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Abstract— Belief propagation is widely used in inference of networks [3], decoding complex error-correcting codes [4]
graphical models. It yields exact solutions when the undersolving Boolean satisfiability problems [5], computer wisi
lying graph is singly connected. When the graph containg6], statistical physics [2], and bioinformatics [7].
loops, double-counting of evidence may degrade the accu- Belief propagation converges to the exact marginal or
racy of converged beliefs or even prohibit the convergencenax-marginal probabilities when the underlying graph is a
of messages. tree or a forest. When the graph contains loops, messages
In this paper, we propose an exact belief propagationmay circulate around loops and local evidence is counted
algorithm on Euler graphs. An Euler graph contains pathsmultiple times [1]. Thus the resulting beliefs may be no
(Euler paths) which traverse the entire graph by visitinglonger accurate, or may not even converge to a fixed point.
each edge exactly once. By exploiting this property, mes- Empirical studies indicate that belief propagation acksev
sages are propagated along an Euler path without doublgreat performance in some practical problems of complex
counting local evidence. Unlike standard belief propagati loopy graphs [8]. Nevertheless, finding better approxiovati
it postpones marginalization over a variable until all edge for loopy belief propagation and demarcating the scenar-
incident to the variable have been traversed along the Euleios when accuracy is achieved are still of theoretical and
path. practical interests. Many previous works toward these two
The primary bottleneck of the algorithm is the marginal-directions have been pursued. For instance, Weiss casf beli
ization over multiple variables which may have exponentiapropagation on a loopy graph as belief propagation on
time complexity. We propose two conditions when it isan unwrapped tree converted from the original graph, and
tractable. If O(logn) nodes have loops and each nodeconcluded that BP on graphs with a single loop is exact [9].
has loop sizeO(c), then the marginalization of almost He further showed that BP on Gaussian graphical models
every variable requires polynomial time. Furthermore, lif a is exact regardless of the graph structure [10]. Yedidia et
nodes have loop size no greater th@tlogn), then only al. cast model inference as the problem of minimizing the
O(log n) variables require marginalization over an exponen-free energy in a statistical physical system, and showed
tial number of configurations. Empirical results demontgra that BP minimizes an approximated bethe free energy [2].
the Euler belief propagation can efficiently evaluate theThey consequently generalized BP to optimize a better
exact marginal probabilities when the graph has a clusteredapproximation — Kikuchi free energy — to the free energy.

structure. Wainwright et al. decomposed the joint distribution on an
arbitrary graph as a mixture of trees, and devised the tree
Keywords: belief propagation, Euler graph reweighting algorithm which accurately identifies the MAP
. configurations [11].
1. Introduction In this paper, we propose a belief propagation algorithm

Belief propagation (BP) algorithms [1], [2] are widely on a special type of graphs — Euler graphs. An Euler graph
used in evaluating marginal probabilities and finding thecontains paths which traverse the entire graph by visiting
maximum a posteriori configurations of graphical modelseach edge exactly once. By exploiting this property, we
such as Bayesian networks, Markov random fields, or factopropagate messages along an Euler path without double
graphs. A graphical model can be represented as a gramlounting local evidence. Different from the standard BP,
where terms in the joint distribution correspond to nodesmarginalization over a variable is postponed until all exige
or edges. Message functions are defined on graph edgescident to this variable have been traversed. This allgorit
At each iteration, each message is updated according tives exact marginal probabilities.
the terms of the corresponding edge and nodes and its The major bottleneck of this algorithm is the marginaliza-
neighboring messages. Message updates continue until &lbn over multiple variables. If the Euler path containsgep
messages converge to a fixed point. The belief function of hen the messages along the loops have multiple variables.
variable is the product of messages incident to the variabldirect marginalization over multiple variables has expone
Because the algorithms are efficient in many problems antal time complexity in terms of variable size. Thereforg, i
easy to implement, they have become one of the major toois necessary to control the number and size of loops in order
in machine learning and been applied in many different probto make the algorithm tractable. We specify two conditions
lems. Examples include probabilistic inference of Bayesia when the Euler BP is tractable: when the number of the



loops isO(logn) and the size of loops i®(c), and when messages are simultaneously updated, local evidence of
the size of loops i€ (logn). potential terms may appear multiple times in messages.

