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Abstract

We propose a framework to extend Markov
random walks (Szummer and Jaakkola, 2001)
to a continuum of points. In this framework,
the transition probability between two points
is the integral of the probability density over
all paths connecting the two points. Evalu-
ation of this transition probability is equiv-
alent to solving the diffusion equation with
a potential term. The solution is a general-
ization to the heat kernel (Kondor and Laf-
ferty, 2001; Belkin and Niyogi, 2002). The
continuation of discrete random walks allows
us to incorporate prior knowledge about the
manifold shape and the distribution of data.
Experiments on a synthetic dataset suggest
that continuous random walks capture the
distance metric on a manifold more faithfully
than discrete random walks.

1 Introduction

Many machine learning problems require evaluating
pairwise relations (similarities or distances) between
data points. Global distances often fail to capture
the true relations if data are distributed on a non-flat
manifold. Therefore, an appropriate way of defining
the pairwise distance is by patching together local dis-
tances between neighboring points. Two distinct ex-
amples are geodesic distances (Tenenbaum, 1998) and
Markov random walks (Szummer & Jaakkola, 2001).

Markov random walks are a probabilistic framework
of relating data points in a metric space. Transition
probabilities are specified according to local distances
between neighbors. As the random walk progresses,
distant points are mixed up and fine structures of the
data are destroyed. However, significant structures at
the global scale will remain for a long time. Since lo-
cal relations are propagated to distant points, Markov

random walks incorporate the structure of data distri-
bution in the distance metric.

Despite of their power, Markov random walks are lim-
ited by the discreteness of data points. In the origi-
nal setting, random walks take place only at observed
data points. This constraint is not desirable because
observed data points are only a finite sample of the
underlying distribution. In certain contexts, we would
like random walks to occur beyond observed data
points. For instance, when clustering a dataset where
there is an uncertainty in measurements, the data is
represented as a scalar field (an image in 2D) rather
than a set of points. The field value indicates the den-
sity of the data. In this case, random walks should
take place in the continuous region where the densities
of data do not vanish. Another example is when we
have prior knowledge about the data distribution in a
continuous region. We would like the transition prob-
abilities of observed data points to take this prior in-
formation into account. Moreover, many kernel-based
algorithms require the evaluation of the kernel func-
tion on unobserved values. Discrete Markov random
walks cannot be applied in these algorithms since they
allow transitions between observed data points only.

Those examples highlight the importance of extend-
ing Markov random walks to a continuum of points.
Matrix operations are no longer applicable since there
is an uncountable number of entries in the transition
matrix. To overcome this problem, we view random
walks from the perspective of paths rather than sin-
gle transitions. We assign probabilities to paths and
estimate conditional probabilities by performing path
integrals. The path integral formulation is shown to be
equivalent to the diffusion equation. Therefore, con-
ditional probabilities are proportional to solutions of
the diffusion equation.

Our approach is related to many previous works.
Markov random walks on finite data have been applied
in semi-supervised learning (Szummer & Jaakkola,
2001) and clustering (Tishby & Slonin, 2001). Re-



cently, diffusion or heat kernels are applied in kernel-
based machine learning algorithms (e.g., Kondor &
Lafferty, 2002; Belkin & Niyogi, 2002, Lafferty &
Lebannon, 2002). The link between path integrals
and diffusion equations (Schrödinger’s equations) was
discovered during the early era of quantum mechan-
ics and quantum field theory (Feynman, 1965). Sev-
eral works in machine learning (e.g., Bialek, Callan
& Strong, 1996; Nemenman & Bialek, 2000; Horn &
Gottlieb, 2001) are also inspired by the mathematical
techniques used in quantum theory.

The rest of the paper is organized as follows. Sec-
tion 2 reviews Markov random walks and formulates
its continuous version. Section 3 states the relation
between the path integral formulation and the diffu-
sion equation. Section 4 reports and discusses exper-
iment results. Section 5 discusses potential machine
learning applications which will benefit from continu-
ous Markov random walks. Section 6 draws the con-
clusion.

2 Markov random walks in continuum

Suppose there are m data points B = {x0 , · · · ,xm−1 :
xi ∈ Rn , ∀i}. We can construct a random walk on B
and compute the conditional probability between each
pair of points. Define a random variable x whose states
(values) are the points in B. Suppose initially we are
certain that x is in state i, i.e., the initial probabil-
ity Q0

i (x) = (0, · · · , 1, 0, · · · , 0)T whose ith entry is 1.
The transition probability from xi to xj are inversely
related to their Euclidean distance dij :

Pji =
1

Z
e−βg(dij), (1)

where g(.) is an increasing function. A point tends to
transition to its neighbors according to equation 1. If
B constitutes vertices of a graph then we set Pji =
Pij = 0 whenever (i, j) is not an edge of the graph. In
our setting we may force the transition probabilities
to vanish at non-neighbors in order to avoid distant
jumps.

