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In Brief

Assessing the functional consequences

of oncogene activation is critical for

subsequently characterizing disease in a

patient and devising effective therapeutic

strategies. We describe Onco-GPS, a

data-driven analysis framework to

summarize, visualize, and discover new

associations that may guide therapeutic

strategies involving existing or new

targets as part of individualized precision

medicine paradigms.
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SUMMARY

The systematic sequencing of the cancer genome
has led to the identification of numerous genetic
alterations in cancer. However, a deeper under-
standing of the functional consequences of
these alterations is necessary to guide appro-
priate therapeutic strategies. Here, we describe
Onco-GPS (OncoGenic Positioning System), a
data-driven analysis framework to organize indi-
vidual tumor samples with shared oncogenic
alterations onto a reference map defined by
their underlying cellular states. We applied the
methodology to the RAS pathway and iden-
tified nine distinct components that reflect tran-
scriptional activities downstream of RAS and
defined several functional states associated with
patterns of transcriptional component activation
that associates with genomic hallmarks and
response to genetic and pharmacological per-
turbations. These results show that the Onco-GPS
is an effective approach to explore the complex
landscape of oncogenic cellular states across
cancers, and an analytic framework to summarize
knowledge, establish relationships, and generate
more effective disease models for research or
as part of individualized precision medicine par-
adigms.
C

INTRODUCTION

An accurate molecular classification of cancers is essential

to achieve effective disease management and intervention.

The systematic sequencing of cancer genomes has provided

a rich catalog of somatic genetic alterations, knowledge of

which has begun to inform treatment options, especially in

cases where the lesions can be directly targeted with available

therapeutic agents, such as cancers with mutations in BRAF,

EGFR, ALK, etc. (Lynch et al., 2004; Flaherty et al., 2010;

Kwak et al., 2010). However, it is increasingly clear that muta-

tional status alone is insufficient to unambiguously determine

the oncogenic state of a given cancer sample and fully inform

the appropriate therapeutic choice(s). This problem is relevant

to the variability of response observed among highly selected

groups of patient with so-called ‘‘actionable’’ mutations (Pra-

hallad et al., 2012; Konieczkowski et al., 2014; Hyman et al.,

2015). For example, a large clinical trial across a cohort of

non-melanoma patients with BRAF mutant cancers showed

highly variable responses to the selective BRAF inhibitor Ve-

murafenib (Hyman et al., 2015). These and other observations

underscore the need for analytical methodologies that better

delineate cellular states and help predict clinical responses

to targeted agents.

Recent studies have shown that tumor heterogeneity may

underlie variability in sensitivity to targeted agents (Singh et al.,

2009; Prahallad et al., 2012; Konieczkowski et al., 2014; Zhu

et al., 2014). For example, in BRAFmutant melanoma, reciprocal

levels of the receptor tyrosine kinase (RTK) AXL and the tran-

scription factor MITF correlate with sensitivity to BRAF inhibitors
ell Systems 5, 105–118, August 23, 2017 ª 2017 Elsevier Inc. 105
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Figure 1. Schematic Diagram of the Onco-GPS Analysis Framework and Methodology

(I) Oncogenic activation signature is generated by experimentally expressing the oncogene of interest in an isogenic cell system. (II) The signature is decomposed

using non-negative matrix factorization (NMF) using a reference dataset in order to generate transcriptional components. The components are optionally

clustered or sub-selected to represent a specific sample population (e.g., KRAS mutants). (III) Cellular states are defined by clustering and an Onco-GPSmap is

generated. Samples are then projected onto the Onco-GPS map and further characterized by associating them to diverse genomic features.
in a mutually exclusive manner (Konieczkowski et al., 2014). This

cell-state dichotomy generalizes to the state of individual mela-

noma single cells in vivo, as recently reported (Tirosh et al.,

2016). In cancers with mutations in KRAS, the epithelial-mesen-

chymal transition (EMT) program has been shown to underlie

variability in response to genetic depletion of KRAS in some cells

(Singh et al., 2009). While these findings suggest that transcrip-

tional activities may underlie variability in cell responses to direct

inhibition, knowing how this variability relates to the activity of the

oncogene, and how to translate this information systematically

into effective therapeutic strategies in a prospective manner,

remains a challenge.