The rest of the paper is organized as follows. Section Becond, because each message is a function of a single
describes the motivation and procedures of the Euler beliefariable (the destination of the message), each message
propagation algorithm. Section 3 proves the exactness afpdate marginalizes over one variable (the source of the
the algorithm. In Section 4, we discuss the bottleneck ofnessage). When messages are propagated around a loop,
the algorithm and give two propositions to the conditionssome variables can be locally marginalized multiple times.
when the Euler BP is tractable. In Section 5, we therBoth problems are illustrated in Figure 1. The message from
compare the performance of the standard BP and the Eules to z; can be expressed as
BP on simulated data. Finally, in section 6 we summarize
the contribution of our work and discuss extensions of the Mk, o, (1) = >, d(w1,x5)mi L, (xs)mi L, (25)
current algorithm. =2 0 01, 25) >, dxa,25) >, (w3, 75)-

) ) _ Doa, O, 3) Yo, G, xo)mizt (1)

2. Euler belief propagation algorithm _ _ (5)

We first define a specific class of graphical models an<{if message updates continue, each potential term along the

message update rules, and use them throughout the papé?lQp will keep on multiplying to the messages. Moreover,

Denote G — (V,E) an undirected graph. We define a gv’entif we stop message update at 4 to let eachp appears

Markov random fieldV/ over a collection of binary random n mms__@l(wl) ex"’?‘?“y once, I 1S .St'” not the marg|_nal
variables X/, where each variable corresponds to a nodé)rObab'“tyP(xl)' since marginalization over; appears in
in V. The joint probability mass function of\/; can equation 5.
be expressed as the product of pairwisetential terms

associated with edges i@&:

P(Xy|Mg) < [ ¢laiz)). )
(zi,x;)EE

This definition deviates from a typical Markov random field,
which also contains potential terms associated with nodes
in G. This difference is unimportant for our purpose since
we can absorb a singlet potential term into a pairwise
potential term and express the typical Markov random field
as equation 1.

In this paper we consider the marginal probabilities o
single variables:

Fig. 1: Problem of message circulation

¢ One way to make sure each potential term appears exactly
once in messages is to update messages sequentially along
a path. This is by no means a new concept. Forward-
P(z;|Mg) = Z P(Xv|Mg). (2)  backward and Viterbi algorithms on hidden Markov models
Xy \z; [13] sequentially update probability functions along the
P(z:|Mg) can be exactly calculated by the standard beliefarkov chain, and they can be viewed as special cases of
propagation algorithm if¢ is singly connected (trees or BP. Howeve_r, to make sequential updates on a general graph
forests). Define2|E| messages on the graph, where eachve _hav_e to find a path that traverses each edge exactly once.
messagen.,,, ., (z;) is associated with an edde;, z;) € Finding a path which traverses each edge of the grgph
E. Initially set each messagmgﬁzj (z;) = 1. At each exactly once is the famous Euler path problem. It was first

iteration, update messages according to the followingstule Studied by Euler in 1736, and is considered as one of the
first problems in graph theory. Euler showed the following

mit ()= ¢(aix;)  []  mh,_..(z:), 3)  conditions in which a graph has an edge-traversing path.
i wp€N(zi)\z; Theorem (Euler 1736)

where N(z;) denotes neighbors of;. Message updates An undirected grapté: has an Euler path iff it has either

continue until all messages converge. The belief functiomo nodes of odd degrees or only two nodes of odd degrees.

