC � pU
pA jpC pG �

1
CCA ð2Þ

Each diagonal entry is �1 times the sum of the other
entries in the same row.

The transition probability P(x(t)|x(0)) at a finite time
interval t is given by the matrix exponential eQt, which
is the solution of equation (1):

PðxðtÞ5b
��xð0Þ5aÞ5eQt½a; b�: ð3Þ

Sequence Substitution Model of 2 Molecular Entities

The continuous-time Markov model can be extended
to the joint states of 2 sites. Define x(t) 5 (x1(t), x2(t)) as the
joint state of 2 sites—such as the sequence composition of
a nucleotide pair—at time t. The sequence substitution fol-
lows the same equation for the single-site evolution (eq. 1),
but the dimensions of the probability vector and the substi-
tution rate matrix are much bigger. Here P(x(t)) is a 1 � 16
vector and Q a 16 � 16 matrix.

We first consider a null model in which the 2 nucleo-
tides evolve independently with an identical rate matrix.
The transition probability of the joint state is the product
of the transition probabilities of the 2 nucleotides. The tran-
sition probability matrix of the joint state is

PðxðtÞjxð0ÞÞ 5 e
Q2t: ð4Þ

where Q2 is the substitution rate matrix of 2 independent
sites. It can be shown (Pagel 1994) that

Q2ðða1; a2Þ; ðb1; b2ÞÞ

5

Qða1; b1Þ if a25b2;

Qða2; b2Þ if a15b1;

�Qða1; b1Þ �Qða2; b2Þ if a15b1; a25b2;

0 otherwise:

8>>><
>>>:

ð5Þ

In Q2, the rate of a single-nucleotide change is equal to
the corresponding rate in the single-site rate matrix Q, and
the rates of double nucleotide changes are all zero. This is
intuitive since only one nucleotide can change within an
infinitesimal time interval if 2 sites evolve independently.

A general model of dependent evolution can be ob-
tained by ‘‘reweighting’’ the entries of the independent rate
matrix by a ‘‘potential matrix’’ w:

Qw
25Q2+w; ð6Þ
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where w is a 16 � 16 matrix and ‘‘�’’ denotes the following
operation:

ðQ2+wÞða; bÞ

5

Q2ða; bÞ � wða; bÞ if a 6¼ b;Q2ða; bÞ.0;

wða; bÞ if a 6¼ b;Q2ða; bÞ50;

�
P

b# 6¼b Q2ða; b#Þ+wða; b#Þ if a5b:

8><
>:

ð7Þ

where a 5 (a1, a2) and b 5 (b1, b2). It multiplies an off-
diagonal, nonzero entry Q2(a, b) by w(a, b), sets the value
of a zero entryQ2(a, b) tow(a, b), and normalizes a diagonal
entry as �1 times the sum of the other entries in the same
row. The reweighted Qw

2 is a valid substitution rate matrix.
w specifies the hypotheses of selective constraints on nucle-
otide pair states. Higher weights reward the transitions to
the advantageous states, and lower weights penalize the
transitions to the disadvantageous states.

CO Models

Equation (7) can express any valid substitution rate
matrix. Instead of learning an unrestricted substitution rate
matrix from the data (e.g., Knudsen and Hein 1999; Holmes
and Rubin 2002; Pedersen et al. 2006), we parametrize w by
2 free parameters. This restricted model alleviates the prob-
lems of estimating the parameters over the high dimen-
sional (3D) space and overfitting limited data.

If the sequence composition of interacting pairs is
known, we can set w to reward the transitions to the inter-
acting pairs and penalize the transitions of the opposite
directions. In general, the sequence pairing rules can be
complex or unknown. We thus propose a general reweight-
ing scheme which is not tied to specific rules of interactions.
We assume there are multiple selectively advantageous se-
quence pairs that are distinct in each component. Without
knowing which states have selective advantages or disad-
vantages, we only consider whether a transition changes 1
or 2 nucleotides. The model rewards the transitions where
both nucleotides change and penalizes the transitions where
only one nucleotide changes. We call this model a ‘‘simple
CO’’ model. The reweighting scheme becomes:

wða; bÞ5
r if a1 6¼ b1 and a2 6¼ b2;
e if either a15b1 or a25b2;
1 otherwise:

8<
: ð8Þ

where
R
, 1 and r . 0 are free parameters of penalty and

reward. This model does not require prior knowledge about
interactions, hence can be possibly applied to different
types of interactions. Moreover, it introduces only 2 extra
free parameters

R
and r, and thus alleviates the overfitting

problem.
As a comparison, we introduce 2 other reweighting

schemes that explicitly incorporate the base pairing rules
of RNA secondary interactions. The ‘‘Watson–Crick co-
evolution’’ model—abbreviated as WC model—rewards
the single transitions that establish Watson–Crick base pair-
ing from noninteracting pairs and penalizes the single tran-
sitions to non–Watson-Crick base pairs:

wða; bÞ5
1
e

if a;WC and b 2 WC; single changes;
e if b; WC; single changes;
0 double changes:

