
npj | systems biology and applications Article
Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-025-00547-5

Personalized cancer treatment strategies
incorporating irreversible and reversible
drug resistance mechanisms
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Despite advances in targeted cancer therapy, the promise of precision medicine has been limited by
resistance to these treatments. In this study, we propose a mathematical modelling framework
incorporating cellular heterogeneity, genetic evolutionary dynamics, and non-genetic plasticity,
accounting for both irreversible and reversible drug resistance. Previously we proposed Dynamic
Precision Medicine (DPM), a personalized treatment strategy that designed individualized treatment
sequences by simulations of irreversible genetic evolutionary dynamics in a heterogeneous tumor.
Here we apply DPM to the joint model of reversible and irreversible drug resistance mechanisms,
analyze the simulation results and compare the efficacy of various treatment strategies. The results
indicate that this enhanced version of DPM significantly outperforms current personalized medicine
treatment approaches. Our results provide insights into cancer treatment strategies for
heterogeneous tumors with genetic evolutionary dynamics and non-genetic cellular plasticity,
potentially leading to improvements in survival time for cancer patients.

Drug resistance remains a primary obstacle in cancer treatment1. Intratu-
moral genetic heterogeneity and non-genetic plasticity in cancer cells are
two major factors of cancer treatment resistance2–9, and are widely asso-
ciatedwith poor outcomes and reduced responses to therapies1,2,10–13. A bulk
tumor typically consists of a heterogeneous population of cancer cells often
characterized by bulk or subclonal genetic instability2,10,14–17. By sequencing
tumors with a higher depth and accuracy and applying a novel mathema-
tical model, we found that every DNA nucleotide is mutated in at least one
cell in the smallest tumor visible on CT (Computed Tomography), unless
that mutation is highly selected against14. This implies that at least one
cancer cell is likely resistant to any single drug therapy andalreadypresent in
any tumor at diagnosis14. Elevated genetic mutation rates and selection
imposed by treatments drive the clonal evolution of tumors toward resis-
tance. Of note, it is likely that a subset of cells has mutations in the cellular
machinery that normally ensures genetic stability. We have termed these
subclones “hypermutator subclones,” and theymay be selected as single and
multidrug resistance evolves17. In addition, non-genetic plasticity in cancer
cells provides a rapid reversible mechanism for drug-induced resistance13.
Cancer cells can increase drug efflux, alter drug metabolism and activate
bypassing signaling pathways to become resistant to the drugs. These two
types of drug resistance mechanisms – intratumoral genetic subclonal

heterogeneity and non-genetic cellular plasticity and heterogeneity – differ
in their reversibility and in their clinical correlates. The former is irreversible
as a resistant subclone will rarely revert mutations to lose its phenotype
before expanding, and then reversionswill occur in only aminority of cells18.
It is likely to cause moderate term to late progression or relapse as it may
involve outgrowth of rare subclones, and/or the accumulation of multiple
resistance mutations. The latter is reversible as cells can alter their internal
states to adapt to changes in the microenvironment (e.g., presence or
absence of drugs), hence resistance can be reversedwhen the drug treatment
is discontinued13,19–21. This reversible resistance may occur rapidly in a
majority of cells, and clinicallymay correspond toprimary resistance and/or
short term relapses.

Previously, we have proposed mathematical models and treatment
strategies to address the irreversible and reversible mechanisms of drug
resistance in separate studies22–24. For the irreversible mechanism, we con-
structed amodel to capture the population dynamics of tumor subclones as
they acquire resistance to two or more non-cross resistant drugs through
independent mutations, and proposed a treatment selection strategy,
Dynamic Precision Medicine (DPM) to design the treatment sequence to
balance the immediate goal of shrinking tumor size and the long termgoalof
preventing the emergence of an incurable subclone resistant to both drugs22.
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(Notably, many drugs are cross resistant. Such drugs are considered the
same drug by DPM, and even when used in combination are treated as a
single “drug”). DPM contrasts with the conventional precision medicine
approach that attempts to match a drug (or a combination of drugs) to the
molecular profile of a patient but does not address the complex relations
between the patient’s molecular profile, possible treatment sequences, and
the dynamic response of the tumor. For the reversible mechanism, we
introduced another mathematical model where cancer cells responded to
the presence or absence of a drug by activating/inhibiting two alternative
pathways, and proposed an optimal dynamic treatment strategy
accordingly24.

We now report a single, integrated mathematical model that captures
both irreversible genetic drug resistance and reversible drug resistance
induced by cellular plasticity. The unified framework encompasses both
irreversible and reversible drug resistance for two non-cross resistant drugs,
and the treatment strategies that simultaneously tackle the irreversible and
reversible drug resistancemechanisms.We evaluate the effectiveness of nine
treatment strategies by simulating the dynamics of cancer cell populations.
We conduct a clinical trial simulation over 6 million virtual patients, each
representingadifferentdynamicpresentationatdiagnosis, anddemonstrate
that the DPM-based personalized treatment strategies significantly out-
perform current personalized medicine treatment approaches. Further-
more,DPMstrategies incorporatingperiodic treatment sequences that cycle
between therapies over a shorter treatment window, designed to combat
reversible resistance, are marginally superior to those without such options.
There are a number of potential cases that may be captured by this generic
modeling framework. As one example, the availability of several EGFR
tyrosinekinase inhibitors (TKIs) for treatment of non-small-cell lung cancer
(NSCLC) raises important questions about the optimal treatment
sequence25. Afatinib, a TKI used for NSCLC, commonly encounters resis-
tance through the T790M gatekeeper mutation, as well as mechanisms
involving increased IL6R/JAK/STAT signaling enhanced autophagy26. On
the other hand, osimertinib as another TKI, is highly selective for treating
T790M-positive tumors following failure of prior EGFR TKI treatment and
has shown remarkable efficacy in this setting27. Resistance mechanisms for
osimertinib have also emerged, including EGFR mutations in L718V and
G724S, HER2 amplification and RAS-MAPK pathway activation28. Inter-
estingly, afatinib was successful in overcoming G724S-mediated resistance
to osimertinib in vitro29, and preclinical studies have shown that L718V
mutation retains sensitivity to afatinib30. There are reports and clinical
studies investigating the feasibility and exploring the optimal sequencing of
these two EGFR TKIs25,31–34. Our model framework could potentially offer
insights into a more effective treatment strategy for these two inhibitors by
considering the reversible and irreversible resistancemechanism inducedby
these EGFR TKIs.

Mathematical models have been utilized to design effective treatment
strategies aimed at addressing drug resistance35–40. Gatenby and colleagues
proposed adaptive therapy, a strategy that dynamically adjusts treatment to
preserve a population of drug-sensitive cells. These cells are proposed to
compete with resistant ones, with the goal of controlling the tumor rather
than fully eradicating it41. However, these sensitive cells continue to mutate
and serve as a reservoir for future variants, and the competition between
cells may be less of a factor in small metastatic sites that are usually the
primary cause of death in patients42. Moreover, sensitive cells have in some
cases been documented to support the fitness of resistant cells in co-
culture43,44. Strobl et al. proposed that adaptive therapy could mitigate both
the toxicity and resistance associated with poly-adenosine ribose poly-
merase inhibitor (PARPi)37. Gallagher et al. applied deep reinforcement
learning to guide adaptive drug scheduling, demonstrating that such sche-
dules could outperform the current adaptive protocols in a simulation of a
mathematical model in a small cohort of virtual patients calibrated to
prostate cancer, helping to delay the onset of drug resistance. Adaptive
therapy has shown promising results in metastatic prostate cancer treating
with a single drug45. However, sensitive and resistant cells were inferred in
this model rather than measured, and it is possible that the therapy