Experimental gene expression signatures derived from an

activated oncogene have been used to predict its activation sta-

tus across individual samples (Bild et al., 2006). Although this

approach enables the identification of overall transcriptional

changes driven by an oncogene, its effectiveness is limited by

not knowing in advance the degree of heterogeneity of the tran-

scriptional profiles due to the complex relationships between the

activated oncogene and its multiple downstream effectors, as

well as other cellular and genetic contexts that impinge on the

fate of the final output. As such, an analytical methodology that

embraces this complexity, e.g., by capturing the consequences

of an activated driver oncogene and their correspondingmultiple

end states, will be valuable for further disease characterization

and management.

Here, we introduce Onco-GPS (OncoGenic Positioning Sys-

tem), a data-driven analysis framework and associated experi-

mental and computational methodology that makes uses of

an oncogenic activation signature to identify multiple cellular

states associated with oncogene activation, and apply it to

explore cancers with altered RAS/MAPK signaling. The Onco-
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GPS method decomposes that signature into its constituent

components in such a way that the context dependencies

and different modalities of oncogenic activation are explicitly

included. Once characterized and annotated, these components

are used to deconstruct and define cellular states, and to map

individual samples onto a novel visual paradigm: a two-dimen-

sional Onco-GPS ‘‘map.’’ This resulting model facilitates further

molecular characterization and provides an effective analysis

and summarization tool that can be applied to explore complex

oncogenic states.

RESULTS

Onco-GPS: Method Overview
The Onco-GPS approach is executed in three modular steps

shown in Figure 1. Step I involves the experimental genera-

tion of a representative gene expression signature reflecting

the activation of an oncogene of interest (Figure 1, panel I). In

step II, the resulting signature is decomposed into a set of

coherent transcriptional components using a large reference

dataset representing multiple cellular states relevant to the

oncogene of interest (Figure 1, panel II). These components

are also biologically annotated and characterized through further

analysis and experimental validation. In step III, a representa-

tive subset of samples and components are selected to define

cellular states using a clustering procedure. The selected com-

ponents are also used as transcriptional coordinates to generate

a two-dimensional map where the selected individual samples

are projected relative to these transcriptional coordinates in

analogy to a geographical GPS system (Figure 1, panel III)

(Hofmann-Wellenhof et al., 2007). For example, the ‘‘ternary

plot’’ Onco-GPS shown in Figure 1, panel III, makes use of three



Cancer cell line samples 

BRAF  signature High                                                                                                      Low 

BRAF mutation status 

Signature-based model to predict BRAF activation 

Predicted activation according to BRAF signature-based model 

pr
ob

ab
ili

ty
 

pr
ob

ab
ili

ty
 

Cancer cell line samples 

Predicted activation according to KRAS signature I-based model 

KRAS signature I High                                                                                                        Low 

KRAS mutation status 

Signature-based model to predict KRAS activation 

Predicted activation according to KRAS signature II-based model 

Predicted activation according to KRAS signature III-based model 

Predicted activation according to KRAS signature IV-based model 

KRAS I-IV Signatures Overlap 
Number of overlapping  

genes in signatures 
Number of samples predicted 
as active (dark blue above) 

A

BRAF/ETV1 Signatures Overlap 

Predicted activation according to ETV1 signature-based model 

Number of overlapping 
genes in signatures 

Number of samples predicted as 
active (dark blue above) 

ETV1                        BRAF ETV1                    BRAF 

KRAS I               
KRAS II               KRAS III               

KRAS IV               KRAS I               
KRAS II               KRAS III               

KRAS IV

B 

C 

D 

E 

F 

Figure 2. Analysis of Signature-Based Models that Predict the Oncogenic Activation of BRAF and KRAS

(A) Profile of an isogenic signature of BRAF activation and BRAF mutation status in hundreds of cancer cell lines.

(B) Probabilistic model to infer the activation status of BRAF based on the mRNA values of the BRAF signature genes. Activation status of cell lines according to

the BRAF model and an additional model based on an ETV1 isogenic signature.

(C) Overlap in the number of samples that are predicted in the active state, and the number of overlapping genes in both signatures.

(D) Analysis of signature-based models that predict the oncogenic activation of KRAS.

(E) Probabilistic model to infer the activation status of KRAS based on the mRNA values of the KRAS signature genes. Activation status of cell lines according to

the KRAS model and three additional models based on three KRAS signatures from the Molecular Signatures Database (MSigDB, STAR Methods).

(F) Overlap in the number of samples that are predicted in the active state, and the number of overlapping genes in the four KRAS signatures.
components to represent a defined population of cellular states

and samples. More complex ‘‘global’’ Onco-GPS maps, can

involve larger subsets of components if necessary (Figure S1;

STAR Methods). Once an Onco-GPS map has been created,

samples from independent test datasets can also be projected

onto and displayed within the same Onco-GPS map, and their

states predicted using a probabilistic classifier (STAR Methods).