8<
:

ð9Þ

where
R
, 1 and WC denotes the states AU and GC in both

orders.
Some GU/UG pairs in RNA molecules form weaker

hydrogen bonds (GU wobble). The ‘‘Watson–Crick with
GU wobble’’ model—abbreviated as WCW model—
rewards the state transitions that establish or maintain
Watson–Crick or GU base pairs and penalizes the state tran-
sitions that break the extended rule:

wða; bÞ5
1
e

if b 2 WCW; single changes;
e if b; WCW; single changes;
0 double changes:

8<
: ð10Þ

where WCW denotes the states of WC, GU, or UG. The CO
models similar to the WC and WCW schemes have been
applied in previous studies to predict RNA structures
(e.g., Noller and Woese 1981; Rzhetsky 1995; Hofacker
et al. 1998; Eddy 2001; Rivas et al. 2001; di Bernardo
et al. 2003; Coventry et al. 2004; Washietel, Hofacker
and Stadler 2005; Washietl, Hofacker et al. 2005).

Evaluating the Likelihood of Sequence Data

Given the parameters of the continuous-time Markov
process and the phylogenetic tree, we want to know how
likely the observed sequences are to arise from the under-
lying process. The observed sequences correspond to the
states of the leaves in the phylogenetic tree, and the mar-
ginal likelihood of the observed sequences is the joint likeli-
hood summed over all possible states of internal (ancestral)
nodes. This marginal likelihood can be efficiently calcu-
lated using a dynamic programming algorithm (Felsenstein
1981). Briefly, let u be a node in the tree, v and w be its
children, and tv and tw be the branch lengths of (u, v)
and (u, w). Define P(Lu|a) as the probability of all the leaves
below u given that the base assigned to u is a. The algorithm
follows the recursion:

PðLujaÞ

5

dðxu5aÞ if u is a leaf;P
b

eQtva; b�PðLv
��bÞP

c
eQtwa; c�PðLw

��cÞ otherwise:

(

ð11Þ

where d(.) is an indicator function. Gaps on leaf nodes are
treated as missing data such that each nucleotide is given an
equal probability.

Capturing Spatial Dependency

RNA secondary interactions often form stems com-
prising consecutive base pairs. To capture the spatial depen-
dency between adjacent pairs, we define an HMM on the
nucleotide pairs along the aligned sequences. We pair an
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RNA sequence against itself in the opposite direction, with
different offsets specifying the end positions of the pairs. At
position s, the hidden variable y(s) 2 {0, 1} indicates
whether coevolution occurs at position s (i.e., y(s) 5 1)
or not (i.e., y(s) 5 0). The spatial dependency of hidden
variables is specified by a homogeneous Markov chain with
transition probabilityP(y(sþ 1)5 1|y(s)5 0)5 P(y(sþ 1)5
0|y(s) 5 1) 5 a. The observed variable X(s) comprises the
pairs of sequences at position s across all species. The emis-
sion probability P(X(s)|y(s)) corresponds to the likelihood
of the sequence data, conditioned on the null model of in-
dependent evolution or the alternative model of coevolu-
tion. Given the transition and emission probabilities, we
then apply the Viterbi algorithm to identify the interacting
regions of the 2 sequences. Similar approaches have been
applied to detect the conserved regions of DNAs (e.g.,
Yang 1995; Felsenstein and Churchill 1996; Siepel and
Haussler 2004).

Detecting Covariation Using Nonparametric Scores

A simple and popular method of detecting the covari-
ation of 2 sites is to calculate the mutual information of their
sequences across the sample species. Denote x1 and x2 the
sequence composition of sites 1 and 2, P12(x1, x2) the joint
probability mass function of x1 and x2, and P1(x1) and P2(x2)
the marginal probability mass functions of x1 and x2. The
mutual information between x1 and x2 is

MIðx1; x2Þ5
X
x1;x2

P12ðx1; x2Þlog

�
P12ðx1; x2Þ
P1ðx1ÞP2ðx2Þ

�
: ð12Þ

MI(x1;x2) is high if x1 can reliably predict x2 and vice
versa, which is equivalent to the covariation between x1 and
x2. This method is popular for its low computational cost.
Yet it also picks up spurious covariation due to shared phy-
logeny. Various other methods have been proposed to re-
duce the spurious covariation. For instance, Atchley et al.
(2000) simulated the sequences according to the phyloge-
netic tree and used the simulated sequences to evaluate the
significance of a mutual information. Tillier and Lui (2003)
calibrated mutual information scores to avoid selecting a site
that correlates with many other sites. Dutheil et al. (2005)
calculated a vector of expected numbers of changes be-
tween each pair of leaf nodes on the phylogenetic tree based
on a sequence substitution model and evaluated the corre-
lation coefficient between 2 vectors (Dutheil et al. 2005).