Given the initial state probability Q0
i (x) and state

transition probabilities Pji, it is straightforward to
evaluate the state probability at time t:

Qt
i(x) = (P )tQ0

i (x). (2)

We express P (.|.) as the conditional probability eval-
uated at time t.

P (xj , t |xi , 0 ) ≡ P(x (t) =xj |x (0 ) =xi ) = (Q t
i (x ))j = (P)tji .

(3)
P (xj , t |xi , 0 ) can be viewed as a similarity metric be-
tween xi and xj . Different from global metrics such as

Euclidean distances or radial basis kernels, it depends
on both the locations of end points and the structure
of the data manifold. If two points are close but lo-
cated in a neighborhood where data points are sparse,
then the conditional probability is low. The condi-
tional probability also depends on t. If t is long enough
and Pji does not vanish, then all the points will mix
up at t. The stationary distribution is an eigenvector
of P . We want to stop at the stage where significant
structures of the data (for example, clusters) are pre-
served.

We are interested in generalizing the Markov ran-
dom walk to a continuous limit. In the continuous
limit, the state variable can transition to an uncount-
able number of points, and the time step ∆t tends to
zero. If the transition probability is isotropic, then the
state transition is the Brownian motion, and the con-
ditional probability P (x, t |0 , 0 ) follows the diffusion
(heat) equation:

∂P

∂t
= D∇2P, (4)

where ∇2 is the Laplacian operator. The solution of
equation 4 leads to the heat kernel used in (Kondor &
Lafferty, 2002) and (Belkin & Niyogi, 2002). However,
in all interesting problems diffusions do not carry out
isotropically. Transition probabilities depend not only
on neighboring relations but also on our information
about data densities. For example, we would like the
points close to many observed data points to attract
more transitions because they are likely in the region
of high density. Incorporating these information in the
transition matrix (the kernel function) becomes a very
difficult task.

To overcome these problems, we shift perspectives
from points to paths. In the case of finite points,
the probability that a particular path is realized in
the random walk can be computed from the transition
probabilities of edges along the path. Conceptually,
path probabilities (densities) in continuous case can
also be evaluated by multiplying the densities of in-
finitesimal transitions along the path. However, it is
more convenient to directly assign path probabilities
because paths can incorporate the global information
about regions more easily than single transitions.

How do we assign probabilities to individual paths?
We first consider an example of discrete random walks.
Let f(t) = [x0,xf1, · · · ,x1] be a path connecting x0

at t = 0 and x1 at t = T . If we fix both end points
and choose g(dij) = d2

ij in equation 1, then the path
probability is

P [f(t)] ∝
∏

t

exp(−βd2
xft,xft+1

) = exp(−β
∑

t

d2
xft,xft+1

).

(5)



The path probability in equation 5 is completely de-
termined by local relations of points. Very often the
path probability also depends on some global informa-
tion. For instance, we may require that paths travers-
ing a certain region are assigned with high probabili-
ties. As an illustrative example, we assume paths are
attracted by two sources located at µ1 and µ2. These
two sources create a mixture of Gaussian density, and
the path probability is proportional to the product of
point densities along the path:

P [f(t)] ∝ exp(−β
∑

t

d2
xft,xft+1

) ·
∏

t

G(xft;µ1, µ2, σ),

(6)
where G(x;µ1, µ2, σ) is the mixture of Gaussian den-
sity function with centers µ1, µ2 and variance σ2.

Extending to a continuous limit, equation 6 becomes

P [f(t)] ∝ exp(

∫

f(t)

[−β(
df(t)

dt
)2+logG(f(t);µ1, µ2, σ)]dt).

(7)
The path probability depends on two factors. The first
term regularizes the smoothness of the path, and the
second term incorporates the global information about
data distribution. We encode the global information
in a potential function V (x).