interruptions in adaptive therapy with a single agent are effective because
they essentially promote a cycling approach, which can also be beneficial for
managing reversible resistance, rather than due to competitive interactions
between sensitive and resistant cells. Furthermore, deep learning algorithms
are very powerful but are also limited by two critical factors for tumor
therapeutics: the requirement for big training data and uninterpretable
outcomes. Our approach aims to delay or prevent the appearance of doubly
genetically resistant cell types and was one of the first to include sequencing
of multiple non-cross resistant therapies by using multiple agents22. Zhou
et al. explored non-genetic resistance mechanisms in colorectal cancer,
demonstrating that resistant clones can regain sensitivity once therapeutic
pressure is removed, highlighting phenotypic plasticity and reversibility21.
Sahoo et al. explored the coupled dynamics of epithelial-mesenchymal
transition (EMT) and the development of reversible drug resistance in
breast cancer46. These models typically focus on a single resistance
mechanism, either reversible or irreversible. In contrast, we propose a
mathematical modelling framework incorporating both irreversible and
reversible drug resistance. This approach enhances existing models by
providing insights into treatment strategies for heterogeneous tumors,
accounting for both Intratumoral genetic heterogeneity and non-genetic
cellular plasticity.

Results
Ourmodel incorporates twodrugswhere drug 1 corresponds to thefirst line
treatment and is consideredmore effective thandrug2.There arepotentially
nine states in the model representing combinations of sensitivity (S),
reversible resistance (T) and irreversible resistance (R) to the two drugs
respectively as illustrated in Fig. 1 and Table 1.We consider nine treatment
strategies which are shown in Fig. 2 such as S0 (strategy 0) representing
current personalized medicine (CPM).

DPM and Cycle are the superior strategies for the irreversible
resistance only and reversible resistance only models
respectively
Wefirst performed aqualitative check by demonstrating that the simulation
outcomes on the degenerate model with irreversible resistance alone were
similar to our previous study of DPM22. The results are consistent with our
previous observation that DPM strategies S1 and S2 outperform the CPM
strategy. Figure 3a displays the Kaplan-Meier curves of the five of the nine
treatment strategies on 578884 virtual patients in the irreversible resistance
only model. S1 (magenta) and S2 (purple) curves are significantly superior
to S0 (green). In Supplementary Table 2 and Supplementary Figure 1,
S1 and S2 have highermedian survival time,mean survival time, number of
cases of survival over 5 years, and number of cases with numerically longer
survival time compared to S0. Supplementary Table 3 shows that the
pairwise hazard ratios of S1 and S2 are much lower compared to S0. S2 is
slightly better thanS1 in termsof the aforementionedmetrics,with amedian
survival time increase of 86 days, a mean survival time increase of 33 days,
and an additional 14140 cases surviving over 5 years, resulting in a hazard
ratio of 0.935 compared to S1. These outcomes mirror the results in the
original simulation of the irreversible model22, in which S2 was the superior
strategybut hadonly a slight advantage over S1. Furthermore, by comparing
the results between S1 and S1c and between S2 and S2c in Supplementary
Table 2 and 3, we found that adding the cyclic treatment options to DPM
strategies onlymarginally increased survival times (1-2% increase fromS1 to
S1c and 0.3% increase from S2 to S2c), and yielded pairwise hazard ratios
near 1. The limited improvement by incorporating cycling treatment
options into DPM is expected because cycling drug dosages are expected to
be more effective on reversible resistance cell states, which are absent in the
degenerate irreversible resistance only model.

Figure 4a-d illustrates the benefit of the DPM strategy (S2) in a virtual
patient possessing a dominant sensitive (S1S2, ~90%) cell population and
twominor, singly resistant (R1S2, ~10%and S1R2, <0.001%) cell populations
initially. S0 (Fig. 4a) targets the dominant subclone (S1S2), thus chooses the
more effective drug 1 in the first period. Sensitive (S1S2) and drug 2 resistant
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(S1R2) cells are drastically reduced, but drug 1 resistant (R1S2) cells rapidly
proliferate and doubly resistant (R1R2) cells arise from the R1S2 cells by
mutation in the first period. Hence the tumor becomes incurable and
quickly reaches the mortal threshold. Zoomed-in views of the initial period
of Fig. 4a is shown in Supplementary Figure 2a. S1 (Fig. 4b) attempts to
minimize the predicted total population, thus chooses drug 2 in the first

period because it reduces both sensitive (S1S2) and the abundant drug 1
resistant (R1S2) cells. The total population isminimized after thefirst period,
but drug 2 resistant cells rapidly proliferate and doubly resistant cells also
arise in the first treatment window. A combination of both drugs is admi-
nistered in the second period to curb the two singly resistant cell popula-
tions, but the tumor is still incurable and quickly reaches the mortal
threshold. S2 (Fig. 4c) attempts toprevent the emergence of doubly resistant
cells, thus chooses two-drug combination in the first period to reduce both
singly resistant cell populations. The doubly resistant cells do not arise,
hence drug 2 is administered in the subsequent periods to eliminate drug 1
resistant cells. Zoomed-in views of the initial period of Fig. 4c is shown in
Supplementary Figure 2b. Eventually the patient is cured. Figure 4d displays
the trajectories of total cell numbers of the S0, S1, and S2 strategies. In
previous work22,23 we have found that initial simultaneous combinations are
not always optimal, however; this depends on the detailed dynamics.

We performed the second qualitative check by demonstrating that the
simulation outcomes on the degenerate model with reversible resistance
alone were similar to our previous study of a reversible resistance model24.
Figure 3bdisplays theKaplan-Meier curves incorporating the four out of the
seven treatment methods on 528 virtual patients in the reversible resistance
only model. The Cycle and S1c treatment substantially outperform other
strategies according to both Fig. 3b, survival timemetrics in Supplementary
Table 4, and pairwise hazard ratios in Supplementary Table 5. Moreover,

Table 1 | Cell state descriptions

Index Cell state Description

1 S1S2 sensitive to drug 1 and drug 2

2 T1S2 reversible resistant to drug 1 and sensitive to drug 2

3 S1T2 sensitive to drug 1 and reversible resistant to drug 2

4 T1T2 reversible resistant to both drug 1 and drug 2

5 S1R2 sensitive to drug 1 and irreversible resistant to drug 2

6 T1R2 reversible resistant to drug 1 and irreversible resistant to
drug 2

7 R1S2 irreversible resistant to drug 1 and sensitive to drug 2

8 R1T2 irreversible resistant to drug 1 and reversible resistant to
drug 2

9 R1R2 irreversible resistant to both drug 1 and drug 2

Fig. 1 | Overview of proliferations and transitions among different cell states and
schematic representation of the structures of the mathematical model. a The
joint model structure used for simulation, which illustrates the dynamics of
multiple cell states and their transitions in the presence of drug 1 and drug 2. Cell
states are represented by two symbols, corresponding to drugs 1 and 2, respec-
tively; each of which is in one of the three possible states for each drug: sensitive
to the drug (S), reversibly resistant to the drug (T), or irreversibly resistant to the
drug (R). The central gray bubble comprises the state transitions of the reversible

resistance only model where the irreversible resistance mutations do not occur.
The left yellow bubble and the right green bubble comprise the state transitions
where the irreversible resistance mutation of drug 1 or drug 2 alone occurs. The
bottom pink bubble comprises the states possessing double irreversible resistance
of both drugs. Arrows include self-replications, degradations and transitions/
mutations from or to designated states. Model parameters are described in the
text below. b the reversible resistance only model. c the irreversible resistance
only model.
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unlike the irreversible resistance only case, themean survival time increases
about 7% from 1394 days in S1 to 149 days in S1c, with a hazard ratio of S1c
over S1 treatment of 0.725. These improvements corroborate the effec-
tiveness of the cyclic treatments in tackling reversible resistance.