Data and Preprocessing

Aligned 1542-base 16S rRNA sequences from thou-
sands of species were compiled in the ribosomal RNA da-
tabase (Ribosomal Database). To maximize the coverage of
the phylogeny, we extracted representative sequences from
146 species covering archaea, bacteria, eukaryotes, mito-
chondria, chloroplast, and cyanobacteria. A phylogenetic
tree was derived from these sequences using the parsimony
DNAPARS program of the PHYLIP package (PHYLIP).
The parameters of the HKY model of single nucleotides
and the branch lengths of the tree were estimated using

the maximum likelihood methods in the PAML package
(PAML). The species names of the 146 16S rRNA sequen-
ces and their phylogenetic tree are reported in Supplemen-
tary File 1 (Supplementary Material online). We estimated
parameters

R
, r, and a by varying their values over discrete

combinations (
R

from 0.05 to 0.9, r from 0.1 to 0.9, and a
from 0.05 to 0.45) and identified the combination of these
values that gave rise to the highest area under the receiver
operating characteristic (ROC) curve for false positives� 200.
The parameter values are as follows:

R
5 0.1, r5 0.12, a5

0.3 for the CO model,
R
5 0.05, a5 0.3 for the WC model,

and
R
5 0.9, a 5 0.3 for the WCW model.

The 16S rRNA sequence was then paired with itself in
the opposite direction in order to evaluate potential coevo-
lution between all possible nucleotide pairs. The first entity
in the model was the 16S rRNA sequence itself, and the sec-
ond entity was the reversed sequence, shifted by a number of
nucleotides varying from 1 to 1542 and ‘‘rolled over’’ to
match the length of the first entity. Because interactions be-
tween adjacent nucleotides are physically infeasible, we on-
ly considered the pairs that were at least 3 nucleotides apart.

Aligned tRNA sequences from 60 species were ex-
tracted from the Rfam database (Rfam) (accession number
RF00005). The selection criteria, selected species and their
phylogenetic tree, procedures of phylogeny reconstruction,
parameter estimation, and data pre-processing closely fol-
low those of the 16S rRNA data and are described in Sup-
plementary File 1 (Supplementary Material online).

Results

We applied the general the CO model to aligned 16S
rRNA and methionine tRNA sequences. As a comparison,
we also applied 2 other continuous-time Markov models of
nucleic acid pairs (the WC and WCW models), mutual in-
formation scores with significance (Atchley et al. 2000),
multiple dependency score (Tillier and Lui 2003), and
the CoMap program (Dutheil et al. 2005) to the same data
sets. We gauged the performance of models in terms of the
ROC curves of secondary interaction prediction and the ca-
pacity of detecting tertiary interactions. On 16S rRNA data,
the CO model outperformed all the other methods in detect-
ing the secondary interactions. Moreover, the majority of
the putative interactions predicted by the CO model con-
tained the nucleic acid pairs that were in contact or close
in the 3D structure of the ribosome complex. We also tested
the robustness of the prediction results against alignment
and found that the accuracy was sensitive to the quality
of aligned sequences. By running the predictions on subsets
of the sequences, we found that a wide coverage of sequen-
ces on the phylogenetic tree was needed. On tRNA data, the
CO model has slightly better performance than WC, WCW,
and mutual information scores.

16S rRNA Structure

16S ribosomal RNA is a major part of the small sub-
unit (30S subunit in bacteria) of ribosome. The secondary
structure of the Escherichia coli 16S rRNA is shown in fig-
ure 1. About half of its 1542 bases participate in secondary
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FIG. 1.—16S rRNA secondary interactions, excerpt from Yusupov et al. (2001).
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interactions (437 secondary interactions). Yet almost all nu-
cleotides in the ribosomal RNA are involved in interactions
with either other RNA nucleotides or ribosomal proteins
(Noller 2005). Unlike secondary interactions, almost all
possible base pairs appear in tertiary interactions (Noller
2005). The available 3-dimensional structures of the 30S
subunit (Wimberly et al. 2000) and the entire ribosome
complex (Yusupov et al. 2001) from Thermus thermophilus
and E. coli (Schuwirth et al. 2005) provide a standard for the
verification of tertiary interaction prediction.

16S rRNA Tertiary Interaction Prediction

We first demonstrate the capacity of the CO model in
detecting 16S rRNA tertiary interactions. By setting the
log likelihood ratio threshold to be 6.0 (simulation P
value , 10�6), there were 41 putative predictions that were
not secondary interactions. They are the likely candidates
for tertiary interactions.

Table 1 lists the nucleotide positions of the 41 putative
predictions. The majority of the pairs are separated by be-
tween 10 and 60 nucleotides. The relatively short distance
along the primary sequence is consistent with the previous
observation that interdomain interactions of rRNAs are rare
(Yusupov et al. 2001).