P [f(t)] can be rewritten as

P [f(t)] ∝ exp(−S[f(t)]), (8)

where the loss functional S[f(t)] is

S[f(t)] =

∫

f(t)

[β(
df(t)

dt
)2 − V (f(t))]dt. (9)

The conditional probability from (x0 , t0 ) to (x1 , t1 ) is
the integration of probabilities over all paths connect-
ing these two points:

P (x1 , t1 |x0 , t0 ) =

∫ x1

x0

1

Z
e−S [f (t)]D[f (t)]. (10)

Here Z is a normalization constant, and D[f (t)] de-
notes the path integral over all functions f(t) which sat-
isfy boundary conditions f(t0) = x0 and f(t1) = x1 .
We can view the path integral as summing over an
uncountable number of paths.

3 Solving path integral problems

One may argue that equation 8 does not simplify the
problem because integrating over all paths is not eas-
ier than performing pointwise transition operations.
However, evaluating equation 8 turns out to be equiv-
alent to solving a modified diffusion equation.

Theorem 1 Suppose L = β( dx
dt

)2 − V (x , t),

P (x1, t1;x, t0) =
∫ x1

x0

1
Z exp{−

∫ t1
t0

Ldt ′}D[x (t)], and

P (x, t) =
∫

∞

−∞
P (x, t|x0, t0)P (x0, t0)dx0, then P (x, t)

follows the diffusion equation

∂P (x, t)

∂t
=

1

4β

∂2P (x, t)

∂x2
− V (x, t)P (x, t). (11)

An analogous proof of theorem 1 can be found in
(Feynman, 1965; Shankar, 1980). A sketch of it is
as follows. By discretizing time steps into t0, t0 +
∆t, · · · , t0 +N∆t = t1, the path integral

∫

D[x (t)] can
be expressed as the multi-variable integral

∫
∏

i dx
i,

where xi = f(t0 + i∆t) is the path value at time
t0 + i∆t. We consider the transition probability
P (x + ∆x, t + ∆t;x, t) between neighboring points.
As ∆t → 0, we assume the straight line connecting
the two points is dominant. The influence of all other
paths vanishes due to the quadratic loss functional of
the path derivatives. The path integral thus becomes
an integral of Gaussian functions. By expressing it in
a continuous limit, we obtain equation 11.

Theorem 1 states the global behavior of averaging over
all paths can be depicted by the differential equation
of local behavior. Interestingly, this theorem also has
a profound impact in physics. In classical mechanics,
there are two equivalent formulations of describing the
trajectory of a particle. One can start with Newton’s
laws and express the trajectory in terms of the equa-
tion of motion:

∂

∂t
(m

∂x

∂t
) = F. (12)

Alternatively, one can express the trajectory as the
minimizer of the action of the system, where the action
is a loss functional of paths:

S[x(t)] =

∫

x(t)

L[x(t)]dt =

∫

x(t)

(
m

2
(
∂x

∂t
)2−V (x, t))dt .

(13)
The solution of equation 12 and the minimizer of equa-
tion 13 yield the same trajectory x(t).

In quantum mechanics, a particle is represented as
a wave function ψ(x, t). The evolution of the wave
function is characterized by the Schrödinger’s equation
(Shankar, 1980):

ih̄
∂ψ(x, t)

∂t
= −

ih̄

2m
∇2ψ(x, t) + V (x, t)ψ(x, t). (14)

Similarly, we can define the action of a particle as clas-
sical mechanics. Other than the least action path, a
particle is allowed to travel along all possible paths
connecting two points. The states at two space-time
points are connected by a propagator U(x1 , t1 ;x0 , t0 ):

ψ(x, t) =

∫

U (x, t ;x′, t ′)ψ(x′, t ′)dx′, (15)



and the propagator is determined by all paths connect-
ing (x0 , t0 ) and (x1 , t1 ).

U(x1 , t1 ;x0 , t0 ) =

∫

x1

x0

eiS [x(t)]/h̄D(x(t)). (16)

Analogous to classical mechanics, the wave function
whose transition follows equation 16 is a solution of
Schrödinger’s equation 14 (Feynman 1965; Shankar,
1980).

The propagator in equation 16 closely resembles the
conditional probabilities in equation 10. The only dif-
ference is the integrand is eiS[x(t)] instead of e−S[x(t)].
This difference is also reflected in equations 11 and
8. In fact, Schrödinger’s equation can be viewed as a
diffusion equation in the imaginary time axis.