Figure 4e-g illustrates the effectiveness of the Cycle strategy in a virtual
patient possessing a dominant sensitive (S1S2, ~99%) cell population, along
with twominor singly reversible resistant (S1T2, ~0.02% and T1S2, ~0.02%)
cell populations, and a smaller minor doubly reversible resistant (T1T2,
~0.00005%) cell population initially. S0 (Fig. 4e) drives transitions into the
T1T2 cell state and yields a shorter survival time. By contrast, Cycle (Fig. 4f)
pushes cells to oscillate between the two singly resistant states (S1T2 and
T1S2) through the intermediate sensitive state (S1S2). This cycling ensures
that there is always aperiodduringwhichat least oneof thedrugs cankill the

cells, and there is no overlapping period that allows the transition to T1T2

cells. Consequently, all cell populations gradually decrease, demonstrating
that the Cycle treatment effectively controls the total cell number and
outperforms other treatment methods. Figure 4g displays the trajectories of
total cell numbers of the Cycle and S0 strategies.

Incorporating cyclic options into DPM-based strategies improve
outcomes in the joint model
After confirming the effectiveness of DPM and cycling treatment in the
degenerate models of irreversible and reversible resistance, respectively, we
sought to demonstrate that the combination of these two approaches can
tackle both irreversible and reversible resistance jointly. Figure 5a displays
the Kaplan-Meier curves of four treatment strategies over 6131903 virtual

Fig. 2 | Flowchart of the treatment strategies. Flowchart of the nine treatment strategies outlined in the Methods section.
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patients in the joint model (all nine strategies are displayed in Fig. S2). S1c
(purple dashed) and S2c (red dashed) curves are superior to Cycle and
substantially higher than S0 strategies. These two strategies also have higher
median survival time, mean survival time and number of cases of survival
over 5 years compared to the other strategies as shown in Table 2, and
smaller pairwise hazard ratios as shown in Table 3. S2c is better on average
than S1c based on the metrics in Table 2, with an additional 12312 cases
surviving over 5 years. Relative performance of the two strategies varies in
individual virtual patients basedon the relative potencyof the twodrugs and
other factors. In general, whether S1c or S2c are preferred may need to be
individualized in subgroups of patients based on their drug sensitivities and
evolutionary dynamics. The benefits of adding the cyclic treatment as a
treatment option in each period are seen by comparing S1c/S2c with S1/
S2 simulation outcomes in Table 2. S1c/S2c outperforms S1/S2 by 8% in
terms of the median survival time, 9% and 7%, respectively, in terms of the
mean survival time, and pairwise hazard ratios are ~0.92 for each. These

improvements in the joint model but not in the irreversible resistance only
model, thoughmodest, underscore the effectiveness of cycling treatments in
addressing reversible resistance mechanisms when both resistance
mechanisms are present. Likewise, the benefits of introducing DPM to
tackle irreversible resistance are seen, as the Cycle strategy (cycling drug 1
and 2 without DPM) has very similar outcomes to S1c and S2c in the
reversible resistance only model (Supplementary Tables 4 and 5), but S1c
and S2c are superior to Cycle in the joint model (Tables 2 and 3). Overall,
comparing cycling, S1c and S2c,modest trends in average results are seen as
described above. The benefits are more modest because the cancer model
incorporates several distinct processes of resistance development, a greater
challenge. Additionally, for 8479 patients, S0 performs significantly better
than all other strategies (Table 2). But the strategy of choice depends on the
dynamics in individual virtual patients in a complex way. It is expected that
the benefits of a particular strategy will be seen more in subgroups of
patients.

Fig. 3 | Kaplan-Meier curves of several treatment strategies in the irreversible and
reversible resistance onlymodel. aKaplan-Meier curves of five treatment strategies
over 578884 virtual patients in the irreversible resistance only model. b Kaplan-

Meier curves of four strategies over 528 virtual patients in the reversible resistance
only model. The shading surrounding each curve denotes a+/− 1 standard
deviation range of simulations.

Fig. 4 | Population dynamics of illustrative virtual patients in the irreversible and
reversible resistance only model. a−d Population dynamics of an illustrative
virtual patient in the irreversible resistance only model contrasting S0, S1, and S2
treatment responses. Panels (a−c) display the population dynamics of individual
cell types and dosage sequences under the three treatment strategies. The drug
dosage in each treatment period is visualized by colored bars on the top row.

Zoomed-in views of the initial periods of panels (a and c) are shown in Supple-
mentary Fig. 2. Panel (d) displays the population dynamics of the sum of all cell
types under the three strategies. e−g Population dynamics of an illustrative virtual
patient in the reversible resistance only model contrasting S0 and Cycle treatment
responses. Panel (g) displays the population dynamics of the sum of all cell types
under the two strategies.
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Fig. 5 | Kaplan-Meier survival curves and rates of each cell state change in the
joint model incorporating different treatment strategies and normalized com-
bined rate of proliferation and death for each cell state. 6131903 virtual patients
were treated by each of the four treatment strategies. a Kaplan–Meier curves

illustrating the simulated virtual patients. The y axis represents the fraction of
surviving virtual patients. b−e Normalized net rates of proliferation and death for
each cell state across all virtual patients under four treatment strategies Cycle (b), S0
(c), S1c (d) and S2c (e).

Table 2 | Comparison of treatment results in joint model

Mono1 Mono2 Combo Cycle S0 S1 S1c S2 S2c

Median survival 204 190 318 359 266 356 384 356 383

Mean survival 306 261 446 508 403 515 561 524 561

No. of cases survival over 5 years 0 0 0 105324 55737 167773 255938 188731 268250

No. of cases with numerically longer survival time than all others 0 0 1687 934105 17311 85174 1229424 149418 677783

No. of cases significantly better than all others 0 0 0 100 8479 76 3902 83 8440

Results are from simulation of 6131903 virtual patients in the joint model, with time measured in days.

Table 3 | The hazard ratio pairwise comparisons between different strategies in joint model

Mono1 Mono2 Combo Cycle S0 S1 S1c S2 S2c

Mono1 N.A. 0.82 1.623 1.88 1.417 1.891 2.083 1.919 2.076

Mono2 1.22 N.A. 1.928 2.212 1.699 2.228 2.437 2.259 2.429

Combo 0.616 0.519 N.A. 1.199 0.898 1.224 1.361 1.249 1.36

Cycle 0.532 0.452 0.834 N.A. 0.762 1.028 1.143 1.05 1.144

S0 0.706 0.589 1.114 1.313 N.A. 1.339 1.48 1.363 1.479

S1 0.529 0.449 0.817 0.973 0.747 N.A. 1.11 1.021 1.111

S1c 0.48 0.41 0.735 0.875 0.676 0.901 N.A. 0.92 1.001

S2 0.521 0.443 0.801 0.952 0.734 0.98 1.087 N.A. 1.088

S2c 0.482 0.412 0.735 0.874 0.676 0.9 0.999 0.919 N.A.