of variablex; is the product of messages incidentita A graph is called an Euler graph if it contains an Euler
path. An Euler path in an Euler graph can be constructed in

bz;) o H Magi—a; (25)- (4)  linear time in terms of the graph node size [12].
2 €N () For an Euler graph, the double-counting problem can be

When G contains loops, the standard BP may not convergeesolved by updating messages sequentially along an Euler
to the exact marginal probabilities. Inaccuracy arisesnfro path. At each iteration, only one message is updated, and
two related properties of the standard BP. First, since allhe update is according to the potential term of the current



edge and the message at the preceeding edge along the pattProcedures:

instead of all messages incident to the source node. 1) Identfy an Euler path = of G. Denote
The double-marginalization problem can be resolved by m(1),---,7(|E|) as the edge sequence along

postponing the marginalization over a variable until atyesl T

incident to the variable have been traversed along the Euler 2) |nitialize messagen,(X) = 1.

path. A simple example is illustrated in the top graph of Fori = 1 to | E|, update messages as follows.

Figure 2. Suppose message updates follow the order

x9 — x3 — x1. When updatingn,, ..., we can marginal-

ize overzs since all potential terms containing, appear

Xy, M=) On() @r(i)y o Pa(i)y)

m . X — if z“(i)l is traversed byr at stepi ,
w((X) { o (i=1) QO (i) (P i)y > (i)
otherwise.

in my,_.,. Hencezs will not be double-marginalized at 8)
subsequent steps. In contrast, is not marginalized out 3) Denoter~! as the inverse path af 7~ (i) = n(|E|—
in updatingm., .., since the termj(xs, 1) has not yet i+ 1). Initialize inverse message, ' (X) = 1.
appeared. Thus the message update.gf .., is For i = 1 to |E|, update the inverse messages as
follows.
Myy—as ((El,(E?,) = Z ¢(x27x3)mzl—>m2 (1’1,1’2). (6)

-1
T2 Zzﬂ.—l(i)] Mr=1(i—1)

. . . . S 1,1 T 1)
Notice a message can be a function of multiple variables.  m~1,  (X)= LA L R OF

a1 (z) if T 1 (i) is traversed byn-’1 at stepi,

(X)-

The arguments of a message include the destination variable N O L N P IURE S Y
and all variables which remain unmarginalized up to the othenwise: @)
current update. 4) For each variable;, identify complementary message
% pairs m,(X,) and m|_E1|—a(XT) incident to z;. If
m(x,x,) a = 0ora = |E| then Mg _a(Xr) = 1or
m(x,) mq(X,) = 1 respectively. If there are multiple pairs
of complementary messages, find the one with the
. X, smallest| X ,.|.
m(x,,x;) The belief function ofr; is
X
- -1 b(z;) = Tna()(r)TniE1 _a(Xr)- (10)
mex,x) /N m(x,) XX\: -
. < 5) OutputP(X) = 2b(X).
-1 2
3m(xl,xz) A toy example of the Euler BP is shown in Figure 2. The
) _ first messagen;_,» gqeuals to the edge potential(x;, x2).
Fig. 2: An example of the Euler BP The next messageio_ is a function ofz,, 3, sincex, is

marginalized out but:; is not yet completely traversed.
Finally, a message incident to a variable contains the

potential terms up to the current edge along the Euler — ma_s(x1,23) = Y ¢(z2,23)m1a(z1,72).  (11)
path. However, the accurate belief function of a variable T3
should contain all potential terms. To include the poténtiaSim"a”y ms_1 is a function ofz,. The inverse messages
terms of the remaining edges, we have to run the messagge ypdated along the opposite direction of the Euler path.
updates along the inverse direction of the original patho Tw The pelief function of a variable is the product of two com-
messages are complementary if they together cover evepjementary messages incident to this variable, margiedliz

edge in the graph. The belief function of a variable is theyyer gl except the target variable. In this example,
product of two complementary messages incident to the

variable, marginalized over all except the target variabte b(xs) = Z mi—a2 (w1, 2) - m3 Ly (21, T2) (12)
example, in Figure 2 the complementary messages @fre )
May—zy(T1,23) @Ndm, L (21,23), where .
(@1, %3) o (1 23) 3. Exactness of the algorithm

Moimay (T1,23) = 921, 73). () We have explained in Section 2 the intuition why the Euler
Combining these procedures, we can now describe the Eul&P outputs the exact marginal probabilities. In this sextio
BP algorithm. we give a formal proof about the exactness of the algorithm.