The Onco-GPS map can also be used to display the association

of samples with various genomic features, such as genetic

lesions, pathway activation, individual gene expression, genetic

dependencies, and drug sensitivities. In the next sections, we

will use the Onco-GPS approach to explore the complex func-

tional landscape of cancer cell lines with alterations in the

RAS/MAPK pathway. Details of the approach can be found in

the STAR Methods.
Step I. Generate RAS/MAPK Oncogenic Signatures
To generate transcriptional signatures reflective of RAS/MAPK

activation across multiple cellular contexts, we explored signa-

ture-based models that predict the oncogenic activation of

BRAF and KRAS in a large panel of cancer cell lines representing

multiple lineages. In Figure 2A, we show the profile of an isogenic

signature of BRAF activation that we generated by introducing

mutant BRAF V600E into immortalized human cells (see the

STAR Methods for details) (Elenbaas et al., 2001; Lundberg

et al., 2002; Garraway and Lander, 2013). This signature profile

associated significantly with the mutational status of BRAF in

cancer cell lines (Figure 2A), and allowed us to generate an accu-

rate probabilistic model to infer the activation status of BRAF

based on the expression (mRNA) of the genes in the signature

(Figure 2B). When this model is compared against another
Cell Systems 5, 105–118, August 23, 2017 107
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Figure 3. Generation of KRAS Components from the KRAS

Signature

Schematic depiction of lung KRAS signature (left) being decomposed into W

and H matrices (right, only H matrix shown).
signature that we generated by the overexpression of ETV1, a

transcription factor known to be downstream of BRAF/MAPK,

we found a significant overlap in both the number of samples

that are predicted in the active state, and the number of overlap-

ping genes in both signatures (Figure 2C). These observations

suggest that the primary output of oncogenic BRAF involves

transcriptional programs regulated by ETV1. In contrast, when

we analyzed a KRAS activation signature generated by intro-

ducing an activating KRAS allele (G12V) in immortalized human

lung cells, the corresponding profile only modestly aligned with

the mutational status of KRAS (Figure 2D). If we compare the

samples predicted to be active by this signature and three other

independent KRAS signatures from the literature (Figure 2E),

we observed greater differences and much less overlap than in

the case of BRAF (Figure 2F). This transcriptional complexity,

consistent with our current understanding that the activation of

RAS operates in a non-linear fashion and engages multiple

downstream effectors and programs (Chang et al., 2009), implies

that there are important limitations to delineate oncogenic states

using transcriptional signatures for oncogenes that display more

complex, heterogeneous, and context-dependent behavior. This

motivated us to develop a signature decomposition strategy

(step II) to derive higher-resolution RAS activation profiles (see

STAR Methods for details).

Step II. Decompose the KRAS Signature and Generate
Transcriptional Components
We used the top 1,000 differentially expressed genes from the

KRAS activation signature generated from RNA-sequencing

profiles, and decomposed them into components using 750

samples from the Broad-Novartis Cancer Cell Line Encyclopedia

(CCLE) (Barretina et al., 2012), corresponding to 25 lineages of

solid tumors as a reference dataset. Restricting the decomposi-

tion process to the signature genes allowed us to emphasize the

most relevant oncogene-driven transcriptional space and limit

the effects of other transcriptional differences. The decomposi-

tion is based on a non-negative matrix factorization algorithm

(Brunet et al., 2004; Tamayo et al., 2007), which decomposes

the KRAS signature into nine distinct components (C1-C9)

showing significant changes across the reference dataset

(Figure 3) that were numerically stable (Figure S2D; STAR

Methods). These transcriptional components, hereafter referred

to as ‘‘components,’’ represent summaries of the most coherent
108 Cell Systems 5, 105–118, August 23, 2017
gene expression patterns, relevant to the KRAS signature genes

across the wide variety of cellular states and contexts repre-

sented in the reference dataset (Tables S1 and S2).

Analyze and Annotate the Transcriptional Components

To characterize and annotate the KRAS components, we asso-

ciated each component profile against several genomic data-

sets including mutations and copy number alterations, protein

and gene expression, pathway activity (Barretina et al., 2012),

gene dependency (Cowley et al., 2014), and drug sensitivity

(Cancer Therapeutics Response Portal [CTRP] dataset, CCLE

pharmacological profiling dataset) (Seashore-Ludlow et al.,

2015). To quantify the degree of association, we used the infor-

mation coefficient (IC), an information-theoretic measure (Kim

et al., 2016), and an empirical permutation test to assess the sta-

tistical significance of the top hits (STAR Methods).

