
Exact loopy belief propagation on Euler graphs

Chen-Hsiang Yeang1

1Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

Abstract— Belief propagation is widely used in inference of
graphical models. It yields exact solutions when the under-
lying graph is singly connected. When the graph contains
loops, double-counting of evidence may degrade the accu-
racy of converged beliefs or even prohibit the convergence
of messages.

In this paper, we propose an exact belief propagation
algorithm on Euler graphs. An Euler graph contains paths
(Euler paths) which traverse the entire graph by visiting
each edge exactly once. By exploiting this property, mes-
sages are propagated along an Euler path without double
counting local evidence. Unlike standard belief propagation,
it postpones marginalization over a variable until all edges
incident to the variable have been traversed along the Euler
path.

The primary bottleneck of the algorithm is the marginal-
ization over multiple variables which may have exponential
time complexity. We propose two conditions when it is
tractable. If O(log n) nodes have loops and each node
has loop sizeO(c), then the marginalization of almost
every variable requires polynomial time. Furthermore, if all
nodes have loop size no greater thanO(log n), then only
O(log n) variables require marginalization over an exponen-
tial number of configurations. Empirical results demonstrate
the Euler belief propagation can efficiently evaluate the
exact marginal probabilities when the graph has a clustered
structure.

Keywords: belief propagation, Euler graph

1. Introduction
Belief propagation (BP) algorithms [1], [2] are widely

used in evaluating marginal probabilities and finding the
maximum a posteriori configurations of graphical models
such as Bayesian networks, Markov random fields, or factor
graphs. A graphical model can be represented as a graph
where terms in the joint distribution correspond to nodes
or edges. Message functions are defined on graph edges.
At each iteration, each message is updated according to
the terms of the corresponding edge and nodes and its
neighboring messages. Message updates continue until all
messages converge to a fixed point. The belief function of a
variable is the product of messages incident to the variable.
Because the algorithms are efficient in many problems and
easy to implement, they have become one of the major tools
in machine learning and been applied in many different prob-
lems. Examples include probabilistic inference of Bayesian

networks [3], decoding complex error-correcting codes [4],
solving Boolean satisfiability problems [5], computer vision
[6], statistical physics [2], and bioinformatics [7].

Belief propagation converges to the exact marginal or
max-marginal probabilities when the underlying graph is a
tree or a forest. When the graph contains loops, messages
may circulate around loops and local evidence is counted
multiple times [1]. Thus the resulting beliefs may be no
longer accurate, or may not even converge to a fixed point.

Empirical studies indicate that belief propagation achieves
great performance in some practical problems of complex
loopy graphs [8]. Nevertheless, finding better approximations
for loopy belief propagation and demarcating the scenar-
ios when accuracy is achieved are still of theoretical and
practical interests. Many previous works toward these two
directions have been pursued. For instance, Weiss cast belief
propagation on a loopy graph as belief propagation on
an unwrapped tree converted from the original graph, and
concluded that BP on graphs with a single loop is exact [9].
He further showed that BP on Gaussian graphical models
is exact regardless of the graph structure [10]. Yedidia et
al. cast model inference as the problem of minimizing the
free energy in a statistical physical system, and showed
that BP minimizes an approximated bethe free energy [2].
They consequently generalized BP to optimize a better
approximation – Kikuchi free energy – to the free energy.
Wainwright et al. decomposed the joint distribution on an
arbitrary graph as a mixture of trees, and devised the tree
reweighting algorithm which accurately identifies the MAP
configurations [11].

In this paper, we propose a belief propagation algorithm
on a special type of graphs – Euler graphs. An Euler graph
contains paths which traverse the entire graph by visiting
each edge exactly once. By exploiting this property, we
propagate messages along an Euler path without double
counting local evidence. Different from the standard BP,
marginalization over a variable is postponed until all edges
incident to this variable have been traversed. This algorithm
gives exact marginal probabilities.