Inputs: An Euler graphG = (V, E), probability mass Theorem

function P(X) = £ [T.cp e(@e,, Te,). b(x:) o< 3o 5\, P(X) for eacha;.

Outputs: Marginal probabilitiesP(z;) for eachz; € Xy . Pr oof



We have to show that (1) each.(z.,,z.,) appears in negligible fraction of variables are skipped if they scate a
b(x;) exactly once, (2) each variable exceptis marginal-  O(c) or O(logn) andn is large.

ized exactly once ib(z;). The number of unmarginalized variables of each message
According to equations 8 and #,(X,.) contains poten- depends on the graph topology and the Euler path. A variable
tial terms ¢,(1), -+ , br(a) exactly once, andnlEI .(X) is urrmarginalized in_ a mes_sage_if along the Euler path
contains potential termas Ly ,¢; ‘(B exact|y the first edge containing this variable appears b_efore_the
once. Becauser—1(1) = 7r(|E| (E |E| —a) = current message, and the last edge containing this variable

does not yet appear. Intuitively, a highly connected graph
tends to have many unmarginalized variables. For instance,
along the Euler path of a cliqu&’,,, each message has
unmarginalized variables. Thus the time complexity of the

uler BP onkK,, is identical to the brute force calculation
of marginal probabilities. We quantize this intuition witte
size of loops along an Euler path.

We define a loopL; of nodex; along an Euler pathr
as the segment af between the first edge emanating from
x; and the last edge incident tq. L; can visitz; multiple
Hencex does not appear in potential termsmr X,) tir_nes if; r_ra_s more than 2. edges.df has 2 edges, then

J Bl will never visit backz; after it leavesr;. In this caser; does

and is not marginalized i 'mrEr o(Xr). The same arguments not have a loop. Ift; has an odd number of edges, theris
hold for variables margrnalrzed im, 5, (X:). (2) also  an end point ofr. We specify the loop of the starting node
guarantees:, andm, E‘ ., have the same set of unmarginal- as the entire path and the end node does not have a loop.
ized variablesX,.. ach varlable inX, appears in the Furthermore, we define the loop sizé;| as the number

m(a + 1), ma(X,) andm;} | (XT) cover each potential
term exactly once. Thus &1) is true.

To show (2), we first show that a variable is not double-
marginalized inm,(X,) or in mel‘,a(Xr)- This is clear
from message update equations 8 and 9, since we margin
ize each variable at most once alongr 7—'. We also have
to show a variable is not marginalized in both, (X, ) and
m‘_El‘_a(Xr)- If a variablez; is marginalized inm,(X,),
then according to message update rules no edgesdnt
1) =a"Y|E|-a), - ,n(|E]) = m~%(1) are incident toyc7

potential terms inm,, andm El—ar of distinct nodes alond.;. We also denoter; influences
another node; if L, containse;. Figure 3 illustrates several
4 Analysis of theal gor ithm examples of loops along an Euler path. A loop is marked by

thick lines in a graph.