KRAS Components Map to a KRAS ‘‘Core’’ and MAPK

Pathways

The association analysis shows that one of the nine components

(hereafter, C3) associates with KRAS mutation status, the top-

matching feature out of 37,276 genomic alterations (IC =

0.424, p = 3.19 3 10�7, false discovery rate [FDR] = 1.06 3

10�7) (Figure 4A). Moreover, this association was stronger than

any other KRAS signature, either from our prior studies or from

the literature (step I). This observation suggests that the decom-

position strategy extracted a ‘‘core’’ KRAS signal from the initial

KRAS signature. Interestingly, in addition to KRAS mutation, C3

is also associated with both a KRAS dependency signature (IC =

0.603, p = 1.313 10�6, FDR = 2.873 10�5) (Molecular Signature

Database; Singh et al., 2009) and a profile of KRAS RNAi depen-

dency from Project Achilles (IC =�0.605, p = 1.193 10�6, FDR =

2.00 3 10�3) (Cheung et al., 2011; Cowley et al., 2014). These

findings suggest that the transcriptional activity of KRAS repre-

sented by C3 may be relevant to the KRAS dependence pheno-

type. This observation may also explain why KRAS mutant

cancers with low C3 scores, i.e., samples on the right side of

the top heatmap in Figure 4A, may be less dependent on

KRAS for their survival. We also found similar genomic associa-

tions in several independent tumor datasets including the pan-

cancer12 (PanCan12) TCGA (The Cancer Genome Atlas) dataset

(Figures 4B and S3) (Seo et al., 2012; Hoadley et al., 2014; Kirzin

et al., 2014). Furthermore, we observed that both RNAi-medi-

ated suppression of KRAS in HCT116, a KRASmutant colorectal

cancer cell line, as well as withdrawal of KRAS expression in a

transgenic mouse model driven by inducible KRAS, significantly

attenuated C3 scores, suggesting that C3 scores track with

KRAS activity, both in vitro and in vivo (Figures 4C and 4D)

(Ying et al., 2012; Shao et al., 2014). Moreover, rescue of

KRAS expression had modest effect in C3, suggesting that this

observation is specific for KRAS (Figure 4C). Taken together,

these observations suggest that C3 represents a core KRAS

transcriptional program that underlies the KRAS dependency

phenotype.

Wealsoobserved thatC3wassignificantly associatedwithmu-

tations in key components of theWNTpathway, namely b-catenin

andAPC (Chamorro et al., 2005), aswell as dependencyon b-cat-

enin (Figures 4E and 4F), suggesting this component may also

impinge on the WNT/b-catenin pathway (Singh et al., 2012).

Next, we analyzed whether other component profiles were

also associated with other known alterations downstream of the
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Figure 4. Characterization of the KRAS Transcriptional Components C3 and C6 Against genomic features
(A) Selected KRAS features associated with component C3 in the CCLE and Achilles datasets; (B) selected KRAS features associated with component C3 in the

TCGA PanCan12 dataset. Dot plot depicting changes in component C3 scores upon genetic suppression of KRAS (C) in vitro and (D) in vivo. (E) WNT features

associated with component C3 in the CCLE and Achilles dataset and in (F) the PanCan12 TCGA dataset. (G) Selected features associated with component C6 in

the CCLE and CTRP datasets. Dot plots depict changes in component C6 scores upon treatment with MEK inhibitor (H) in vitro and (I) in vivo.
RAS/MAPK pathway, a well-established downstream effector

of KRAS where RAF is the key effector known to activate the

pathway. In this case, BRAF mutation was the top hit associated

with component C6 out of 37,276 genomic alterations (Figure 4G;

IC= 0.422, p = 3.193 10�7, FDR=7.353 10�5).Wealso indepen-

dently generated a BRAF V600E activation signature (Figure 2A;

STAR Methods) and compared its enrichment profile against

component C6 and observed a significant association (IC =

0.639, p = 2.62 3 10�6, FDR = 1.50 3 10�5). We also observed

a significant association of C6 with a signature of ETV1 activa-

tion (IC = 0.694, p = 2.623 10�6, FDR = 1.53 10�5, respectively)

(Figures 2B and 4G). ETV1 is a well-established transcription
factor, downstream of the MAPK pathway, and further suggests

that C6 reflects a transcriptional program associated with MAPK

activation.