In many machine learning problems, data are rep-
resented by many interrelated parameters. Thus al-
though the data are embedded in a high dimensional
Euclidean space, they often “live” on a manifold of
much lower dimension. Recently, there are an increas-
ing number of works of uncovering the underlying data
manifold (e.g., Tenenbaum, 1998; Roweis & Saul, 2000;
Belkin & Niyogim 2002) and constructing heat ker-
nels on particular types of manifolds (e.g., Lafferty and
Lebanon, 2002; Kondor and Lafferty, 2002). The diffu-
sion equation in theorem 1 needs to be modified when
applying it to a non-Euclidean manifold. First, the
smoothness penalty should take the curvature of the
manifold (represented as the metric tensor) into ac-
count. It becomes the square amplitude of the tangent
velocity along a path on manifold M :

|v(x, t)|2 = gij (x)(
dxi

dt
)(

dxj

dt
), (17)

where gij is the covariant metric tensor of M and Ein-
stein’s convention of index summation is adopted. Sec-
ond, if the manifold is bounded, then we may restrict
the diffusion onM by creating a barrier potential func-
tion:

V (x) =

{

0 when x ∈ M ,

∞ when x 6∈ M .
(18)

Combining 17 and 18, the loss functional of a curve
f(t) in Rn then becomes

S[f(t)] =

∫

[βgij(f(t))(
df i

dt
)(
df j

dt
) − V (f(t))]dt. (19)

Does the equivalence between the path integral and the
diffusion equation still hold on a manifold? Theorem
2 extends the results of theorem 1 to a Riemannian
manifold. Therefore, in principle we can compute con-
ditional probabilities by solving diffusion equations on
a manifold.

Theorem 2: Suppose L = βgij (x)(dx
i

dt
)(dx

j

dt
) −

V (x), where V (x) is defined in equation 18,

P (x, t ;x′, 0 ) =
∫

x

x′

1
Z

exp{−
∫ t

0
Ldt ′}D[x(t)], and

P (x, t) =
∫

P(x, t ;x′, 0 )P(x′, 0 )dx′, then P (x, t) fol-
lows the diffusion equation

∂P (x, t)

∂t
= Dgij(x)

∂2P(x, t)

∂xi∂xj

, (20)

for x ∈ M , where gij(x) is the contravariant metric
tensor ofM , which is the inverse of gij(x). P (x, t) = 0
for x 6∈ M . The proof of theorem 2 is in the appendix.

The solution of equation 20 is the diffusion kernel on a
Riemannian manifold. On certain types of manifolds,
analytic solutions of diffusion kernels have been found.
For instance, Lafferty and Lebanon (Lafferty & Leban-
non, 2002) transformed data into parametric models
and applied the diffusion kernels on the model mani-
fold. Analytical solutions on multinomial and spheri-
cal Gaussian model manifolds were described in their
paper.

The shape of the manifold is a special case of the
data distribution. We can incorporate the informa-
tion about data distribution in the potential function.
For example, use log mixture of Gaussians to represent
the influence of a finite number of sources.

4 Experiments

Suppose we have prior information that the data is
distributed continuously as in figure 1. There are two
high-density narrow regions embedded in the space
which has low data density. For machine learning
tasks, we would like to construct a similarity measure
that respects the data density. For discrete data, tran-
sition probabilities given by Markov random walks can
be used for this purpose. Here, we employ transition
probabilites given by diffusion.

We define a potential function that is constant and
low in the high-density regions (V (x, t)=0) and high
in the low-density region (V (x, t)=12). This allows
quick diffusion and high transition probabilities within
the high-density region, and low transition probabilites
outside and between regions. We use a diffusion con-
stant D=0.1, and run the diffusion for a period in the
range t = [0, 10].

The solution of the diffusion equation is calculated via
a finite element method that discretizes space into
triangular patches (as implemented by the Matlab
parabolic command, using 600 nodes).

When started from a point in the lower right region,
the diffusion begins by expanding radially (figure 2,
t=0.09). It then spreads to occupy the right region
(t=1.9), and if run for longer spills over to both re-
gions (t=20). When started from the left (figure 3)



Figure 1: Swiss-roll data

Figure 2: Diffusions on swiss-roll data

region it spreads to cover that part of space (t=14),
and when started from the low-density space it reaches
both parts (t=14), but is generally more spread out
over the whole space. For clustering and classification
purposes, the intermediate timescale (t=14) is appro-
priate for exposing the two contiguous regions1.