The major bottleneck of this algorithm is the marginaliza-
tion over multiple variables. If the Euler path contains loops,
then the messages along the loops have multiple variables.
Direct marginalization over multiple variables has exponen-
tial time complexity in terms of variable size. Therefore, it
is necessary to control the number and size of loops in order
to make the algorithm tractable. We specify two conditions
when the Euler BP is tractable: when the number of the

loops isO(log n) and the size of loops isO(c), and when
the size of loops isO(log n).

The rest of the paper is organized as follows. Section 2
describes the motivation and procedures of the Euler belief
propagation algorithm. Section 3 proves the exactness of
the algorithm. In Section 4, we discuss the bottleneck of
the algorithm and give two propositions to the conditions
when the Euler BP is tractable. In Section 5, we then
compare the performance of the standard BP and the Euler
BP on simulated data. Finally, in section 6 we summarize
the contribution of our work and discuss extensions of the
current algorithm.

2. Euler belief propagation algorithm
We first define a specific class of graphical models and

message update rules, and use them throughout the paper.
Denote G = (V, E) an undirected graph. We define a
Markov random fieldMG over a collection of binary random
variablesXV , where each variable corresponds to a node
in V . The joint probability mass function ofMG can
be expressed as the product of pairwisepotential terms
associated with edges inG:

P (XV |MG) ∝
∏

(xi,xj)∈E

φ(xi, xj). (1)

This definition deviates from a typical Markov random field,
which also contains potential terms associated with nodes
in G. This difference is unimportant for our purpose since
we can absorb a singlet potential term into a pairwise
potential term and express the typical Markov random field
as equation 1.

In this paper we consider the marginal probabilities of
single variables:

P (xi|MG) =
∑

XV \xi

P (XV |MG). (2)

P (xi|MG) can be exactly calculated by the standard belief
propagation algorithm ifG is singly connected (trees or
forests). Define2|E| messages on the graph, where each
messagemxi→xj

(xj) is associated with an edge(xi, xj) ∈
E. Initially set each messagem0

xi→xj
(xj) = 1. At each

iteration, update messages according to the following rules:

mt+1
xi→xj

(xj) =
∑

xi

φ(xi, xj)
∏

xk∈N(xi)\xj

mt
xk→xi

(xi), (3)

where N(xi) denotes neighbors ofxi. Message updates
continue until all messages converge. The belief function
of variablexj is the product of messages incident toxj :

b(xj) ∝
∏

xi∈N(xj)

mxi→xj
(xj). (4)

WhenG contains loops, the standard BP may not converge
to the exact marginal probabilities. Inaccuracy arises from
two related properties of the standard BP. First, since all

messages are simultaneously updated, local evidence of
potential terms may appear multiple times in messages.
Second, because each message is a function of a single
variable (the destination of the message), each message
update marginalizes over one variable (the source of the
message). When messages are propagated around a loop,
some variables can be locally marginalized multiple times.
Both problems are illustrated in Figure 1. The message from
x5 to x1 can be expressed as

mt
x5→x1

(x1) =
∑

x5
φ(x1, x5)m

t−1
x4→x5

(x5)m
t−1
x3→x5

(x5)
=

∑

x5
φ(x1, x5)

∑

x4
φ(x4, x5)

∑

x3
φ(x3, x5)·

∑

x2
φ(x2, x3)

∑

x1
φ(x1, x2)m

t−4
x5→x1

(x1).
(5)

If message updates continue, each potential term along the
loop will keep on multiplying to the messages. Moreover,
even if we stop message update att = 4 to let eachφ appears
in mt

x5→x1
(x1) exactly once, it is still not the marginal

probabilityP (x1), since marginalization overx1 appears in
equation 5.

x
x

x x

2

34

5

x1

Fig. 1: Problem of message circulation

One way to make sure each potential term appears exactly
once in messages is to update messages sequentially along
a path. This is by no means a new concept. Forward-
backward and Viterbi algorithms on hidden Markov models
[13] sequentially update probability functions along the
Markov chain, and they can be viewed as special cases of
BP. However, to make sequential updates on a general graph
we have to find a path that traverses each edge exactly once.