Results are from simulation of 6131903 virtual patients in the joint model. Row strategies are compared to the column strategies.
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Beyond survival outcomes, we are also interested in exploring the
influence of treatment strategies on cell type composition dynamics. As a
crudemetric to capture the average composition dynamics, we calculate the
net rate of cell number change for each cellular state (proliferation – death)
at each time interval, normalized by the rates of all cell states and over all
virtual patients. Thismetric quantifies the proportion of cells arising at each
time interval rather than the accumulated cell numbers up to the specific
time, and also takes an average over the trajectories among all virtual
patients. Figure 5b–e displays the cell type composition dynamics of four
treatment strategies: S0, Cycle, S1c, and S2c. All treatment strategies have
rather smooth temporal profiles in their composition dynamics (except for
the ripples for the strategies incorporating cycling treatments and the
slightlymore complicatedprofiles initially for S0). S0 (Fig. 5c)mainly selects
drug 1 initially and then switches to drug 2 without switching back, hence
the major cell types at steady state are resistant to drug 2, including S1T2,
T1T2, S1R2, R1T2 andT1T2. For the other three strategies, themajor cell types
at steady state are R1R2 and R1T2. These strategies switch back and forth
between drugs 1 and 2, leading to cells that are resistant to both drugs. The
relatively small portion of T1R2 cells compared to R1T2 cellsmight be due to
the higher potency of drug 1 compared to drug 2, where cells require
mutations of drug 1 to survive. S2c also has a relatively lower portionofR1R2

cells compared to Cycle and S1c. This is because S2c is designed to speci-
fically target and minimize the emergence of doubly irreversible resis-
tant cells.

In Fig. 6, we present an example of a virtual patientwhere S2c yields the
longest survival time. Figure 6a-b display the dynamics of non-mutated and
mutated cell populations for the Cycle strategy. In Fig. 6a, Cycle effectively
eliminates non-mutated cells such as S1S2, S1T2, T1S2 and T1T2. In Fig. 6b,
Cycle cannot eliminate cells that are irreversibly resistant to drug 1 in this

case.Althoughdrug 2has thepotential to eradicate these cells, it fails todo so
since it is only usedwith a 50%duty cycle. InFigs. 6c and6d, thedynamicsof
cell states changes under S1c are similar to the changes under Cycle, where
the emergence of R1T2 cells contribute to treatment failure. In S1c, after
about four time steps, the strategy also selects cycling between drug 1 and
drug 2 to minimize total cell numbers. The cell state changes under S2 and
S2c are shown in Fig. 6e-h. The primary difference between S2 or S2c and
Cycle or S1c is that S2 and S2c don’t fully eliminate non-mutant cells.
Instead, they aim to minimize the number of R1R2 cells, which indirectly
minimizes the R1T2 cell numbers since this cell type, with irreversible
resistance to drug 1 and reversible resistance to drug 2, is not readily trea-
table and will eventually mutate to R1R2 cells. In our model, a cell state can
only proliferate when its cell number is >1. Therefore, S2 and S2c try to
prevent the formation of the first R1T2 cell. S2 and S2c begin with a com-
bination treatment where drug 2, the less potent drug, is included from the
start. S2 treatmenthas feweroptions and fails toprevent the formationof the
first R1T2 cell. However, S2c can use cycling treatment to successfully avoid
the formationofR1T2 cells, ultimately providing a cure. It is also notable that
the first 2 or 3 time steps might be crucial for the ultimate treatment out-
come, as shown for the irreversible DPM model as well47. Once the first
incurable cell emerges, all drug treatment options become ineffective,
leading to eventual mortality.

Numerically best treatment strategy changes when extending
single resistance models to the joint model; and survival times
vary depending on different parameter values
Each virtual patient parameter in the joint model can be generated by
expanding one corresponding parameter from either of the degenerate
models. A virtual patient from the irreversible resistance only model can be

Fig. 6 | Population dynamics of an illustrative example contrasting four treat-
ment strategies in the joint model. The visual representation in each panel is the
same as Fig. 2c-j. The dynamics of nonmutated and mutated cell numbers are

displayed for simulations under the Cycle strategy (a and b), S1c (c and d), S2 (e and
f), and S2c (g and h). The dynamics of doubly mutated R1R2 and total cell numbers
under the four strategies are displayed in (i) and (j) respectively.
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extended into virtual patients in the joint model by incorporating para-
meters α1, θ1, μ1, α2, θ2, μ2, ST1 and ST2. Similarly, a virtual patient from the
reversible resistance only model can be extended into virtual patients in the
jointmodel by incorporating parameters T1, T2, SR1, SR2, R1ratio andR2ratio.
For a virtual patient in a degenerate model, there is a numerically best
treatment strategy or strategies. In Fig. 7, we used Sankey diagrams to show
that the numerically best treatment strategy changeswhen extending froma
single resistance model to the joint model. S1* represents either S1 or S1c
treatment, and S2* represents either S2 or S2c treatment.

When extending the virtual patients from the irreversible resistance
only model to the joint model, the numerically best treatment strategies
diverged, as shown in Fig. 7a. For instance, virtual patients who achieved the
longest survival time under S2* treatment diverged to different treatment
strategies (Supplementary Table 6). These changes are due to the incor-
poration of reversible resistance into the virtual patients and depend on the
strengthof the resistance. If the introduced reversible resistance is strong, the
Cycle treatment is preferred as it can effectively tackle the reversible resis-
tance. Similarly, when expanding the virtual patients in the reversible
resistance only model to the joint model, the numerically best treatment
strategies also diverged as shown in Fig. 7b (Supplementary Table 7). These
changes are due to the incorporation of irreversible resistance into the
virtual patients and depend on the strength of the resistance. The numeri-
cally best strategies for individual patients cannot be determined by a single
resistance mechanism or predicted solely by the parameters related to one
type of resistance in our virtual patient cohort. Instead, they are influenced
by the interplay between the two resistance mechanisms, highlighting the
necessity of building a unified framework that encompasses both irrever-
sible and reversible drug resistance to identify treatment strategies that
effectively address both mechanisms simultaneously.

Finally, we performed a sensitivity analysis of survival time outcomes
in the joint model, demonstrating their dependence on varying parameter
values. For each compared parameter or a parameter set (α, θ, μ), we fixed
other parameters to the values corresponding to an original virtual patient
and calculated the difference of survival times of pairs of virtual patients
wherein the one parameter set was incremented or decremented as
described inMethods.We considerα, θ,μ, as a single parameter set. If any of
these three values differ between two virtual patients, we compared their
survival times. For each parameter of T1, T2, ρS2=ρS1 , SR1 and SR2, if the
values between two virtual patients differ by one level as detailed in Sup-
plementary Table 1, we compared their survival times. Figure 8a illustrates
the changes in survival time when varying the parameters α, θ and μ, which
determine the transition rate between the sensitive and reversible resistant
states. These transitions are leveraged by cycling treatments to create
opportunities to target and eliminate drug sensitive cells. Monotherapies

appears to be less sensitive to these parameters, whereas strategies incor-
porating cycling treatments aremore sensitive. Figure 8b shows themodel’s
sensitivity to the ratio of ρS2 over ρS1 which specifies the efficacy of drug 2
compared to drug 1. Mono 1 is insensitive to drug 2, and all the other
strategies have similar sensitivity to this ratio. Figure 8c illustrates the
model’s sensitivity toT1 andT2.Most theMono treatments are less sensitive
to these transition rates since either the initial resistant subclones will
quickly dominate, or the reversible resistance will develop more rapidly.
Figure 8d illustrates the model’s sensitivity to SR1 and SR2; the relative
sensitivity of the irreversible resistant phenotype to drugs 1 and 2 respec-
tively. Mono 2 is unaffected by SR1 and Mono 1 is unaffected by SR2.
Overall, the configuration of parameters for each individual virtual patient
will influence the outcomes of the treatment strategies, resulting in varying
survival times based on different parameter values.