We also assessed if the C6 profile predicted sensitivity to

MAPK pathway inhibition. Indeed, we observed a significant as-

sociation between C6 profiles with sensitivities to known clinical

inhibitors of the MAPK pathway, including PLX4720 (Figure 4G;

IC =�0.622, 4.163 10�5, FDR = 1.003 10�2). Finally, using pre-

viously published datasets (Pratilas et al., 2009; Prahallad et al.,

2012), we tested if inhibition of the BRAF/MAPK pathway could

be detected by C6, and found that C6 enrichment scores were

significantly attenuated by MEK inhibitors in BRAF V600E
Cell Systems 5, 105–118, August 23, 2017 109



melanomas, both in vitro and in vivo (Figures 4H and 4I). As

BRAF/MAPK is a well-established effector pathway downstream

of KRAS, these observations provide evidence that the unbiased

Onco-GPS strategy can effectively extract and identify known

transcriptional events downstream of KRAS.

Additional KRAS Components Map to NF-kB, MYC/E2F,

ZEB1/EMT, and HNF1/PAX8 Pathways

We further assessed which transcriptional regulators were asso-

ciated with the remaining KRAS components. We found that C7

was significantly associated with features representing nuclear

factor kB (NF-kB), a well-established pathway downstream of

KRAS (Zhu et al. 2014). These included: (1) a gene set represent-

ing the NF-kB motif (Figure 5A) (IC = 0.573, p = 2.31 3 10�5,

FDR = 1.64 3 10�3), (2) an independent gene set representing

p50/p65 (IC = 0.682, p = 2.62 3 10�6, FDR = 5.66 3 10�8),

and (3) a profile of NF-kB protein expression (IC = 0.398, p =

8.663 10�5, FDR = 8.333 10�4) (Hopewell et al., 2013). Further-

more, we observed corresponding changes in C7 scores upon

introduction of a known activator or repressor of the NF-kB

pathway, consistent with C7 representing activity of the NF-kB

pathway (Figure 5B).

Among the genes most significantly associated with C7 was

FOSL1 (FRA1) (IC = 0.770, p = 1.35 3 10�5, FDR = 6.06 3

10�2) (Figure 5C), amember of the AP-1 transcription factor fam-

ily. This componentwas significantly associated with both higher

mRNA and protein levels of FOSL1 (IC = 0.553, p = 1.243 10�5,

FDR = 2.22 3 10�4) in both CCLE cancer cell lines, as well as in

PanCan12 TCGA tumor samples (Figure 5C). AP-1 transcription

factors are well-known downstream transcriptional regulators of

KRAS. To investigate whether FOSL1was specifically involved in

regulating the C7/NF-kB pathway, we utilized CRISPR-CAS9-

mediated gene editing to knockout FOSL1 in YAPC, a KRAS

mutant cell line with elevated component C7 score (Figure S4),

and assessed the transcriptional consequences by mRNA

profiling. Consistent with FOSL1 associations with C7, deletion

of FOSL1 led to attenuation of C7, as predicted, but not in the

negative controls. Interestingly, targeting FOS, another member

of the AP-1 transcription factor complex (Figure 5D) did not

change the levels ofC7. Notably, the change inC7was observed

with deletion of JUN (Figure 5D), a dimerization unit of AP-1, sug-

gesting that the AP-1 complex containing specifically FOSL1,

but not FOS, may regulate the activity of component C7 down-

stream of KRAS.

We also observed significant associations between compo-

nents C2 and C4 with E2F/MYC and ZEB1/EMT, respectively

(Figures 5E–5H). To further validate these associations, we

used CRISPR-CAS9 to delete E2F1 and ZEB1 in two KRAS

mutant lines, YAPC and HCC44, with moderate/high activation

of components C2 andC4, respectively.We observed significant

attenuation of the respective components upon deletion of ZEB1

and E2F1 using three independent gRNAs relative to control

gRNAs (Figures 5F and 5H), suggesting that these may indeed

regulate the proposed pathways. Finally, Component C5 was

associated with patterns of overexpression and dependency of

HNF1 and PAX8 across multiple cancer types including subsets

of ovary (Cheung et al., 2011), kidney, endometrial, and liver

(Figure S5).

Similar analyses were applied to the other components and

the results are summarized in Table S3. The complete set of
110 Cell Systems 5, 105–118, August 23, 2017
component genomic annotations are provided as Supplemental

Information. In summary, these observations show that Onco-

GPS effectively decomposes KRAS signatures into transcrip-

tional components that reflect previously known and novel

events associated with KRAS.