Finding a path which traverses each edge of the graph
exactly once is the famous Euler path problem. It was first
studied by Euler in 1736, and is considered as one of the
first problems in graph theory. Euler showed the following
conditions in which a graph has an edge-traversing path.

Theorem (Euler 1736)
An undirected graphG has an Euler path iff it has either

no nodes of odd degrees or only two nodes of odd degrees.
A graph is called an Euler graph if it contains an Euler

path. An Euler path in an Euler graph can be constructed in
linear time in terms of the graph node size [12].

For an Euler graph, the double-counting problem can be
resolved by updating messages sequentially along an Euler
path. At each iteration, only one message is updated, and
the update is according to the potential term of the current

edge and the message at the preceeding edge along the path,
instead of all messages incident to the source node.

The double-marginalization problem can be resolved by
postponing the marginalization over a variable until all edges
incident to the variable have been traversed along the Euler
path. A simple example is illustrated in the top graph of
Figure 2. Suppose message updates follow the orderx1 →
x2 → x3 → x1. When updatingmx2→x3 , we can marginal-
ize overx2 since all potential terms containingx2 appear
in mx2→x3 . Hencex2 will not be double-marginalized at
subsequent steps. In contrast,x1 is not marginalized out
in updatingmx1→x2 , since the termφ(x3, x1) has not yet
appeared. Thus the message update ofmx2→x3 is

mx2→x3(x1, x3) =
∑

x2

φ(x2, x3)mx1→x2(x1, x2). (6)

Notice a message can be a function of multiple variables.
The arguments of a message include the destination variable
and all variables which remain unmarginalized up to the
current update.

x

xx

1

23

1

m(x)1
m(x ,x)1

x1

x3 x2

m(x ,x)1 3 m(x)

m(x ,x)1

2

1

2

m(x ,x)3

−1 −1

−1

Fig. 2: An example of the Euler BP

Finally, a message incident to a variable contains the
potential terms up to the current edge along the Euler
path. However, the accurate belief function of a variable
should contain all potential terms. To include the potential
terms of the remaining edges, we have to run the message
updates along the inverse direction of the original path. Two
messages are complementary if they together cover every
edge in the graph. The belief function of a variable is the
product of two complementary messages incident to the
variable, marginalized over all except the target variable. For
example, in Figure 2 the complementary messages ofx3 are
mx2→x3(x1, x3) andm−1

x1→x3
(x1, x3), where

m−1
x1→x3

(x1, x3) = φ(x1, x3). (7)

Combining these procedures, we can now describe the Euler
BP algorithm.

Inputs: An Euler graphG = (V, E), probability mass
function P (X) = 1

Z

∏

e∈E φe(xe1 , xe2).
Outputs: Marginal probabilitiesP (xi) for eachxi ∈ XV .

Procedures:

1) Identify an Euler path π of G. Denote
π(1), · · · , π(|E|) as the edge sequence along
π.

2) Initialize messagem0(X) = 1.
For i = 1 to |E|, update messages as follows.

mπ(i)(X) =

{ P

xπ(i)1
mπ(i−1)(X)φπ(i)(xπ(i)1

, xπ(i)2
)

if xπ(i)1
is traversed byπ at stepi ,

mπ(i−1)(X)φπ(i)(xπ(i)1
, xπ(i)2

)

otherwise.

(8)
3) Denoteπ−1 as the inverse path ofπ, π−1(i) = π(|E|−

i + 1). Initialize inverse messagem−1
0 (X) = 1.