Discussion
In this paper, we develop an integrated mathematical model, DPM-J that
incorporates both irreversible and reversible resistancemechanisms for two
non-cross resistant drugs or drug combinations. We evaluate the effec-
tiveness of nine strategies for developing highly adaptive, individualized
treatment sequences, by simulating the tumor growth and evolution of six
million virtual patients each corresponding to a different set of input
parameters. We confirm earlier findings that DPM-based strategies can
improve clinical outcomes in a model including only irreversible genetic
resistance.We also see an improvement when employing cycling of therapy
for non-DPM-based strategies, presumably because this helps with
diminishing reversible resistance. Our simulation results demonstrate that a
combination of the DPM strategy and the cyclic dosages as a treatment
option at each period can tackle irreversible and reversible resistance
mechanisms simultaneously and hence yields the best performance. The
joint treatment strategy takes advantage of the different time scales of
reversible and irreversible resistance mechanisms. Knowledge of the
reversible resistance kinetics generates optimal cycling building blocks in
shorter treatment windows. These short term building blocks are then
arranged in an optimal sequence byDPM to address moderate to long term
issues.

The interplay between the internal states of cancer cells and the
external conditions exerted by the drug dosages has the potential to produce
a variety of population dynamics depending on the dosage sequence.
Population dynamics are driven by both long-term irreversible and short-
term reversible drug resistancemechanisms. In the long term, sensitive and
resistant phenotypesmanifest differential net growth rates in response to the
administered drugs, and transition rates from sensitive to irreversible
resistant phenotypes are treated as independent of the drug dosages. The

Fig. 7 | Sankey diagrams illustrate the changes of superior treatment strategy for
the virtual patients when extending the degenerate model to the joint model.
a Illustrates the changes in the numerically best strategy when extending each virtual
patient from the irreversible resistance onlymodel (left side) to the jointmodel (right
side). b Illustrates the changes in the numerically best strategy when extending each

virtual patient from the reversible resistance only model to the joint model. S1*
represents either S1 or S1c treatment. S2* represents either S2 or S2c treatment.
Others represents all the other possibilities except those listed in the degenerate
model or joint model respectively.
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genetic transitions of these abstract phenotypes can be attributed to all
possible geneticmutations that induce the irreversible resistancephenotype.
Drug dosages affect population dynamics by eliminating (or reducing) the
sensitive subclones hence selecting the resistant subclones. In the short term,
drug treatment inhibits the targeted pathway activity and kills the sensitive
cells, but it also facilitates the activation of alternative pathways, leading to
transitions that inducedrug resistance (tolerance).Whenadrug treatment is
withdrawn, the targeted pathway is no longer inhibited, hence the cells likely
transition back to the sensitive state. The transition rates between these
reversible states thereby depends on the drug dosage.

This work builds upon our previously proposed DPM treatment
strategy22. DPM is a heuristic and parsimonious model. The model is pri-
marily grounded in oncology principles but, like others, also draws on
analogies to species evolution. However, species evolution and cancer
evolutionmay be analogous but not identical, andDPMdoes not solely rely
on these analogies. Species evolution typically occurs with a lowermutation
rate48,making the infinite sites approximation that anewmutationat a given
base will appear only in one cell at any given time, widely applicable in that
context. But this approximationmay not hold in cancerwhere themutation
rate is higher9,14. Moreover, cancer evolution is not limited to a single eco-
logical niche, but the niche is continuously expanding and diversifying
through multiple metastases and micrometastases, a non-equilibrium
situation42. Finally, competitive dynamics may differ in micrometastases
below the angiogenic limit in size, which can be fully nourished by
diffusion42, reducing the importance of intercellular competition for nutri-
ents. These micrometastases are often part of diffuse organ infiltration and
associated with and/or causal of mortality. Moreover, in the high risk
neoadjuvant setting, micrometastasesmay also be present below the level of
radiologic detection. DPM considers these points and the total burden
throughout the patient, rather than large lesions alone. DPM is also dis-
tinguished by its attention to rare subclones and hypermutator subclones.
The former accounts for the possible different competitive dynamics,
including independent growth in different ecological niches, by not
assuming that rare subclones will be driven to extinction by competition.
The latter considers that evolution ratewill varybetweensubclones, a critical
aspect of dynamics.

Themyopic nature and limitations ofCPM(S0 in our terminology) for
cancer treatment have been criticized and addressed in abundant prior
studies, including ours. S0 targets the dominant cell population at each
moment, hence often discards the treatment sequences that are suboptimal
in the short term but beneficial in the long term. Evolution guided precision

medicine models22–24,35–41, of which DPM is one example, consider intra-
tumoral heterogeneity anddynamics in an attempt to improveupon current
precisionmedicine in aproactive fashion.These approacheshavenot todate
considered the coexistence of drug resistance mechanisms at different time
scales in the same framework. Drug resistance phenotypes can be acquired
by irreversible mutations or nearly irreversible epigenetic reprogramming,
or achieved by reversible switching of the gene regulation/metabolic/sig-
naling pathway activities. Previously, we modeled each type of drug resis-
tance mechanism and provided effective or optimal treatment strategies to
tackle themin separateworks22,24. In this study,we explicitlymodel these two
mechanisms together and provide a simple but effective heuristic to com-
bine them. In the short term (within a treatment period of 6–12 weeks),
physicians have options of administering the full dose of single drugs,
reduced dose of both drugs (to model enhanced toxicity in simultaneous
combination), or alternating the full dose of the two drugs in 3 week or
6 week cycles. In the long term (across multiple treatment periods), physi-
cians employ the DPM algorithms (S1 or S2) to design the higher order
treatment sequences. DPM may prevent or delay relapse or progression,
while cycling may improve response rate and duration. To our knowledge,
this is one of the first modeling approaches and treatment strategies for
incorporating both irreversible and reversible resistance mechanisms in the
same model for two-drug treatment of tumor population dynamics.

The benefits of cycling andofDPMonaverage remain quite significant
compared to the standard precision medicine approach. Yet compared to
each other cycling and DPM based strategies are more modestly differ-
entiated from each other than seen in the simpler cancer models that
considered only reversible resistance or only irreversible resistance. This is
expected because the greater complexity of the model creates a greater
challenge. Moreover, the optimal strategy is a complex function of the
underlying drug properties, heterogeneity, and dynamics. This implies the
need to carefully define patient subgroups for whom a given approach will
be most optimal, and create evolutionary classifiers to sort individual
patients into optimal evolutionary-guided strategies. We have made sig-
nificant progress in this effort in predictingwhich patients in the irreversible
resistance only model will benefit most from DPM47.

DPM is designed to use approved drugs at approved dosages, either
individually or in simultaneous combination, as deemed safe based on
clinical studies. Drugs that are cross-resistant are treated as a single “drug”
by DPM, even when used in combination. A “drug” in this context refers to
either a single agent or a simultaneous combination of agents designed to
target a specific class of subclones, with agents within the same drug

Fig. 8 | Boxplots illustrating the sensitivity analysis of survival time to the parameters in the jointmodel.Difference of survival time is on the y axis. a α, θ, μ, (α1 equals α2,
θ1 equals θ2, μ1 equals μ2, respectively). bρS2=ρS1 . c T1 and T2. d SR1 and SR2.
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potentially being cross-resistant. Oncologists must nominate at least two
non-cross resistant “drugs”, and administering more than one non-cross
resistant drug simultaneously often requires dose reduction due to toxicity.
DPM is likely to be effective only in patients who do not already harbor cells
with independent genetic resistance to both drugs. It is important to note
that no current approach is likely to be effective if cells preexisting in the
patient are already resistant to all available therapies. In the current DPM
modeling framework, the mutation rate is assumed to be independent of
drug treatment. However, we acknowledge that certain drugs, particularly
some chemotherapeutic agents, can elevate mutation rates49,50. These
mutagenic drugs have been shown to increase the number of mutations in
cancer cells51. This effect could be incorporated into themodel bymodifying
the mutation rate constant with a dose dependent factor to reflect the
influence of drug exposure onmutation rates. In addition, our deterministic
model using continuous variables may not fully capture the probabilistic
dynamics of very small numbers when a subclone is close to elimination.
While the model prevents the appearance of a subclone by keeping its
number below one, in fact one or more cells could arise by stochastic
fluctuations.