Some tertiary interactions exhibit strong compensa-
tory substitutions between Watson–Crick states. For in-
stance, pair 1303–1334 constitutes 98 CGs, 43 GCs, and
2 UAs. Other pairs have strong covariation patterns be-
tween non–Watson-Crick or GU states. For instance, pair
245–283 constitutes 68 CCs and 65 UUs. By examining
the sequence composition in the phylogenetic tree (fig. 2),
we found that these double substitutions occurred multiple
times across different lineages, suggesting they were un-
likely to arise from neutral mutations. The sequence com-
position of all the 41 putative predictions is given in
Supplementary File 2 (Supplementary Material online).

We verified these putative predictions by examining
the 3D coordinates of the nucleotide pairs from the structure
data of the ribosome 30S subunit of T. thermophilus (Pro-
tein Data Bank accession number 1J5E; Wimberly et al.
2000). Strikingly, among the 41 putative predictions, 15
demonstrate direct contact of the nucleic acid pairs (the
closest distance between the atoms of the 2 nucleotides � 4
Å),8demonstrateproximityof thenucleotidepairs (theclosest
distance between the 2 nucleotides . 4 Å but � 8 Å). Eight
pairs contain gaps in the corresponding positions in
T. thermophilus. Only 10 predicted pairs are physically
distant in the 3D structure. Overall, more than half of the pu-
tative predictions are supported by the 3D structure data as
likely candidates for tertiary interactions. We also examined
the putative predictions from the mutual information scores.
By setting the threshold to be 0.78, there were 47 putative
predictions. Only 14 of them were less than 8 Å apart in
T. thermophilus 30S ribosomal subunit, substantially fewer
than the CO model predictions. The 47 putative predictions
and their sequence composition are shown in Supplementary
File 2 (Supplementary Material online).

The 41 putative predictions were compared with the
16S rRNA annotation in the Comparative RNA Web site
(CRW, Cannone et al. 2002). Forty-four base pairs were
annotated by CRW as tertiary interactions, whereas 17
of them were categorized by us as secondary interactions
according to figure 1. Among the 27 remaining tertiary in-
teractions, 6 were overlapped with our predictions (marked
in table 1). Despite the small overlap, our predictions were
substantially better than Dutheil et al. (2005), where only 3
predictions on 16S rRNA were overlapped with the tertiary
interactions in CRW.

We then investigated the T. thermophilus ribosomal
structure of 9 position pairs in table 1 that demonstrate
strong covariation of the sequence composition. We denote
a sequence composition strongly covarying if there exists
only a few (between 2 and 4) ‘‘dominant’’ states (the nucle-
otide pair sequences which occur in more than 10 species),

Table 1
Putative Tertiary Interactions of 16S rRNA Predicted by the CO model, Reported in CRW Database

Pair Covariation Proximity Pair Covariation Proximity

1450–1453 Strong Direct contact �245–283 Strong Direct contact
�1303–1334 Strong Direct contact 771–807 Mild Direct contact
1029–1032 Strong Direct contact �722–733 Strong Direct contact
1515–1521 Strong Direct contact 70–99 Strong Direct contact
�570–866 Strong Direct contact 658–747 Mild Direct contact
�450–483 Weak Direct contact 70–98 Weak Direct contact
1289–1352 Weak Direct contact 183–193 Weak Direct contact
618–621 Weak Direct contact �440–497 Strong Close
1007–1021 Mild Close 1005–1024 Weak Close
1008–1022 Weak Close 73–99 Weak Close
998–1041 Weak Close 1010–1021 Weak Close
73–96 Weak Close 72–97 Weak Gap
72–98 Weak Gap 72–75 Weak Gap
202–215 Weak Gap 71–98 Weak Gap
464–467 Weak Gap 73–100 Weak Gap
71–99 Weak Gap 95–98 Weak Distant
139–1019 Weak Distant 865–1382 Weak Distant
74–747 Weak Distant 245–351 Weak Distant
1001–1020 Weak Distant 223–1021 Weak Distant
602–838 Weak Distant 617–1289 Weak Distant
139–1010 Weak Distant
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and those dominant states either share no common bases or
are Watson–Crick or GU pairs. Most of them possess either
hydrogen bonds or other structural constraints subject to co-
evolution, further corroborating the capacity of our model
to detect CO pairs.

Pair 1450–1453 is dominated by GA and UG pairs
among the 146 sequences. It is part of the UACG tetraloop
in T. thermophilus and part of the UUCG tetraloop inE. coli.

Pair 1303–1334 is dominated by CG and GC pairs.
It is a standard Watson–Crick base pair and belongs to

FIG. 2.—Sequence covariation of pair 245–283 detected by CO model; gray: CC pairs, black: UU pairs.
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a stem between positions 1303–1314 and 1334–1323 in
the 3#M domain. It is categorized by CRW as a tertiary
interaction.

Pair 1029–1032 is dominated by UG and GA pairs.
Like pair 1450–1453, it is part of a tetraloop from 1029
to 1032 in the 3#M domain. Despite the lack of hydrogen
bonding between the two positions, the tetraloop varies be-
tween the standard UUCG and GNRA forms across species
(Woese et al. 1990). The tetraloop is UUCG in E. coli and
GNRA in T. thermophilus.