For i = 1 to |E|, update the inverse messages as
follows.

m−1
π−1(i)(X) =











P

x
π−1(i)1

m
−1

π−1(i−1)
(X)·

φ
π−1(i)

(x
π−1(i)1

, x
π−1(i)2

)

if x
π−1(i)1

is traversed byπ−1 at stepi,

m
π−1(i−1)

(X)φ
π−1(i)

(x
π−1(i)1

, x
π−1(i)2

)

otherwise.

(9)
4) For each variablexi, identify complementary message

pairs ma(Xr) and m−1
|E|−a

(Xr) incident to xi. If

a = 0 or a = |E|, then m−1
|E|−a

(Xr) = 1 or
ma(Xr) = 1 respectively. If there are multiple pairs
of complementary messages, find the one with the
smallest|Xr|.
The belief function ofxi is

b(xi) =
∑

Xr\xi

ma(Xr)m
−1
|E|−a

(Xr). (10)

5) OutputP (X) = 1
Z

b(X).

A toy example of the Euler BP is shown in Figure 2. The
first messagem1→2 qeuals to the edge potentialφ(x1, x2).
The next messagem2→3 is a function ofx1, x3, sincex2 is
marginalized out butx1 is not yet completely traversed.

m2→3(x1, x3) =
∑

x2

φ(x2, x3)m1→2(x1, x2). (11)

Similarly, m3→1 is a function ofx1. The inverse messages
are updated along the opposite direction of the Euler path.
The belief function of a variable is the product of two com-
plementary messages incident to this variable, marginalized
over all except the target variable. In this example,

b(x2) =
∑

x1

m1→2(x1, x2) · m
−1
3→2(x1, x2) (12)

3. Exactness of the algorithm
We have explained in Section 2 the intuition why the Euler

BP outputs the exact marginal probabilities. In this section,
we give a formal proof about the exactness of the algorithm.

Theorem
b(xi) ∝

∑

X\xi
P (X) for eachxi.

Proof

We have to show that (1) eachφe(xe1 , xe2) appears in
b(xi) exactly once, (2) each variable exceptxi is marginal-
ized exactly once inb(xi).

According to equations 8 and 9,ma(Xr) contains poten-
tial terms φπ(1), · · · , φπ(a) exactly once, andm−1

|E|−a
(Xr)

contains potential termsφ−1
π−1(1), · · · , φ−1

π−1(|E|−a) exactly
once. Becauseπ−1(1) = π(|E|), · · · , π−1(|E| − a) =
π(a + 1), ma(Xr) and m−1

|E|−a
(Xr) cover each potential

term exactly once. Thus (1) is true.
To show (2), we first show that a variable is not double-

marginalized inma(Xr) or in m−1
|E|−a

(Xr). This is clear
from message update equations 8 and 9, since we marginal-
ize each variable at most once alongπ or π−1. We also have
to show a variable is not marginalized in bothma(Xr) and
m−1

|E|−a
(Xr). If a variablexj is marginalized inma(Xr),

then according to message update rules no edges inπ(a +
1) = π−1(|E|−a), · · · , π(|E|) = π−1(1) are incident toxj .
Hencexj does not appear in potential terms ofm−1

|E|−a
(Xr)

and is not marginalized inm−1
|E|−a

(Xr). The same arguments

hold for variables marginalized inm−1
|E|−a

(Xr). (2) also

guaranteesma andm−1
|E|−a

have the same set of unmarginal-
ized variablesXr. Each variable inXr appears in the
potential terms inma andm−1

|E|−a
.

4. Analysis of the algorithm
An exact algorithm is useful only if it is efficient. In this

section, we compare the time complexities of the standard
BP and the Euler BP, and give two propositions about the
conditions when the Euler BP is efficient.