DPM and DPM-J are early in translational development in the
laboratory. For DPM, we have recently described a number of translational
advances including how one would select patients who will benefit in a
clinical trial of the strategy, how long a period is required to obtain most of
the benefit with maximal cost-effectiveness and minimal invasiveness, and
some information onpotential clinical trial designs47.DPMandDPM-Jmay
recommend focusing onminor subclones for brief periods, while accepting
a limited degree of what would be termed “progression” by standard radi-
ologic criteria52. This approach should currently be undertaken only in the
context of a clinical trial designed to evaluate the effectiveness ofDPMbased
strategies. Moreover, in the simulation, the cancer burden threshold for
reverting to prioritization of immediate cytoreduction is set a fixed value.
However, in clinical practice, oncologists would determine when to prior-
itize additional cytoreduction based on the individual patient’s context
including the cancer type and many other factors.

Complex mathematical models present additional challenges for
clinical translation42. Development approaches to individually parameterize
the model with rapid turnaround time for clinical settings is ongoing. To
parameterize the model, parameters can either be directly measured from
patient data or inferred from it by fitting the data. Ideally, biopsies or highly
sensitive and specific assays are needed to detect rare subclones individually
and assess their drug sensitivity and resistance properties. Isolation of
subclones is currently a barrier to this, especially rare subclones, and they
oftendonot growout at limitingdilution.Growth, sensitivity, and reversible
transition rates can be eithermeasured or estimated fromgrowth data in the
presence and absence of drug and under intermittent therapy. We have
determined mutation rates from duplex sequencing data at varying
sequencing depths14. This approach requires only a single timepoint and
~10 kb of DNA. We do not look for specific mutations, but rather the
increase in the number of detectable mutations as a function of sequencing
depth. We are also developing a fluorometric assay to identify a sub-
population of hypermutator cells in a bulk tumor sample. The assay would
require transfection with the fluorophore construct, brief culture, and flow
cytometry readout53,54. Mutation rates can also be estimated from fluctua-
tion assays, and model parameters estimated from clinical data55, with
periodic reassessment if future states deviate from predictions.

Experimental and clinical validation of our treatment selection stra-
tegieswill be essential in the future.Our currentmodel should be viewed as a
framework that accommodates generic drug resistance mechanisms rather
than a realistic model for specific cancer types, targeted drugs, and involved
pathways and genes. One promising test case for our model framework is
triple positive breast cancer (TPBC). TPBC co-expresses two oncogenic
drivers, estrogen receptor alpha (ER) and human epidermal growth factor
receptor 2 (HER2). Multi-agent adjuvant anti-HER2 and -ER treatment is
the superior approach for early stage and advanced or de novo metastatic
TPBC56–58. However, outside academic medical centers a large subset (36.7-

60%) of TPBC patients receive single agent anti-ER treatment59,60. Re-
analysis of a large-scale study of advanced, endocrine-resistant breast
cancer61 shows that TPBC is overrepresented in those with the highest
fraction of their genome altered (q = 6.77e-9). These genetic, irreversible
resistance mechanisms are accompanied by well-known examples of
reversible resistance62–65. We anticipate future implementation of this fra-
meworkwill lead to fruitful results in experimental validation andeventually
improve treatment outcomes for this and other cancer types.

Methods
Model overview
Wedeveloped a jointmathematical model that incorporates both reversible
and irreversible resistance mechanisms to simulate virtual patients’ out-
comes under different treatment strategies.We give a high-level overview of
the model here and provide more precise descriptions in the subsequent
sections. The irreversible and reversible portions of the model are primarily
based on our prior studies22–24. The model includes two drugs, drug 1 and
drug2. In the irreversible part of themodel, responseof eachdrug in a cancer
cell is indicated S (sensitive) or R (irreversible resistance), and drug resis-
tance is acquired by the mutation of a gene (or one of a group of genes).
There are four phenotypes in combination and we denote them by: S1S2,
S1R2, R1S2, R1R2, representing the phenotypes sensitive to both drugs,
resistant to drug 2, drug 1, and both drugs, respectively. These four cell types
manifest differential death rates induced by drug dosages, and only muta-
tions from sensitive to resistant phenotypes are allowed. In the reversible
part of themodel, the net growth rate (the proliferation rateminus the death
rate) of a cancer cell can be activated by two distinct pathways. The two
drugs target the two pathways by inhibiting their activities. There are also
four cellular states in combination, represented as follow: S1S2 (sensitive to
bothdrugs), S1T2 (sensitive to drug 1 and reversible resistant to drug 2), T1S2
(reversible resistant to drug 1 and sensitive to drug 2) and T1T2 (rever-
sible resistant to both drugs). The dosage of a drug affects population
dynamics in two ways: (1) reducing the net growth rate of the cells
sensitive to the drug, (2) facilitating cellular state transitions from sen-
sitivity to reversible resistance (tolerance). The irreversible and reversible
drug resistance phenotypes together define nine cell types representing
distinct phenotypic states.

The description of these nine stable states is shown in Table 1. The
diagram of the joint model is illustrated in Fig. 1a. S1S2 represents the most
commonly predominant cell type identified in the biopsy results when a
cancer patient is first diagnosed. In our model, drug 1 (which may be a
combination) corresponds to the first line treatment for this predominant
cell type. Therefore, drug 1 is considered more effective against S1S2 cells
than drug 2.

Model parameters
Supplementary Table 1 lists the 17 parameters in the joint model and their
value ranges in simulations. They belong to five general categories. (1) g
represents the natural net growth rate which, in these simulations is
assumed to be identical for all cell types. This restriction can be relaxed by
allowing different growth rates for distinct cell types. The term “natural”
refers to the rate in absence of drug therapy. (2) α1, θ1, μ1, α2, θ2, μ2 represent
the parameters pertaining to the transitions between the reversible states
governed by the activities of the two pathways. Their meanings will be
explained in the next section. (3) T1 and T2 represent the rates of acquiring
irreversible resistance phenotypes to each drug by genetic change. (4)
ρSi ; i ¼ 1; 2 is thedrug i sensitivityof sensitive cells relative to thenatural net
growth rate; ρTi

; ρRi
; i ¼ 1; 2 denote the sensitivity for cells reversibly and

irreversibly resistant to drug i, respectively; ρTi
=ρSi ; ρRi

=ρSi ; i ¼ 1; 2 are the
decreasing ratios of drug i sensitivity relative to the natural net growth rate
for cells reversibly and irreversibly resistant to drug i, respectively. (5) R1ratio

andR2ratio represent the fractions of cells possessing irreversible resistance of
drugs 1 and 2 in the initial population. We set the cells with double irre-
versible resistance to be absent (R1R2 = 0) in the initial population for all
simulations since all treatments are ineffective against those cells.
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Cell types possessing reversible resistance alone (ρTi
; i ¼ 1; 2) are less

sensitive to the targeted drug compared to cell types without resistance (ρSi ,
i ¼ 1; 2) where ρTi