An exact algorithm is useful only if it is efficient. In this ~ The number and size of loops along an Euler path deter-
section, we compare the time complexities of the standarthines the number of unmarginalized variables. A variable
BP and the Euler BP, and give two propositions about thavith a long loop appears in many messages, and more
conditions when the Euler BP is efficient. variables are accumulated as unmarginalized as there are

The time complexity of the standard BP depends ornore loops. We give two propositions on the number and
the number of iterations it takes to converge. Consider &ize of loops when the Euler BP is tractable.
graph ofn edges. Each iteration h&x message updates. o .
For a tree, it takesO(n) iterations to converge. Hence loop size=0 loop size=2
the time complexity isO(n?). The time complexity on
loopy graphs can be much higher. There @re message l
updates in the Euler BP. However, the marginalization in
belief function calculation (equation 10) is the bottlekec
of the algorithm. For an arbitrary function of binary
variables, the time complexity of marginalizing it ovier- 1
variables isO(2*~1). Therefore, the time complexity of the

Euler BP isO(2™~!n), wherem is the maximum number AN
of unmarginalized variables in each message and inverse / O HQ
message. o

Under what condition is the Euler BP tractable? If the \O
maximum number of unmarginalized variablesC$log n), loop size=5  loop size=
then the time complexity of the algorithm is polynomial.
This criterion is often too stringent. Thus we relax it by Fig. 3: Loops along Euler paths

allowing a small fraction of messages with more than

O(logn) unmarginalized variables. We can choose not to Proposition 1

marginalize these messages at the last step of the algorithmGiven an Euler grapl¥ with n nodes and an Euler path

(equation 10). The price to pay is not being able to calculatéf the number of nodes which have loopgi$log n), and the
the marginal probabilities of all variables. However, oaly size of each loop i®)(c), then there ar€(c) nodes which



are influenced by more thaf(log n) nodes. Therefore, all < k’logn, wherek’ is another constant. Thus
but a constant number of variables can be marginalized using . .
the Euler BP in polynomial time. ZZ-NZ. <. ZNi < Ik logn. (15)
Proposition 2 1 i1
Given an Euler grapﬁ}_with n nodes and an Euler path By applying equation 15 to lemma 1,
If the size of each loop i®©(logn), then there aré(logn) )
nodes which are influenced b§(n) nodes. Therefore, (# nodes influenced b}E klogn nodes) (16)
O(k’%) fraction of variables cannot be marginalized using < @ Zlizl iN; < % = constant,
the EuIer_BP in polynqmial time. o which proves proposition 1.
Proposition 1 is obviously gtronger. It ]|m|ts the number  proof of proposition 2
of loops to O(logn) and requires loop sizes do not scale  from the condition in proposition Z,= ' logn, where
with the graph size. Ur_1der this cor_ldltl_on almost all vareabl ;7 is 3 constant. By applying lemma 1,
can be marginalized in polynomial time. Only a constant
number of variables may take exponential time. They can be (# nodes influenced by> kn nodes) < = Zizl iN;
either skipped or evaluated by constructing other Eulehgat < ﬁ - Zi:l N; < ﬁ -n < ’% log n.
Proposition 2 relaxes the stringent condition in propositi 17)
1 by restricting loop sizes t@(logn) and removing the Hence proposition 2 is proved.
limit of loop numbers. Consequentl@)(logn) nodes may .
take exponential time to marginalize(. Altrzough this is a6- Experlments
small fraction whem is large, the total number of skipped We compared the accuracy and time complexity between
variables can be substantial. the standard belief propagation and the Euler belief propa-
What type of graphs satisfy conditions in propositions 1gation algorithms on artificial data. The data was generated
and 2? For proposition 1, a graph is linear in most part, antby creating random Euler graphs with given numbers of
it can make “detours” to a relatively small number of loopsnodes and edges and assigning random potential functions
(O(logn)) with constant size. For proposition 2, a graphto each edge of the graph. For simplicity we considered all
can have a hierarchical structure. It comprises many dalsisterandom variables as binary. The accuracy of the inference
of size O(log n). Each cluster can have a highly connectedresults was gauged by the; norm of the difference be-
topology (e.g., fully connected), but clusters are conedct tween the marginal probabilities and the (normalized)dseli

by simple paths. functions. We reported both the largdst difference among
all variables and the fraction of variables whabe differ-
5. Proof of propositions ence exceeds a threshold (0.05). The time complexity was