The time complexity of the standard BP depends on
the number of iterations it takes to converge. Consider a
graph ofn edges. Each iteration has2n message updates.
For a tree, it takesO(n) iterations to converge. Hence
the time complexity isO(n2). The time complexity on
loopy graphs can be much higher. There are2n message
updates in the Euler BP. However, the marginalization in
belief function calculation (equation 10) is the bottleneck
of the algorithm. For an arbitrary function ofk binary
variables, the time complexity of marginalizing it overk−1
variables isO(2k−1). Therefore, the time complexity of the
Euler BP isO(2m−1n), wherem is the maximum number
of unmarginalized variables in each message and inverse
message.

Under what condition is the Euler BP tractable? If the
maximum number of unmarginalized variables isO(log n),
then the time complexity of the algorithm is polynomial.
This criterion is often too stringent. Thus we relax it by
allowing a small fraction of messages with more than
O(log n) unmarginalized variables. We can choose not to
marginalize these messages at the last step of the algorithm
(equation 10). The price to pay is not being able to calculate
the marginal probabilities of all variables. However, onlya

negligible fraction of variables are skipped if they scale as
O(c) or O(log n) andn is large.

The number of unmarginalized variables of each message
depends on the graph topology and the Euler path. A variable
is unmarginalized in a message if along the Euler path
the first edge containing this variable appears before the
current message, and the last edge containing this variable
does not yet appear. Intuitively, a highly connected graph
tends to have many unmarginalized variables. For instance,
along the Euler path of a cliqueKn, each message hasn
unmarginalized variables. Thus the time complexity of the
Euler BP onKn is identical to the brute force calculation
of marginal probabilities. We quantize this intuition withthe
size of loops along an Euler path.

We define a loopLi of nodexi along an Euler pathπ
as the segment ofπ between the first edge emanating from
xi and the last edge incident toxi. Li can visitxi multiple
times if xi has more than 2 edges. Ifxi has 2 edges, thenπ
will never visit backxi after it leavesxi. In this casexi does
not have a loop. Ifxi has an odd number of edges, thenxi is
an end point ofπ. We specify the loop of the starting node
as the entire path and the end node does not have a loop.
Furthermore, we define the loop size|Li| as the number
of distinct nodes alongLi. We also denotexi influences
another nodexj if Li containsxj . Figure 3 illustrates several
examples of loops along an Euler path. A loop is marked by
thick lines in a graph.

The number and size of loops along an Euler path deter-
mines the number of unmarginalized variables. A variable
with a long loop appears in many messages, and more
variables are accumulated as unmarginalized as there are
more loops. We give two propositions on the number and
size of loops when the Euler BP is tractable.

loop size=0

loop size=0

loop size=3

loop size=5

Fig. 3: Loops along Euler paths

Proposition 1
Given an Euler graphG with n nodes and an Euler pathπ.

If the number of nodes which have loops isO(log n), and the
size of each loop isO(c), then there areO(c) nodes which

are influenced by more thanO(log n) nodes. Therefore, all
but a constant number of variables can be marginalized using
the Euler BP in polynomial time.

Proposition 2
Given an Euler graphG with n nodes and an Euler pathπ.

If the size of each loop isO(log n), then there areO(log n)
nodes which are influenced byO(n) nodes. Therefore,
O(log n

n
) fraction of variables cannot be marginalized using

the Euler BP in polynomial time.
Proposition 1 is obviously stronger. It limits the number

of loops to O(log n) and requires loop sizes do not scale
with the graph size. Under this condition almost all variables
can be marginalized in polynomial time. Only a constant
number of variables may take exponential time. They can be
either skipped or evaluated by constructing other Euler paths.
Proposition 2 relaxes the stringent condition in proposition
1 by restricting loop sizes toO(log n) and removing the
limit of loop numbers. Consequently,O(log n) nodes may
take exponential time to marginalize. Although this is a
small fraction whenn is large, the total number of skipped
variables can be substantial.

What type of graphs satisfy conditions in propositions 1
and 2? For proposition 1, a graph is linear in most part, and
it can make “detours” to a relatively small number of loops
(O(log n)) with constant size. For proposition 2, a graph
can have a hierarchical structure. It comprises many clusters
of sizeO(log n). Each cluster can have a highly connected
topology (e.g., fully connected), but clusters are connected
by simple paths.