Pair 1515–1521 is dominated by GC, UG, and CG
pairs. This is an interesting case because positions 1515
and 1520 (and positions 1514 and 1521) form standard
Watson–Crick secondary interactions. In T. thermophilus
16S rRNA, nucleotide 1515 seems to pair with 1521,
whereas in E. coli 16S rRNA nucleotide 1515 pairs with
1520 (data not shown). The electron density in T. thermo-
philus and E. coli structures indicates 1515 is located in the
plane between 1520 and 1521. This suggests a 3-way in-
teraction between 1515, 1520, and 1521 may occur.

Pair 570–866 is dominated by GC, UA, and CG pairs.
It is a previously identified Watson–Crick tertiary interac-
tion (Gutell et al. 1986).

Pair 440–497 is dominated by UU, AC, and CG pairs.
In spite of its strong covariation, the 2 bases are 10.8 Å
apart, suggesting that their interaction is unlikely. The co-
evolution may reflect other structural constraints that are
not yet clear.

Pair 245–283 is dominated by UU and CC pairs, and
pair 722–733 is dominated by AA and GG pairs. They be-
long to homopyrimidine and homopurine rRNA tertiary in-
teractions, respectively. Pair 245–283 belongs to Saenger
XII- or XIV-type interaction (Saenger 1984). Pair 722-
733 belongs to Saenger type I noncanonical pair (Saenger
1984). An A-A pair in T. Thermus and a G-G pair in E. coli
should be isosteric with each other as the distances between
the C#1 carbons of the 2 bases are conserved in A-A and G-
G pairs (Leontis et al. 2002). The C-C and U-U pairs are
also isosteric.

Pair 70–99 demonstrates covariation between UG,
AU, GC, and CG pairs. It is a likely Watson–Crick second-

ary interaction in the 5# domain. It does not appear on the
initial list of secondary interactions because the region
around this pair is highly variable, and alignment mistakes
are likely to occur. In E. coli, pair 70–98 is a secondary
interaction (see fig. 1). However, multiple position pairs with
small offsets from 70 to 98 were detected by the CO model:
70–99, 71–99, 72–98, 72–97, 73–96, 73–99, 73–100.
These signals probably correspond to the same base pair
in the misaligned sequences.

As an example, figure 3 shows pair 245–283 in T. ther-
mophilus 16S rRNA using PyMOL (PyMOL). The PyMOL
visualization of the 33 putative interactions (excluding the 8
pairs with gaps in the T. thermophlus) is provided in
Supplementary File 3 (Supplementary Material online). In-
triguingly, all but one of the pairs demonstrating strong co-
variation patterns have direct contacts, and almost all the
pairs that demonstrate proximity but not direct contact
have weaker covariation patterns. Conversely, some pairs
that do not have strong covariation patterns also have direct
contacts.

16S rRNA Secondary Interaction Prediction Accuracy

Figure 4 shows the ROC curves of 16S rRNA second-
ary interaction prediction using 5 methods: the CO, WC,
and WCW models of continuous-time Markov processes,
the mutual information score, and the multiple dependency
score (Tillier and Lui 2003). By varying the confidence
thresholds on the scores, each model gives different com-
binations of false-positive and true-positive numbers. For
illustrative purposes, the figure only shows the portion of
the ROC curves where the number of false positives is less
than 1000. The predicted interactions (both real secondary
and putative tertiary interactions) of the CO model are re-
ported in Supplementary File 4 (Supplementary Material
online).

The CO model substantially outperforms all the other
methods. For instance, with 150 false positives, the CO
model (solid) can recover 251 secondary interactions

FIG. 3.—Predicted interaction of 16S rRNA, 245–283; top: 283,
down: 245.

FIG. 4.—ROC curves of 16S rRNA secondary interaction prediction.
MD, multiple dependency; MI, mutual information; WC, Watson–Crick
reweighting; WCW, Watson-Crick-GU reweighting; significant MI,
mutual information score with P,0.001.
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(sensitivity rate 57%), whereas the multiple dependency
(dashed) and mutual information (dashed dotted) scores
with similar false-positive numbers can only recover 131
(sensitivity rate 30%) and 121 (sensitivity rate 28%) inter-
actions, respectively. The WC (dotted) and WCW (solid
star) models have an even inferior performance. The mul-
tiple dependency score marginally outperforms mutual in-
formation, indicating its capacity of removing some false
positives attributed to the common phylogeny. Yet the sen-
sitivity is still only half of the CO model.