Step III. Define Cellular States and Generate Onco-
GPS Map
KRAS Mutant Cancers Map onto Four Distinct Cellular

States

Once the nine KRAS components were annotated and vali-

dated, we used them to determine what cellular states were

consistent with the behavior of these components across

KRAS mutant cancers. Interestingly, while the profiles of the

nine components (C1-C9) are rather distinct across the entire

set of CCLE cancer cell lines as expected (Figures 3, 6A, and

S6A), when we restricted the scope to only the KRAS mutant

samples, we observed that the components clustered into

three major groups: (1) ERBB3/PI3K – WNT/KRAS core – AP1

(C1-C3-C9), (2) E2F – MAPK – EMT – MYC (C2-C6-C4-C8),

and (3) PAX8/HNF1B – NF-kB (C5-C7) (Figure 6B). For example,

many KRAS mutant cancers with component representing

PAX8/HNF1B (C5) also aligned with the component represent-

ing NF-kB (C7), while most of the core KRAS/WNT component

(C3) aligned with the ERBB3/PI3K component (C1). These

observations suggest that, in KRAS mutant cancers, the pat-

terns of pathway co-activation, as represented by the compo-

nents, reflect specific synergies and patterns of cooperation

among these pathways. Based on these clustering patterns,

the components C1-C7-C2 were selected as representative

of the KRAS mutant cancers and were used to cluster KRAS

mutant samples in the reference dataset using Hierarchical

Consensus Clustering (Monti et al., 2003) with the IC as simi-

larity metric. This resulted in four clusters representing cellular

states: S1-S4 (Figure 6C, top).

Projecting KRAS Mutant Cancers onto the Onco-

GPS Map

To facilitate the visualization and integrated analysis of compo-

nents, samples, and cellular states, we devised a novel visuali-

zation/analysis paradigm that we call Onco-GPS map. In this

map, the transcriptional components are represented by nodes

connected by straight lines (Figure 6C, bottom and S1B). The

location of these nodes on the map derive from a projection

algorithm (Sammon map) that makes the two-dimensional

geometric distances between nodes approximate the ‘‘informa-

tional’’ distances between the components across the KRAS

mutant samples in the reference dataset (STAR Methods).

Once the location of the component nodes are known, the loca-

tion of an individual sample can be found by calculating a vector

sum of the components’ locations weighted by their component

amplitudes for that sample. Using a physical analogy, this corre-

sponds to calculating the equilibrium location of a mass being

pulled by multiple strings (Figure 1, panel III); or, using a

geographical GPS analogy, it corresponds to deriving the loca-

tion of an object by estimating its proximity to a set of reference

satellites (Figures 6C, bottom and S1C). In this way, samples

with relatively high amplitude of a given component, with respect

to the rest, will be projected near the location of that dominant

component’s node (Figure 1, panel III). Finally, the states can
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Figure 5. Characterization of the KRAS Transcriptional Components C2, C4, and C7 against Key Molecular Features

(A) Selected features associated with component C7 in the CCLE dataset; (B) component C7 is modulated by the targeted modulation of NF-kB top;

(C) association of componentC7with FOSL1mRNA in CCLE and TCGAPanCan12 dataset; (D) CRISPR-CAS9-mediated deletion of FOSL1/FRA1 and JUN led to

attenuation of C7, but not suppression of FOS or control. (E) Associations of component C4 in the CCLE dataset; (F) suppression of ZEB1 attenuates component

C2. (G) Associations of component C2 in the CCLE dataset; and (H) suppression of E2F1 attenuates component C2.
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Figure 6. Generation of Onco-GPS Map for KRAS Mutant Cancers

(A and B) Association matrix of the nine KRAS components (C1-C9) with each other according to the information coefficient (IC) in (A) all CCLE samples, (B) the

KRAS mutant samples. Components highlighted in red depict components that were chosen as representative components for subsequent analysis.

(C–E) Generation of Onco-GPS Map for CCLE KRAS mutant cancers from components C1-C7-C2 and their corresponding states S1-S4 (C). KRAS mutant

samples color coded according to ZEB1 targets gene set (D) and NF-kb gene set (E).

(F) Validation of drug combination prediction in a subset of Onco-GPS samples across three cancer cell lines representing state S4 versus other states.

(G) The each heatmaps show relative cell viability measured by CellTiter-Glo Assay (blue to viable red: decreased viability) upon combined treatment of Lapatinib

and PD-0325901. Horizontal gray triangles represent seven increasing doses of PD-0325901 ranging from 0 to 500 nM, vertical great triangles represent nine

increasing doses of Lapatnib from 0 to 33 mM). All relative viability values represented in the heatmaps were normalized to DMSO control (red, cell enrichment;

blue, cell depletion).