5. Proof of propositions
To prove propositions 1 and 2 we first show an important

lemma.
Lemma 1 Suppose there areN0 nodes with loop size 0,

N1 nodes with loop size 1,· · · , Nl nodes with loop sizel,
where l is the maximum loop size. The number of nodes
influenced by≥ k nodes≤ 1

k
(N1 + 2N2 + · · · + lNl).

Proof We define ann × n matrix T as follows:

Tij =

{

1 if xi influencesxj ,
0 otherwise.

(13)

Row i represents nodes influenced by nodei, and columnj
represents nodes influencing nodej. The total number of 1s
in T is

∑l

i=1 iNi. Denotenk the number of nodes influenced
by ≥ k nodes, i.e., the number of columns with≥ k 1’s.
The number of 1s inT contributed by nodes influenced by
≥ k nodes is greater than or equal tok · nk. Thus

∑l

i=1 iNi ≥ knk; nk ≤ 1
k

∑l

i=1 iNi. (14)

Proof of proposition 1
From the conditions in proposition 1, the maximum loop

size l is a constant, and
∑l

i=1 Ni ≤ #(nodes with loops)

≤ k′ log n, wherek′ is another constant. Thus

l
∑

i=1

iNi ≤ l ·
l

∑

i=1

Ni ≤ lk′ log n. (15)

By applying equation 15 to lemma 1,

(# nodes influenced by≥ k log n nodes)
≤ 1

k log n

∑l

i=1 iNi ≤
lk′

k
= constant,

(16)

which proves proposition 1.
Proof of proposition 2
From the condition in proposition 2,l = k′ log n, where

k′ is a constant. By applying lemma 1,

(# nodes influenced by≥ kn nodes) ≤ 1
kn

∑l

i=1 iNi

≤ 1
kn

· l ·
∑l

i=1 Ni ≤
l

kn
· n ≤ k′

k
log n.

(17)
Hence proposition 2 is proved.

6. Experiments
We compared the accuracy and time complexity between

the standard belief propagation and the Euler belief propa-
gation algorithms on artificial data. The data was generated
by creating random Euler graphs with given numbers of
nodes and edges and assigning random potential functions
to each edge of the graph. For simplicity we considered all
random variables as binary. The accuracy of the inference
results was gauged by theL1 norm of the difference be-
tween the marginal probabilities and the (normalized) belief
functions. We reported both the largestL1 difference among
all variables and the fraction of variables whoseL1 differ-
ence exceeds a threshold (0.05). The time complexity was
measured by the number of summations and multiplications
in the marginalization steps of the algorithms.

We first verified the accuracy of the Euler BP by running
experiments on small graphs (between 5 and 15 nodes), and
compared the performance with the standard BP. We varied
both node and edge sizes. For each fixed number of nodes,
edge numbers ranged from the number of nodes +1 (almost
a tree) to maximum number of possible edges (a clique).
Under each setting of node and edge numbers, 1000 random
graphical models were created. We applied both standard
and Euler BPs to each model and reported the accuracy of
inference results. As expected, the belief functions of the
Euler BP are identical to the marginal probabilities over
all settings and all random experiments. Figures 4.1 and
4.2 demonstrates the mean of the maximumL1 deviations
and the fractions of inaccurate variables for the standard
BP. Clearly, inaccuracy increases as the graph becomes
bigger (more nodes) or more connected (more edges). Both
maximum deviation and the fraction of inaccurate variables
are low in each setting. For cliques of 15 nodes, the
mean maximum deviation is 0.2 and the mean fraction of
inaccurate variables is 0.25. The high accuracy is consistent
with previous observations that belief propagation achieved

good empirical performance. However, the high variance of
the inaccuracy over random experiments (not shown here)
suggests there exists settings of graph connections and edge
potentials which make the inference results inaccurate even
in small models.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