We also compared the prediction performance to the
mutual information score with statistical significance
(Atchley et al. 2000) and the CoMap program based on se-
quence substitution models (Dutheil et al. 2005). Setting
a stringent threshold on the p-value of mutual information
generated by bootstrap simulation can reduce false posi-
tives but also increase false negatives. Although it is useful
in setting the cutoff value, the ROC curve of mutual infor-
mation is unchanged. The significant threshold of mutual
information (P , 0.001, mutual information 0.56, 29 false
positives, 87 true positives) is marked on the mutual infor-
mation ROC curve of figure 4. The ROC curve of the Co-
Map program lies below the WCW model (results not
reported). We suspected that the poor performance was
due to the inaccurate parameter setting. With similar num-
ber of bacterial 16S rRNA sequences (79 from Dutheil et al.
and 77 from ours), the 2 models reported the same number
of predictions (126) and yielded similar prediction accuracy
(117 from Dutheil et al. and 118 from ours). In addition, by
comparing with the CRW (Cannone et al. 2002), our model
detected 6 tertiary interactions and the CoMap program de-
tected only 3 of them.

The poor performance of the WC and WCW models is
partly due to the existence of many false-positive pairs fol-
lowing the Watson–Crick or GU pairing rules. For exam-
ple, pair 1321–1355 is dominated by UG (70) and UA (50)
sequences (WCW log likelihood 1.355), which can be ex-
plained by several single-nucleotide transitions (UA 4
UG) along the lineages. The reweighting schemes of
WC and WCW models (eqs 8 and 9) also introduce many
artifacts. Whereas the transition probability from a non-WC
(or GU) state to a WC (or GU) state is rewarded, the prob-
ability of staying at a non-WC (or GU) state remains high
due to low substitution rate or short branch length. If 2 no-
des sharing a common parent possess a WC (or GU) and
a non-WC (or GU) state, respectively, then assigning the
common parent to the non-WC (or GU) state of one child
yields high WC (WCW) scores. For example, pair 384–666
is dominated by GG (66) and CG (25) sequences (WC log
likelihood score 13.80). By assigning GG to a common an-
cestor of a GG group and a CG group, the transition GG–
CG is rewarded and the transition GG–GG is not penalized.
In addition, mutual information yields the false positives
that can be explained by a few neutral mutations along
the phylogeny. Pair 585–930 contains covarying base pairs
GC (80), UG (39), and CA (10), hence has a high mutual
information score (0.784). However, those sequences occur
at separate clades of the phylogenetic tree, thus is likely to
arise from independent mutations.

The substantial number of false positives comparable
to the number of detected interactions seems unsatisfactory.

However, considering the large number of pairs calculated,
the specificity of each model is extremely high. The total
number of nucleotide pairs considered is (1542 � 1539)/
2 5 11,86,569. Thus, even the apparent upper limit of
the false-positive number in figure 4 (300 false positives)
yields a very high specificity rate (99.97%). As described
previously, some ‘‘false-positive’’ pairs may reflect tertiary
interactions or other structural constraints because figure 4
only considers secondary interactions.

Sensitivity to Alignment

The credibility of interaction predictions from CO
models relies on the quality of sequence alignment across
multiple species. Misaligned sequences may break the co-
variation patterns of interacting positions or introduce
spurious covariations of noninteracting positions. The
16S rRNA sequences have reasonably good structural
alignments. In general, however, the structure data of an
RNA molecule may not be available. To justify the general
applicability of CO models, we examined the sensitivity of
prediction performance against alignments.

We removed all the gaps in the 16S rRNA data and
realigned the sequences using ClustalW (Thompson et al.
1994) and applied the 4 methods to realigned data. Figure 5
shows the ROC curves of each method on structurally
aligned data and on the alignment which is based purely
on sequences. Clearly, the ROC curve of each method
on realigned data is substantially lower than that on the
structurally aligned data, indicating the sensitivity to align-
ment. However, the CO model is the least vulnerable to re-
alignment. On realigned sequences, the ROC curve of the
CO model (dashed curve) still lies above those of all other
methods (the WC and WCW curves lie below the mutual
information curves and are not shown). Moreover, the ROC
curve of the CO model on realigned data is still superior
to those of all other models on the original (structural)
alignment.

FIG. 5.—Robustness of ROC curves against alignment; solid: CO
with original alignment, dashed: CO with realignment, dashed dotted:
mutual information with original alignment, dotted: mutual information
with realignment.
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Sensitivity to Selected Sequences

The quality of RNA secondary interaction prediction
also depends on the proper selection of sequences. Two
questions regarding the choice of data arise: how many se-
quences are needed, and what phylogenetic branches of
species are the most informative. To answer these ques-
tions, we varied the sequence data based on 2 criteria and
evaluated the ROC curves of each method on different
datasets.

We first randomly chose subsets of sequences from the
original data. As expected, the ROC curves improve as
more sequences are incorporated, but the improvement
does not grow linearly with the size of the data. The sen-
sitivity improves by 3-fold as the data increases from 10 to
20 species, 2-fold as the data increases from 20 to 50 spe-
cies, but only improves by 30% as the data grows from 50 to
100 species. The ROC curve on 130 species is close to that
on the entire data (146 species). However, the apparent 130-
species limit is the result from subsampling the specific
146-species data set. It is not known whether a much larger
sample (e.g., 500 species) would substantially improve the
prediction accuracy. The ROC curves of the CO model on
random subsets of sequences are shown in Supplementary
Figure 3 (Supplementary Material online).