measured by the number of summations and multiplications
To prove propositions 1 and 2 we first show an importanin the marginalization steps of the algorithms.
lemma. We first verified the accuracy of the Euler BP by running
Lemma 1 Suppose there ar®, nodes with loop size 0, experiments on small graphs (between 5 and 15 nodes), and
N; nodes with loop size 1,--, N; nodes with loop sizé, compared the performance with the standard BP. We varied
where! is the maximum loop size. The number of nodesboth node and edge sizes. For each fixed number of nodes,
influenced by> k£ nodes< %(Nl + 2Ny + -+ IN)). edge numbers ranged from the number of nodes +1 (almost
Proof We define am x n matrix T' as follows: a tree) to maximum number of possible edges (a clique).
Under each setting of node and edge numbers, 1000 random
(13)  graphical models were created. We applied both standard
and Euler BPs to each model and reported the accuracy of
inference results. As expected, the belief functions of the
Euler BP are identical to the marginal probabilities over
all settings and all random experiments. Figures 4.1 and
4.2 demonstrates the mean of the maximli;ndeviations
and the fractions of inaccurate variables for the standard
BP. Clearly, inaccuracy increases as the graph becomes
bigger (more nodes) or more connected (more edges). Both

T 1 if z; influencesz;,
Y 0 otherwise.

Row ¢ represents nodes influenced by nadand columnj
represents nodes influencing nofderhe total number of 1s
inTis 22:1 1N;. Denoten;, the number of nodes influenced
by > k nodes, i.e., the number of columns with k& 1's.
The number of 1s iff" contributed by nodes influenced by
> k nodes is greater than or equal kG ny. Thus

Zlizl iN; > kng;ng < %2221 iN;. (14)  maximum deviation and the fraction of inaccurate variables
are low in each setting. For cliques of 15 nodes, the
Proof of proposition 1 mean maximum deviation is 0.2 and the mean fraction of

From the conditions in proposition 1, the maximum loopinaccurate variables is 0.25. The high accuracy is congiste
size( is a constant, an(zjizl N; < #(nodes with loops) with previous observations that belief propagation ackiev



good empirical performance. However, the high variance ofnuch more efficient than the Euler BP on highly connected,
the inaccuracy over random experiments (not shown herdarge graphs, but its accuracy also degrades, as shown in
suggests there exists settings of graph connections arel edgigure 4.
potentials which make the inference results inaccurate eve

in small models.

—x-BPUee
—0---BP edge frac=0.5
—+-BP edge frac=1.0

frac=05
—+— EBP edge frac=10

04 05 06
normalized # edges

Fig. 4: Accuracy of standard BPs. Top: the fraction of

incurate variables versus the number of nodes and sparsity

in the graph. Bottom: the maximurh; distances between ﬁvﬁ
inferred and real probabilities versus the number of nodes

and sparsity in the graph. Errors of Euler BPs are 0 in all
experiments thus are not shown.