normalized # edges

fr
ac

. i
na

cc
ur

at
e

va
ria

bl
es

nodes=5

nodes=7

nodes=9

nodes=11

nodes=13

nodes=15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

normalized # edges

m
ax

 d
ev

ia
tio

n

nodes=5

nodes=7

nodes=9

nodes=11

nodes=13

nodes=15

Fig. 4: Accuracy of standard BPs. Top: the fraction of
incurate variables versus the number of nodes and sparsity
in the graph. Bottom: the maximumL1 distances between
inferred and real probabilities versus the number of nodes
and sparsity in the graph. Errors of Euler BPs are 0 in all
experiments thus are not shown.

We then compared the time complexity of the algorithms
on larger graphs. As discussed in Section 4, the Euler BP is
tractable if the graph has a clustered structure. We createda
large graph by first generating random clusters of the same
size, then connecting these clusters in a sequence. The top
diagram of Figure 5 shows the mean time complexities of
standard and Euler BPs with fixed numbers of clusters. For
graphs of low connectivity (the x points), complexities of
both algorithms tend to scale sub-exponentially in terms of
cluster size. This is reasonable since the stanard BP takes
fewer iterations to converge, and the Euler BP encounters
fewer loops along the Euler path. The Euler BP is more
efficient than the standard BP when the cluster size is small
or the graph is sparsely connected. This is sensible since
the number of message updates in the Euler BP is much
smaller than that in the standard BP. Thus the Euler BP is
more efficient if the bottleneck of marginalization is relieved.
As the connectivity increases, both algorithms tend to scale
exponentially in terms of cluster size, but the Euler BP has
a higher rate. As discsussed in Section 4, the Euler BP
on a highly connected graph is similar to the brute force
evaluation of marginal probabilities. The standard BP is

much more efficient than the Euler BP on highly connected,
large graphs, but its accuracy also degrades, as shown in
Figure 4.

5 6 7 8 9 10 11 12 13 14 15
10

1

10
2

10
3

10
4

10
5

10
6

nodes

co
m

pl
ex

ity

clusters=1

BP tree

BP edge frac=0.5

BP edge frac=1.0

EBP tree

EBP edge frac=0.5

EBP edge frac=1.0

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8
x 10

6

clusters

co
m

pl
ex

ity

nodes=13

BP tree

BP edge frac=0.5

BP edge frac=1.0

EBP tree

EBP edge frac=0.5

EBP edge frac=1.0

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

clusters

fr
ac

. i
na

cc
ur

at
e

va
ria

bl
es

edge frac=1.0

nodes=5

nodes=10

nodes=13

nodes=15

Fig. 5: Complexity and accuracy of Euler and standard BPs
on large graphs. Top: time complexity versus the number of
nodes and sparsity in the graph. Middle: time complexity
versus the number of clusters and sparsity in the graph.
Bottom: fraction of inaccurate variables versus the number
of clusters.

The middle diagram of Figure 5 shows the mean time
complexity of both algorithms in terms of cluster numbers.
Clearly, it scales linearly with the cluster number. This is
a very useful property for the inference on large graphs.
In the experiments, we can calculate the exact marginal
probabilities of graphs with 750 nodes and 5250 edges if
they have a clustered structure. This would be intractable
for the brute force evaluation. The mean inaccuracy in the
bottom diagram of Figure 5 suggests that the fraction of
inaccurate variables of the standard BP is independent of
the number of clusters but only depends on cluster size
and connectivity. This result may serve as the argument for
using the standard BP to graphs of the clustered structure.

However, the total number of inaccurate variables increases
as the graph size. This is undesirable if the goal is to
minimize the number of inaccurate variables.