The sensitivity with respect to sample size is not in-
dependent from the representativeness of sequences on
the phylogenetic tree. On the one hand, sequences concen-
trating on a narrow clade may lack covariation. On the other
hand, structural variation of ribosomal RNAs over a wide
range of clades may introduce noise in prediction results.
To examine the dependency of predictions on representa-
tiveness of selected species in the phylogenetic tree, we
then compared the ROC curve of the CO model on the orig-
inal data with 3 subsets of data extracted from different
phylogenetic branches: the data excluding mitochondria se-
quences, the data of eukaryotes and archaea, and the data of
bacteria. Figure 6 shows the ROC curves on those data sets.
The ROC curve on all-but-mitochondria data (dotted) over-
laps with the ROC curve on the original data (solid). The
insignificant contribution of mitochondria sequences can be
due to its small size (9) compared with the entire data set, its
structural variation relative to cytoplasmic rRNAs, or the
accelerated evolutionary rates of mitochondria. The bacte-
ria data (dashed) yield better performance than the eukar-
yotes/archaea data (dash dotted). The difference again can
be attributed to either the sample size (77 versus 50) or the
representativeness of the sequences. Despite the structural
difference of rRNAs in prokaryotes, eukaryotes, and
archaes, combining the sequences from three kingdoms
substantially improves the accuracy compared to prokar-
yotes and eukaryotes sequences alone. This suggests that
the signal from sequence covariation exceeds the noise
from structural variation when widening the coverage of
sequences in the kingdom of life.

tRNA Prediction Accuracy

We applied the 4 models (CO, WC, WCW, mutual in-
formation) to predict secondary and tertiary interactions of
methionine tRNA molecules. Overall, the false-positive

numbers are much smaller than the 16S rRNA due to
the shorter length of tRNA sequences. With less than 10
false positives, both CO and WCW models can detect al-
most all 21 secondary interactions. All the 3 parametric
models (CO, WC, and WCW) outperformed the mutual in-
formation score in predicting secondary interactions. How-
ever, both the CO model and mutual information scores
were able to detect several tertiary interactions that were
neither Watson–Crick nor GU pairs. Details about the anal-
ysis results on tRNA data are reported in Supplementary
File 1 (Supplementary Material online).

Programs and Running Time

All the prediction methods are implemented in C and
compiled in Linux CentOS 4.4 Operating System. A
screening on the 16S rRNA sequences (1,188,111 pairwise
comparisons, 146 species) takes about 5 h on a Pentium(R)
4, 3 GHz CPU machine. The C codes and the 16S rRNA
inputs and outputs of the programs are provided in Supple-
mentary File 5 (Supplementary Material online).

Discussion

In this study, we propose a probabilistic graphical
model to detect coevolution between interacting compo-
nents. The model incorporates phylogenetic relations
between species, sequence substitution rates for neutral mu-
tation, selective constraints of interactions, and the spatial
dependency between adjacent sites. The generality and sim-
plicity of our model enable it to detect more complex inter-
actions and alleviates the problem of overfitting the data.

A primary advantage of the CO model is its capacity in
predicting RNA tertiary interactions. Among the 41 puta-
tive interactions on 16S rRNA, 23 demonstrate either direct
contact or proximity in the 30S subunit of T. thermophilus.
The results suggest that many so-called false positives are
likely candidates for tertiary or indirect interactions.

FIG. 6.—ROC curves of 16S rRNA interaction prediction with
different clades; solid: the entire data set (146), dotted: nonmitochondria
sequences (137), dashed: bacteria sequences (77), dashed dotted:
eukaryotes and archaea sequences (50).
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Particularly, almost all the pairs exhibiting strong covaria-
tion patterns have direct contact, despite other contacting
pairs having weaker covariation scores. This implies that
coevolution is a strong indicator but not a necessary con-
sequence of physical interactions.

Several pairs demonstrate strong covariation yet pos-
sess no apparent hydrogen bonds. We suspect that coevo-
lution in these cases arises from the structural constraints
beyond secondary and tertiary interactions. Examples in-
clude pair 1029–1032 in the tetraloop (which covaried be-
tween UG and GA) and pair 440–497 (which covaried
between UU, AC, and CG). These structural constraints
are worth pursuing.

In addition to Watson–Crick and GU pairs, the puta-
tive interactions contain the following common base pairs:
GA, CC, UU, AC, CA, AA, and GG. The existence of the
diverse nucleotide pair configurations confirms the com-
plexity of tertiary interactions reported in previous studies.
It also illustrates the power of a general CO model in de-
tecting RNA tertiary interactions.