(H) Summary of key genomic features associated with each of the 4 KRAS mutant Onco-GPS states S1-S4.
be represented using background contour lines and colors in

such way that a ‘‘region’’ of the map corresponds to samples

sharing the same cellular state membership (Figures 6C, bottom

and S1D; see STAR Methods for details).

One powerful feature of the Onco-GPS map is that once

a group of samples has been projected onto it, they can be

color coded to represent sample-specific, molecular features

or phenotypes of interest. For example, we can specify the tissue

representation of individual KRAS mutant cancers associated

with each cell state depicted on the Onco-GPS map (Figure S6).

Moreover, in the Onco-GPS maps shown in Figures 6D and 6E,

we color coded the samples to represent the activities of ZEB1

and NF-kB pathways using two independent signatures (Hinata
112 Cell Systems 5, 105–118, August 23, 2017
et al., 2003; Aigner et al., 2007). In Figure S7, we color coded the

samples to show the amplitude of each component. This allows

a direct visual assessment of how each sample associates with

specific features and biological phenotypes of interest, as well

as enabling tracking of dynamic changes in the cell state of

individual samples. We can also use the Onco-GPS to support

high-level probabilistic inferential models or networks to predict

functional phenotypes such as drug responses (see STAR

Methods for details).

Analyzing the Onco-GPS KRAS Mutant Cellular States

We analyzed the top features associated with each of the four

KRAS mutant states (S1-S4) and found that numerous gene

sets representing EMT markers were enriched in states S1 and



S2, and NF-kB gene sets were enriched in states S2 and S3 (Fig-

ures 6D and 6E). This clearly delineates two major ‘‘axes’’ on the

KRASOnco-GPS: a vertical axis associated with the EMT, and a

horizontal axis representing NF-kB activity. This observation

confirms previous studies that suggested that EMT underlies

the KRAS dependency phenotype (Singh et al., 2009), but also

suggests the existence of additional, more refined states that

can be explained by NF-kB activation status. To confirm these

observations, we analyzed the expression of specific proteins

and pathways in representative cancer cells in each subgroup.

In agreement with the Onco-GPS predictions, we found that

representative markers of epithelial (E-cadherin expression)

and EMT (ZEB1 expression), as well as activation of NF-kB

(p65 Ser536), were associated with samples in each of these

major cell states (Figure S8).

Notably, we also observed significant association of these

cell states with expression of specific RTKs (Figures S9A–

S9E). For example, expression of ERBB3 was significantly

associated with state S4, defined by the core KRAS/WNT

component (C3) and the ERBB/PI3K component (C1), while

AXL/EGFR and MET were more dominant in states S2 and

S3, respectively. As these states were defined purely by unbi-

ased transcriptional analysis, their association with specific

RTKs suggests that these either (1) play a direct role in defining

these states, or (2) they reflect downstream transcriptional con-

sequences of KRAS activation in those states. Indeed, prior

studies have shown that expression patterns of certain RTKs

are important in determining phenotypic outcomes among

KRAS-driven cancers (Salt et al., 2014; Sun et al., 2014; Man-

chado et al., 2016).

State S1 KRAS Mutant Samples Are Sensitive to the

Lapatinib and PD-0325901 Combination

We hypothesized that knowledge of the state for a given group

of samples could be used to predict their chemical sensi-

tivities to single agents or combinations that target the corre-

sponding co-activated components. To assess the potential of

this approach, we measured the associations between drug-

sensitivity profiles and component activity across the reference

dataset. Because only two components, C1 and C3, were en-

riched in state S4 relative to the remaining states, we inferred

that these would be sensitive to the combined inhibition of these

two components (Figure S7; Table S4). The initial analysis of

those components found that they were indeed independently

sensitive to Lapatinib and PD-0325901, respectively (Table S5).

We therefore performed a set of experiments to assess the sensi-

tivity of a group of KRAS mutant cell lines to these two drugs as

single agents and in combination. We choose three samples in

state S4, high in the relevant components,C1 andC3, and a line-

age-matched group of three samples representing the other

states as controls (Figure 6F). As predicted, we found significant

sensitivity to the compound combination in KRAS mutant can-

cers in state S4 (Figure 6G, bottom row) but not in the control

group (Figure 6G, top row). These results indicate that KRAS

mutant cancers associated with Onco-GPS cell states share

chemical sensitivity phenotypes and demonstrate that this

approach can be used effectively to predict drug combinations.