We then compared the time complexity of the algorithms \M
on larger graphs. As discussed in Section 4, the EulerBPiIs ™
tractable if the graph has a clustered structure. We cremtedFig. 5: Complexity and accuracy of Euler and standard BPs
large graph by first generating random clusters of the samen large graphs. Top: time complexity versus the number of
size, then connecting these clusters in a sequence. The topdes and sparsity in the graph. Middle: time complexity
diagram of Figure 5 shows the mean time complexities ofersus the number of clusters and sparsity in the graph.
standard and Euler BPs with fixed numbers of clusters. Fopottom: fraction of inaccurate variables versus the number
graphs of low connectivity (the x points), complexities of of clusters.
both algorithms tend to scale sub-exponentially in terms of
cluster size. This is reasonable since the stanard BP takesThe middle diagram of Figure 5 shows the mean time
fewer iterations to converge, and the Euler BP encountersomplexity of both algorithms in terms of cluster numbers.
fewer loops along the Euler path. The Euler BP is moreClearly, it scales linearly with the cluster number. This is
efficient than the standard BP when the cluster size is sma#l very useful property for the inference on large graphs.
or the graph is sparsely connected. This is sensible sinda the experiments, we can calculate the exact marginal
the number of message updates in the Euler BP is mugbrobabilities of graphs with 750 nodes and 5250 edges if
smaller than that in the standard BP. Thus the Euler BP ithey have a clustered structure. This would be intractable
more efficient if the bottleneck of marginalization is rekel.  for the brute force evaluation. The mean inaccuracy in the
As the connectivity increases, both algorithms tend toescalbottom diagram of Figure 5 suggests that the fraction of
exponentially in terms of cluster size, but the Euler BP hasnaccurate variables of the standard BP is independent of
a higher rate. As discsussed in Section 4, the Euler Bfhe number of clusters but only depends on cluster size
on a highly connected graph is similar to the brute forceand connectivity. This result may serve as the argument for
evaluation of marginal probabilities. The standard BP isusing the standard BP to graphs of the clustered structure.




However, the total number of inaccurate variables increasqz3]
as the graph size. This is undesirable if the goal is to
minimize the number of inaccurate variables. 4]

7. Conclusion and discussion

Calculating the marginal probabilities of graphical madel
has many important applications. The standard belief propg;
agation algorithm can efficiently approximate the marginal
probabilities, but the inference results may not be exact i7
the graph contains loops. In this paper, we propose a revise(J]
belief propagation algorithm, the Euler BP, which calcetat [8]
the exact marginal probabilities on Euler graphs. The EuIeL9
BP avoids over-counting evidence by propagating messag 4
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each evidence pertaining to a variable is traversed. We
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in large graphs. Experiments on artificial data verify the
accuracy of the Euler BP, and show the algorithm is tractabl

by (hyper)tree agreement’Proceeding of the Neural Information
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2] H. FleischnerEulerian Graphs and Related Topjdslsevier Science,

when the graph comprises small clusters connected in a | ondon, 1990.

sequence.

The current version of the algorithm is tractable to a
specific class of graphs. Several directions of improvement
are important. First, we want the algorithm to apply to
non Euler graphs. A trivial approach is to add “dummy
edges” between nodes of odd degrees, and assign identity
potential functions to these edges. The marginal protissili
of the augmented graph are identical to the original graph.
Since every graph has an even number of nodes of odd
degrees, we can convert an arbitrary graph into an Euler
graph and maintain the marginal probabilities. Howeveg, th
augmented graph may yield larger loops. Hence a criterion
of adding new edges is needed. Second, when there are
multiple Euler paths, one can be better than others because
it gives smaller and fewer loops. It is important to develop a
systematic approach to select the Euler path. Third, one way
to avoid exponential explosion on large loops is to relax the
condition for message marginalization. Instead of waiting
until each evidence is collected, one can marginalize over a
variable if the number of variables in a message exceeds a
certain number. Empirical studies about this approxinmatio
in comparison with the standard BP is required. Fourth, the
Euler BP can also calculate max-marginal probabilitiesiwhe
summation is replaced by maximization at marginalization.
However, empirical evidence suggests the error in max-
marginal probabilities rarely alters the optimal configura
tions. Hence exact evaluation may not be very useful in
finding optimal configurations.

References

[1] J. Pearl, Probabilistic reasoning in intelligent systems: Networs
plausible inferenceSan Mateo: CA: Morgan Kauffman, 1988.

[2] J.S. Yedidia, W.T. Freeman, Y. Weiss, “Understandindieibepropa-
gation and its generalizationsExploring Artificial Intelligence in the
New Millennium Chap 8, pp. 239-256, 2001.

[13] L.R. Rabiner and B.H. Juang, “An introduction to hiddbfarkov

models”, IEEE ASSP Magaziné-15, 1986.