The simple CO model can successfully detect more
than half of the secondary interactions of 16S rRNAs.
The CO model is significantly better than the other 4 meth-
ods in predicting secondary interactions. The poor perfor-
mance of WC and WCW models is likely due to the artifacts
of not penalizing conserved non-WC (or WCW) states as
discussed in Results. Mutual information selects spurious
covariation due to common phylogeny. Marking the signif-
icance of mutual information reduces false positives but
also increase false negatives. The multiple dependency
score slightly outperforms mutual information, yet is still
inferior to the CO model. In contrast, the CoMap program
achieves a similar performance compared with the CO
model. The results suggest that phylogenetic information
is crucial to improve the detection.

All the methods tested in this work are sensitive to the
quality of sequence alignment. As shown in figure 5, the
ROC curve on realigned 16S rRNA data that are purely
based on sequences (ClustalW) is substantially lower than
that based on the structure. The CO model is the least af-
fected by sequence alignment as its ROC curve on realigned
data is still higher than all the other models on structurally
aligned data. Yet the sensitivity of the CO model is still re-
duced by 40% on realigned data. The dependency on align-
ment quality may limit the applicability of any CO model
to the RNAs with unknown structure. A more reliable
approach is to adopt an iterative process of sequence
alignment and structure prediction. Rather than making
one-shot prediction on an unreliably aligned data, we can
iteratively use the prediction to improve alignment and pre-
dict the structure on the improved alignment (Lescoute et al.
2005).

The quality of 16S rRNA interaction prediction also
depends on the size of the sequence data and the represen-
tativeness in the phylogenetic tree. The marginal advantage
of adding new sequences decreases as more sequences are
included. In our specific data set, 130 sequences are the sat-
uration limit as adding more sequences does not improve
the prediction. In addition, representatives from bacteria,
eukaryotes, and archaea are all needed in order to cover suf-
ficient covariation in the secondary interactions. In contrast,

mitochondria sequences are dispensable. Given the prog-
ress of sequencing technologies, data sets of hundreds of
RNA sequences from diverse set of species will be available
for the CO models in the near future.

The simple CO model can successfully detect all the
secondary interactions and several tertiary interactions of
methionine tRNAs (results presented in Supplementary File
1, Supplementary Material online). The 4 methods achieve
similar performance in the tRNA data, yet the CO model is
better than the other 3 methods when the number of false
positives exceeds 5. Both the CO model and mutual in-
formation also detect several tertiary interactions that do
not follow Watson–Crick or GU pairing rules, such as
CA/UC covariation (pair 42–49) and AA/GG covariation
(pair 30–82).

In this work, we apply the same substitution rate ma-
trix to all the sites. In reality, the substitution rates can vary
drastically across sites. Slowly evolving sites will not be
detected by the CO model as it rewards double changes
in the rate matrix. Rapidly evolving sites, in contrast, may
induce false positives. A possible improvement is to divide
the sequence into several regions and apply different rate
matrices to different regions.

Another possible artifact of reweighting the substitu-
tion rate matrix is that it distorts the stationary marginal dis-
tribution of single nucleotides. Because there are only 2 free
parameters but eight equalities to satisfy, it is generally in-
feasible to maintain the stationary marginal distribution.
Also, because the CO model imposes the same reward to
each double change, it may favor the sequence composition
where many base pairs occur. This may explain some false-
positive predictions.

We only consider pairwise interactions between 2 nu-
cleotides. Higher order interactions are treated as aggrega-
tion of pairwise interactions. An example is a secondary
interaction (16–30) and a tertiary interaction (30–82) in
tRNA (Supplementary File 1, Supplementary Material on-
line). Each pairwise covariation (16–30, 30–82, 16–82) was
detected by the CO model. Screening more general high
order interactions is computationally more involved as
the size of the joint substitution rate matrix grows exponen-
tially with the dimension.

In this work, we only concern the interactions of nu-
cleic acids within one RNA molecule (tRNA or 16S rRNA).
The main reason of choosing these molecules is the abun-
dant sequence data and information about the molecular
structures. They serve as a good test case for our model.
The CO model, however, is not restricted to intramolecular
RNA interactions. In the future, we plan to apply the model
to predict the inter molecular RNA/DNA interactions such
as between tRNAs and rRNAs, between micro RNAs, and
their targets.

Because the CO model requires no knowledge about
interaction rules and contains only a few extra free param-
eters independent of the size of the substitution rate matrix,
it is natural to extend the model to other types of interac-
tions such as intraprotein, protein–protein, protein–DNA,
and protein–RNA interactions. Unlike RNA structure, these
interactions are less well studied; hence, a large training
data for parameter estimation is not readily available. Pos-
sible ways to resolve this problem include estimating the
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parameters from limited known training data (e.g., amino
acid residues that are physically in contact and undergo
compensatory substitution across species) or only reporting
the results that are robust against a wide range of parameter
settings. In addition to physical interactions, coevolution
may arise from functional constraints beyond physical in-
teractions. A general model of coevolution serves as a pow-
erful tool to investigate a wide range of CO phenomena.

Supplementary Material

Supplementary Files 1–5 and Figure 3 are available at
Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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