5 Discussion

Continuous Markov random walks are advantageous
over discrete Markov random walks in two aspects.
First, they are capable of incorporating information
from both observed data points and prior beliefs about
data distributions. Those information are represented
as the potential term in the diffusion equation. We
may use the information about continuous regions im-
plicitly in the algorithm. For instance, when perform-
ing dimensional reduction on observed data points, we
can estimate pairwise distances by performing continu-
ous diffusions. The transition probability between ob-
served data points xi and xj is the conditional density
P (xj , t |xi , 0 ) normalized by the sum of conditional
densities to all observed data points:

Q(xj , t |xi , 0 ) =
P(xj , t |xi , 0 )

∑

k P(xk , t |xi , 0 )
. (21)

This probability includes the transitions along all
paths connecting the two points. In contrast, discrete
Markov random walks restrict transitions to occur only
among observed points, thus will not be able to incor-
porate any information beyond these points.

Second, continuous Markov random walks allow us to
construct pairwise transition probabilities beyond ob-
served data points. This property makes Markov ran-
dom walks compatible with all the kernel-based algo-
rithms in machine learning. For example, a support

1Color figures of diffusion can be accessed on
www.ai.mit.edu/people/chyeang/UAI03/

Figure 3: Diffusions on swiss-roll data

Figure 4: Diffusions off the swiss-roll manifold

vector machine has the following form:

f(x) =
n

∑

i=1

αiyiK (x,xi). (22)

We can substitute the transition probability density
P (x, t ;xi , 0 ) for the kernel function. This kernel func-
tion again reflects the information about the structure
and the distribution of data on a manifold. There-
fore, as suggested in Szummer & Jaakkola, 2001, it will
be more suitable than analytic kernels such as radius-
based functions or polynomial functions.

To satisfy Mercer’s condition the kernel function must
to be positive semi-definite. The heat kernel of the
diffusion equation without the potential term is posi-
tive semi-definite in Euclidean and Riemannian spaces
(Itô, 1991). For a diffusion equation with an arbitrary
V (x), its kernel is not guaranteed to be positive semi-
definite. Nevertheless, if V (x) is non-negative every-
where, then all the eigenvalues of the kernel function
are non-negative. The proof of this theorem can be
seen in Itô, 1991.

Despite of their advantages, continuous Markov ran-
dom walks have some unresolved issues. First, it is
more costly to perform continuous Markov random
walks. To compute the conditional probability density
from each point, we need to solve the diffusion equa-
tion with an impulse initial condition. Solving differen-
tial equations is certainly more involved than matrix
multiplications. Second, numerical differential equa-
tion solvers, such as finite difference or finite elements
methods, discretize the space into small volumes. The
number of volumes grow exponentially with the di-
mension of the embedding space. Since most realistic
datasets are embedded in a high dimensional space,
the performance of numerical methods may be prob-
lematic. One approach to get around this explosion
problem is to restrict the support of the density func-
tion to a low dimensional subspace. Third, there are



several degrees of freedom in tuning the diffusion equa-
tion, including setting the stopping time, adjusting the
relative weight between the Laplacian and potential
terms, and selecting the potential function. System-
atic determination of these free parameters remains to
be an open problem.

Continuous Markov random walks are a special case
of the Bayesian functional approximation. In the
Bayesian functional approximation, we specify the dis-
tribution of functions and compute the average quan-
tities – such as the MAP estimation of the function
– according to the distribution. Simple distributions
such as Gaussian process priors (MacKay, 1997) yield
analytical solutions, but other distributions are usu-
ally difficult to solve. In this paper, functions (paths)
have only one variable (time), and the particular form
of the functional distribution transforms the path in-
tegral problem into a differential equation. In general,
however, such a correspondence does not exist. Ad-
vanced techniques in quantum field theory have been
applied to solve this general problem, for example,
Bialek, 1996.

6 Conclusion

In this paper, we propose a framework of extending
Markov random walks to continuous data. Instead of
investigating infinitesimal transitions, we assign prob-
ability densities to individual paths. The path prob-
ability is determined by the smoothness of the path
and the global information regarding data distribution
on a manifold. The conditional probability between
two points is the integration of probability densities
along all connecting paths. The conditional probabil-
ity turns out to be the solution of the diffusion equa-
tion with potential terms. We applied this method
on a synthetic dataset and demonstrated the diffusion
does faithfully reflect the shape of the data manifold.
Our method provides a way to extend Markov random
walks in incorporating both observed data and prior
information about data distribution.

7 Appendix: the proof of theorem 2

The potential value is 0 on M and ∞ outside M , thus
all the points x in this proof are onM and the potential
function vanishes.