¼ ρSi × ρTi
=ρSi and ρTi

=ρSi < 1. Likewise, cell types
possessing irreversible resistance alone (ρRi

; i ¼ 1; 2) are less sensitive to the
targeteddrug compared to cell typeswithout resistance (ρSi ; i ¼ 1; 2),where
ρRi

¼ ρSi × ρRi
=ρSi and ρRi

=ρSi < 1. To limit the total number of virtual
patients, we used only 578884 virtual patients fromour previous irreversible
resistant onlymodel22, choosing ranges and values shown in Supplementary
Table 1, and applying filters described therein. Parameters related to the
reversible resistancemechanismwere then added to eachvirtual patient.We
selected the subset of virtual patients where ρRi

< ρTi
; i ¼ 1; 2, indicating

that irreversible resistance leads to a more robust and persistent effect
compared to reversible resistance, while also ensuring reversible resistance
emerges more quickly than irreversible resistance. This resulted in a total of
6131903 virtual patients in the jointmodel. Furthermore, as a conventionwe
assume drug 1 is more effective than drug 2 in eliminating sensitive cells,
hence set ρS1 > ρS2 . The model parameter value ranges are based on clinical,
in vitro and in vivo data across a variety of cancer types and aremeant to be
broadly inclusive. Application to a specific cancer type and clinical scenario
would involvenarrower rangesasdeterminedbymeasurementsmade in the
corresponding population22. By including possible parameter values, we can
state general conclusions across a broad range of individual virtual patients.

Modelling equations
The transition rates between sensitive and reversibly resistant cell states are
defined by parameters αi, θi, μi, i = 1, 2 as in our previous work24. We first
briefly recapitulate the reversible part of the model. Denote yi pathway i
activity. The dynamics of yiðtÞ follow a first-order differential equation with
production function f ðyi; σ i; θi; αiÞ, degradation term proportional to yi tð Þ,
relative adjustment rate δ and random noise term ηi:

δ�1 dyiðtÞ
dt

¼ f ðyi; σ i; θi; αiÞ � yi tð Þ þ ηi ð1Þ

f ðyi; σ i; θi; αiÞ depends on drug i dosage σ i and parameters αi; θi. We
set 0≤ αi ≤ θi ≤ 1 tomake the production function is a step-wise function24,
it is proportional to one for any yi above threshold θi and to αi for any yi
below it. f ðyi; σ i; θi; αiÞ has the following form:

f ðyi; σ i; θi; αiÞ ¼ Aðσ i; θiÞ× αi þ ð1� αiÞ×Hðyi � θiÞ
� �

; i ¼ 1; 2 ð2Þ

where Aðσ i; θiÞ is a decreasing function of σ i:

Aðσ i; θiÞ ¼ 1� σ i � ð1� θiÞ; i ¼ 1; 2 ð3Þ

and Hð�Þ is the Heaviside (step) function:

H xð Þ ¼ 0; x < 0

1; x ≥ 0

�
ð4Þ

Qualitatively, the production rate f ðyi; σ i; θi; αiÞ is raised toAðσ i; θiÞ if
the yi tð Þ value exceeds a threshold θi; and lowered toA σ i; θi

� �
αi otherwise.

Aðσ i; θiÞ is a dampening factor which increases with threshold θi and
decreaseswith drug dosage σ i. The dynamics are described by the Brownian
motion in a double-well potential Uðyi; σ i; θi; αiÞ:

Uðyi; σ i; θi; αiÞ ¼ �f ðyi; σ i; θi; αiÞ× ðyi � θiÞ þ
y2i � θ2i

2
ð5Þ

Equation 1 yields two steady pathway activity levels A σ i; θi
� �

and
αiAðσ i; θiÞ corresponding to activation and inactivation of pathway i.

Hence, we define the “energy gap” ΔEðσ i; θi; αiÞ between the two states as

ΔEðσ i; θi; αiÞ ¼ κ× ðUðAðσ i; θiÞ; σ i; θi; αiÞ � UðαiAðσ i; θiÞ; σ i; θi; αiÞÞ
ð6Þ

where κ ¼ 40 for all virtual patients. Transitions between these states are
stochastic events and follow a Boltzmann distribution. The transition rate
from sensitive to reversible resistant cell states is:

μiST ¼ μi × e
ΔEðσ i;θi;αiÞ ð7Þ

and the transition rate of the opposite direction is:

μiTS ¼ μi × e
�ΔEðσi;θi;αiÞ ð8Þ

A large energy gap ΔEðσ i; θi; αiÞ increases the transition probability
into the low energy state, hence elevates μiST and lowers μiTS. Supplementary
Figure 3 illustrates how the transition rate between sensitive and reversible
resistant states changes in response to dosage adjustments. The transition
rates between these reversible states thereby depend on the drug dosage. A
high dosage facilitates transitions from sensitive to resistant states, while a
low dosage facilitates transitions of the opposite direction.Wemodelled the
transition between the reversible resistance and sensitive state in under the
assumption of coupling between the rates as described above, which cor-
responds to a hypothesis of cross talk between the pathways. As an alter-
native formulation, these transitions could also be modeled independently
using separate Hill equations. This alternative approach increases flexibility
and is commonly used in pharmacologicalmodeling, it does not have a clear
mechanistic interpretation.

In the irreversible part of the model, the dynamics of a cellular popu-
lation also follow a first-order differential equation. The net rate of increase
of the cellular populationof aphenotype is the sumof thenatural net growth
rate and the mutation rate into the phenotype, minus the degradation rate
induced by drug dosages and the mutation rate out of the phenotype. For
instance, denote ni0ðtÞ and ni1ðtÞ the populations of subclones without and
with the irreversible resistance of drug i. Then their population dynamics
follow the equations:

dni0ðtÞ
dt

¼ g × ½1� ρS1 × σ1 � ρS2 × σ2 � Ti�× ni0ðtÞ ð9Þ

dni1ðtÞ
dt

¼ g × ½1� ρx1 × σ1�ρ�x2 × σ2� × ni1 tð Þ þ Ti × ni0 tð Þ ð10Þ

x is R and �x is S for i ¼ 1 and x is S and �x is R for i ¼ 2.
The dynamic equations of the joint model are constructed by

combining the reversible and irreversible parts. The equations are pro-
vided in the Supplementary Note 1. The net proliferation rate of each
cellular population is the balance of production – natural growth and
transitions into the designated state through irreversible and reversible
resistance mechanisms – and degradation – transitions out of the
designated state and reductions by drug dosages. They are illustrated in
Fig.1. We also consider the degenerate models of reversible and irre-
versible resistance alone in Fig. 1.

Treatment strategies
The tumor size and composition in the model are governed by the
dynamic equations 11-19 and drug dosage regimens σ1ðtÞ and σ2ðtÞ. In
principle, σ iðtÞ can be any temporal function with values in the nor-
malized range ½0; 1�. In practice, to better mimic the clinical setting of
cancer treatment we impose several constraints on σ iðtÞ: (1)
0≤ σ1 tð Þ þ σ2 tð Þ≤ 18t, limiting the total normalized dosage the simu-
lated patient receives at a given time t, as simultaneous full doses of all
drugs would often be toxic to the patient. (2) σ iðtÞ takes possible values of
0, 0.5, 1, reflecting the options to administer either full or half of the
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drug’s recommended dosage. In clinical settings there are specific max-
imum doses for each drug individually and for each drug within a
simultaneous combination that have been determined from clinical
safety data. In these simulations, each drug is given at half-dose when
used in combination with another. In general, DPM would use fixed dose
combinations determined to be safe in Phase 1 studies. However, the
fixed combination would differ for different drugs. (3) σ iðtÞ is a step
function which changes values at the beginnings of fixed time intervals—
6 weeks in our setting, also imitating the periodic administration of
drugs, which often are given every 3 weeks. Moreover, radiologic eva-
luation would generally be no more frequent than every 6 weeks even in a
clinical trial setting.