7. Conclusion and discussion
Calculating the marginal probabilities of graphical models

has many important applications. The standard belief prop-
agation algorithm can efficiently approximate the marginal
probabilities, but the inference results may not be exact if
the graph contains loops. In this paper, we propose a revised
belief propagation algorithm, the Euler BP, which calculates
the exact marginal probabilities on Euler graphs. The Euler
BP avoids over-counting evidence by propagating messages
along an Euler path and postponing marginalization until
each evidence pertaining to a variable is traversed. We
propose two conditions in which the Euler BP is tractable
in large graphs. Experiments on artificial data verify the
accuracy of the Euler BP, and show the algorithm is tractable
when the graph comprises small clusters connected in a
sequence.

The current version of the algorithm is tractable to a
specific class of graphs. Several directions of improvement
are important. First, we want the algorithm to apply to
non Euler graphs. A trivial approach is to add “dummy
edges” between nodes of odd degrees, and assign identity
potential functions to these edges. The marginal probabilities
of the augmented graph are identical to the original graph.
Since every graph has an even number of nodes of odd
degrees, we can convert an arbitrary graph into an Euler
graph and maintain the marginal probabilities. However, the
augmented graph may yield larger loops. Hence a criterion
of adding new edges is needed. Second, when there are
multiple Euler paths, one can be better than others because
it gives smaller and fewer loops. It is important to develop a
systematic approach to select the Euler path. Third, one way
to avoid exponential explosion on large loops is to relax the
condition for message marginalization. Instead of waiting
until each evidence is collected, one can marginalize over a
variable if the number of variables in a message exceeds a
certain number. Empirical studies about this approximation
in comparison with the standard BP is required. Fourth, the
Euler BP can also calculate max-marginal probabilities when
summation is replaced by maximization at marginalization.
However, empirical evidence suggests the error in max-
marginal probabilities rarely alters the optimal configura-
tions. Hence exact evaluation may not be very useful in
finding optimal configurations.

References
[1] J. Pearl,Probabilistic reasoning in intelligent systems: Networksof

plausible inference, San Mateo: CA: Morgan Kauffman, 1988.
[2] J.S. Yedidia, W.T. Freeman, Y. Weiss, “Understanding belief propa-

gation and its generalizations”,Exploring Artificial Intelligence in the
New Millennium, Chap 8, pp. 239-256, 2001.

[3] C. Huang and D. Dawiche, “ Inference in belief networks: aproecdural
guide”, International Journal of Approximation Reasoning15:225-263,
1996.

[4] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Soft-output
decoding algorithm in iterative decoding of turbo codes,” JPL TDA,
Tech. Rep. 42-124, 1996.

[5] M. Mezard and R. Zecchina, “Random k-satisfiability: from an analytic
soultion to an efficient algorithm,”Physical Review E66:056126-1-
056126-27, 2002.

[6] P. Felszenswalb and D. Huttenlocher, “Efficient graph-based image
segmentation,”IEEE Conference on Computer Vision and Pattern
Recognition59(2):167-181, 2004.

[7] C.H. Yeang and T. Jaakkola, “Physical network models”,Journal of
Computational Biology, 11(2-3):243-262, 2004.

[8] B. Frey and D. MacKay, “A revolution : belief propagationin graphs
with cycles”, Proceeding of the Neural Information Processing, 1997.

[9] Y. Weiss, “Correctness of local probability propagation in graphical
models with loops”,Neural Computation12(1): 1-41, 2000.

[10] Y. Weiss and W.T. Freeman, “Correctness of belief propagation in
Gaussian graphical models”,Neural Computation13(10):2173-2200,
2001.

[11] M. Wainwright, T. Jaakkola and A. Willsky. “Exact map estimates
by (hyper)tree agreement”,Proceeding of the Neural Information
Processing, 2002.

[12] H. Fleischner,Eulerian Graphs and Related Topics, Elsevier Science,
London, 1990.

[13] L.R. Rabiner and B.H. Juang, “An introduction to hiddenMarkov
models”, IEEE ASSP Magazine4-15, 1986.