We consider a transition from (x′, 0) to point (x, ε)
in a small time step ε. Because ε is very small the
time step is indivisible. Thus there is only one path
connecting (x′, 0) to (x, ε), and the path is a straight
line in the (x, t) space. The action along this path is
the integration of L from t = 0 to t = ε, which is
1
εβgij(x)((x− x′)i(x− x′)j), where (x− x′)i is the ith

component of the difference vector (x−x′), assuming x′

is close to x. The conditional probability P (x, ε;x′, 0)
then becomes

P (x, ε;x′, 0) =
1

Z
exp{−

β

ε
gij(x− x′)i(x− x′)j}. (23)

By assuming x is close to x′ (x′ = x + η), there is a
single path connecting x′ and x and the equation of
transition probability becomes

P (x, ε) =
1

Z

∫

exp{−
β

ε
gij(x)η

iηj}P (x+η, 0)
√

|gij(x)|dη.

(24)
Here

√

gij(x)dη is the volume integral
√

|gij(x)|dη1 · · · dηm. To make the Gaussian integral
easy to evaluate, we apply the transformation

η = Tη′, (25)

which makes η′ diagonal. In other words,

gij(x)η
iηj = ηTGη = η′TT TGTη′ = η′T · η′ =

m
∑

i=1

η
′2
i .

(26)
To make this equation hold T TGT = I . Since both T
and G are invertible and symmetric, we can swap the
order of matrix multiplication,

T TGT = GT TT = I. (27)

Hence T = G−
1
2 . Expand P (x + η, 0) to the second

order and write it in matrix form,

P (x+η, 0) = P (x, 0)+ηT ·∇P (x, 0)+
1

2
ηTH(x)η, (28)

where H(x) is the Hessian of P (x, 0). After coordinate
transformation, P (x+ η, 0) becomes

P (x+η′, 0) = P (x, 0)+η′TT T ·∇P (x, 0)+
1

2
η′TT TH(x)Tη′.

(29)
The volume element

√

|G|dη =
√

|G|
∏m

i=1 dηi is
transformed to a new volume element

dη = ν(G)dη′. (30)

where ν(G) is a scalar function of the metric tensor G.
Substituting equations 25, 27 and 28 into 22, we get

P (x, ε) = P (x, 0) + ε
∂P (x,t)

∂t ∼ 1
Z

∫

exp{−β
ε η

′T · η′}
(P (x, 0) + η′TT T · ∇P (x, 0) + 1

2η
′TG−1H(x)η′)ν(G)dη′.

(31)
exp{−β

ε η
′T ·η′} is a diagonal Gaussian density function

(up to a constant) of dimension m. By setting the
normalization constant Z appropriately the first term
on the right hand side is P (x, 0). The second term
on the right hand side is zero since the first moments



of a zero-mean Gaussian distribution are zeros. Only
the diagonal entries of G−1H(x) are of interest since
the Gaussian integrals of off-diagonal entries are 0 due
to the same reason (and separation of components of
η′). For a particular diagonal entry (G−1H)ii, the
Gaussian integral in the third term is

C

2Z

∫

e−
β

ε
(η

′2
i )η

′2
i (G−1H)iiν(G)dη′i =

C ′ε

2Z
(G−1H(x))ii.

(32)
The third term is the sum over all diagonal entries,

Dεtr(G−1H(x)) = Dε(
∑

i,j

gij(x)
∂2P

∂xi∂xj
), (33)

where gij(x) is entry of G−1. Equation 21 then reduces
to

∂P (x, t)

∂t
= Dgij(x)

∂2P (x, t)

∂xi∂xj
. (34)

Q.E.D.

References

M. Belkin and P. Niyogi (2002). Laplacian eigenmaps
for dimensionality reduction and data representation.
Technical Report TR-2002-01, Computer Science De-
partment, University of Chicago.

M. Berstein, V. de Silva, J.C. Langford, and
J.B. Tenenbaum (2000). Graph approximations to
geodesics on embedded manifolds. Technical Report,
Carnegie Mellon University.

W. Bialek, C.G. Callan, S.P. Strong (1996). Field the-
ories for learning probability distributions. Physical
Review Letters, 77(23), 4693-4697.

R.P. Feynman and A.R. Hibbs (1965). Quantum Me-
chanics and Path Integrals. McGraw-Hill, New York.

G.M. Fung, O.L. Mangasarian, J.W Shavlik (2002).
Knowledge-based support vector machine classifiers.
Advances in Neural Information Processing Systems,
14.

D. Horn and A. Gottlieb (2001). The method of quan-
tum clustering. Advances in Neural Information Pro-
cessing Systems, 13.
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