A treatment strategy is an algorithm for generating σ iðtÞ’s based on the
model parameter values and trajectories of population sizes before the
current time point t. Ideally, we want to design a treatment sequence to (1)
cure the patient (make all cellular populations vanish) if they are curable,
and (2) maximize the lifespan of the patient if they are not curable. The
optimal solutionofσ iðtÞ’s is difficult tofindgiven the complicated governing
equations and restricted temporal functions. Following our previous
studies22–24 we propose nine heuristic treatment strategies (Fig. 2). These
heuristic strategies may be intuitive for oncologists.

Mono drug 1 (Mono1): treatment with continuous and constant
administration of drug 1. σ ¼ ð1; 0Þ.

Mono drug 2 (Mono2): treatment with continuous and constant
administration of drug 2. σ ¼ ð0; 1Þ.

Combo: treatment with continuous and constant administration of a
combination of half doses of drugs 1 and 2. σ ¼ ð0:5; 0:5Þ.

These three static treatments, Mono1, Mono2 and Combo, are treated
as benchmarks against more involved strategies.

Cycle: Periodic treatment cycling between drugs 1 and 2. The longest
survival time is selected from four possible cycling treatments with com-
binations of two periods (3 or 6 weeks each) and opposite phases (drug 1
first or drug 2 first). The cyclic treatment is included because it achieves
comparable performance to the more complex strictly optimal treatment
strategy in our previous model of reversible resistance while being simpler
and more practical in clinical application24.

Strategy 022 (S0): Current personalized medicine (CPM) strategy.
Initially, it treats the virtual patient with the most effective drug on
the most abundant cellular population. The nadir, a local minimum
of the total cell number among the time-series profile, is set equal to
the initial total population at t = 0, which is 5 × 109, and updated as
needed at each time step. The drug is changed if either one of the
following events occurs: (i) the total cell number reaches twice the
nadir (equivalent to a 25% increase in linear dimensions) or (ii) the
total cell number reemerges from a level below the detection
threshold (109). If either (i) or (ii) happens and another drug has not
been used, switch to another drug which means that each drug is only
used once. The criteria for CPM changing drugs are similar to the
established RECIST criteria for clinical progression52. This results in
longer periods before adjustment of the treatment compared to DPM
strategies.

Strategy 122 (S1): At each time step, select the σ from 1; 0ð Þ; 0; 1ð Þ and
ð0:5; 0:5Þ that minimizes the predicted total cell number in the next time
step. This strategy is intuitive but also myopic.

Strategy 222 (S2): Minimize the cell number of the doubly irrever-
sible resistant cell state (R1R2) unless a meaningful clinical risk is
imminent, and switch to minimizing the total cell number if the latter
occurs. At each treatment period, select the σ from 1; 0ð Þ; 0; 1ð Þ and
ð0:5; 0:5Þ that minimizes the predicted cell number of the incurable R1R2

state if the total cell number does not exceed 1011. This threshold was the
most effective threshold of several studied previously in terms of
prolonging survival22 under the conditions of that simulation. In actual
clinical cases, many factors would determine whether the treating
physician needs to prioritize immediate cytoreduction over prevention
of future resistance, and in practice the physician would make this

determination, using the recommendations as our model is an input in
their decision making process. For example, in acute leukemia,
immediate cytoreduction in an “induction period” is essential. By pre-
venting the formation of the R1R2 cells, the possibility for long-term
survival and/or cure is maintained. This strategy attempts to balance the
long-term objective of preventing the emergence of incurable cancer
cells and the short term objective of reducing (or at least controlling) the
total cancer burden.

Strategy 1 cycle (S1c): Same as strategy 1 except adding two cycling
treatments as options in each time step. The algorithm selects σðtÞ from
three static treatments— 1; 0ð Þ; 0; 1ð Þ and ð0:5; 0:5Þ—and two cycling
treatments—3 weeks of drug 1 treatment followed by 3 weeks of drug 2
treatment in each period, and the cycling treatment with the opposite phase
—to fulfill the strategy 1 objective. S1c is a composite strategy combining
strategy 1 for the irreversible model and the cyclic treatment for the
reversible model but using only a 3 week cycling period.

Strategy 2 cycle (S2c): Same as strategy 2 except adding the afore-
mentioned cycling treatments as options in each time step. S2c is also a
composite strategy combining strategy 2 for the irreversible model and the
cyclic treatment for the reversible model but using only a 3 week cycling
period.

Model simulation
We evaluate the effectiveness of the aforementioned nine strategies by
conducting simulations on virtual patients with 6131903 distinct para-
meter configurations. The initial total cell population is 5 × 109, which
roughly corresponds to a 5 cm3 lesion. The initial cell type composition is
determined by parameters R1ratio and R2ratio. The time step of predicting
responses in each strategy is set to 42 days mimicking the minimum
6 week interval between radiologic evaluations typically on clinical
studies22, which is also equivalent to two typical 3 week chemotherapy
cycles.

The total simulation period is ~5 years, or 1820 days. A cellular
population does not proliferate if the size is <1 cell. A tumor becomes
lethal when its population size exceeds 1013 cells. This threshold
value approximates the total cell numbers in many metastatic lesions,
which often lead to mortality22,42. More complex functions providing
a monotonically increasing risk of mortality as a function of cell
number could be applied if desired. However, as the simulation is
intended to encompass many different cancer types and clinical
situations, it is difficult to specify such a function. Within any spe-
cific clinical application, more refined predictors of mortality could
be considered. Simulation stops if the total cell number of the virtual
patient exceeds 1013, or if the virtual patient is cured (the cell number
of each state < 1). Therefore, the survival time is either the time when
the tumor size reaches the mortal threshold of 1013 cells or a max-
imum of 5 years, indicating that the tumor has either been eliminated
or has not caused death within the simulation period. A treatment
strategy is significantly better than another one if it shows an abso-
lute improvement of at least 56 days (8 weeks) and a relative
improvement of 25% in survival time compared to the other
strategy. This is analogous to the typical minimum improvement
often considered clinically significant in randomized phase 3 trials in
cancer22. We implemented the simulation using JetStream266, a
resource from the Advanced Cyberinfrastructure Coordination
Ecosystem: Services & Support (ACCESS) program67. Kaplan-Meier
analyses were performed using the survival analysis python library,
lifelines68.

Sensitivity analysis
Sensitivity analysis concerns how changes in input parameters affect the
outcome of the simulation, which is the survival time. Denote i, j, k
the indices of strategies, parameters, and virtual patients respectively, pj
the value of parameter j, and STijkðpjÞ the corresponding survival time.
Sensitivity value is defined as69,70: Sijk ¼ jSTijkðpjÞ � STijkðp�j Þj þ
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jSTijkðpjÞ� STijkðpþj Þj, where p�j and pþj denote the decrement and incre-
ment of the parameter value pj.

Data availability
The datasets generated and/or analyzed during the current study are
available in the DPM-J repository, https://github.com/GU-DPM/DPM-J.

Code availability
Code is available at https://github.com/GU-DPM/DPM-J.
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