Collectively, these observations suggest that this approach

can help to devise strategies to more effectively characterize

KRAS mutant cancers, as well as identify potential biomarkers
to infer disease states, and to guide the choice of pharmacolog-

ical or immunological therapeutic agents. A summary of features

associated with each KRAS transcriptional states (S1-S4) can be

found in Figure 6H and Table S4.

An Onco-GPS for BRAF Mutants

We also used the Onco-GPS approach to explore cancers with

mutations in BRAF using their most relevant subset of KRAS

components: C6-C7-C3 (Figure S10). In this case, the Onco-

GPS clustering of BRAF mutant cancers produced three states

(Figure S11) delineated by two major axes: BRAF/MAPK and

NF-kB activation (Figure 7A). In the BRAF Onco-GPS map, the

majority of BRAF mutant melanomas span states S1 and S2

proximal to C6 (the BRAF/MAPK component) (Figure S12). The

most resistant BRAF mutant cancers were mapped either on

state S2, close to C7 (NF-kB/FOSL1 component), or on state

S3 close to C3 (RAS/WNT component) (Figure 7A). Then we

analyzed the response of those BRAF mutant samples to two

selective BRAF inhibitors, Vemurafenib and PLX4620. Samples

in state S1 show significant sensitivity to these agents consistent

with having higher amplitude of C6 (Figures 7B and 7C). In a

similar manner to the KRAS mutant cancers, we also found

significant associations of these states with overexpression of

specific RTKs, namely, AXL and EGFR in state S2, as well as

transcription regulatorsMITF andSOX10 in stateS1 (Figure S13).

This heterogeneity in the response to BRAF inhibition, and the

identification of associated genomic hallmarks, is consistent

with prior studies that identified the activation of NF-kB and

AXL/EGFR as intrinsic BRAF inhibitor resistance mechanisms

in both BRAF mutant melanomas and colorectal cancers

(Wood et al., 2012; Garraway and Lander, 2013, Konieczkowski

et al., 2014). We also found that this relationship generalizes to

an independent dataset of non-overlapping BRAF mutant can-

cer cells (Sanger Cell Lines Project) for which a different MAPK

inhibitor was used (PD-0325901) (Figure S14) (Garnett et al.,

2012). Furthermore, we show that more sophisticated models

for predicting MAPK inhibition response can be implemented,

e.g., using a Bayesian predictor based on the BRAF Onco-

GPS amplitudes of C6, C7 and the mutation status of NRAS,

KRAS, and EGFR (Figures S15 and 16; STAR Methods).

Finally, the three states defined by the BRAF mutant Onco-

GPSwere also recapitulated by de novoOnco-GPSmaps gener-

ated by replacing the KRAS components with selected pathways

or proteins informed by each of theC6,C7, andC3 components,

suggesting that these states are robust and can be identified

using their relevant marker features (Figure S17).

A summary of features associated with each BRAF transcrip-

tional state can be found in Figure 7D and Table S6.

DISCUSSION

In this study, we introduce Onco-GPS as a general method-

ology and framework to decompose transcriptional signatures

to delineate oncogenic cellular states. These states explicitly

take into account context dependencies, heterogeneity, and

the complexities associated with oncogenic activation. It is a

fully data-driven approach and serves as a powerful device to

establish relationships among features that are informative in

strategizing therapy against cancers which otherwise share

common oncogenic lesions.
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Figure 7. Onco-GPS Map for BRAF Mutant

Cancers

(A) BRAF mutant cancers divided into three states

are depicted on the Onco-GPS map and their

corresponding states S1-S3.

(B and C) Drug sensitivities to (B) BRAF inhibitor

Vemurafenib (p = 0.001) and (C) PLX4720 in the

CCLE dataset (p = 0.001).

(D) Summary of genomic features associated with

each of the BRAF mutant Onco-GPS states S1-S3.
Generationof informativeOnco-GPSmaps to exploregenomic

events or pathways will require derivation of accurate transcrip-

tional profiles reflecting oncogenic activities in the relevant

cellular contexts, aswell as the ability to characterize and validate

the resulting components and Onco-GPS cell states. The Onco-

GPS decomposition makes use of signatures from isogenic sys-

tems of several different cellular backgrounds that provide clean

and direct transcriptional information relevant to the oncogene;

while at the same time incorporating diverse regulatory circuits

inherently represented across multiple cellular contexts in the

reference dataset. This approach deconvolves the functional

consequencesofoncogene activation in amoredirect andunam-

biguous way. As we have shown, the resulting components offer

many advantages as building blocks to define cellular states,

compared with traditional signatures of oncogenic activation.

The nine KRAS components unveiled by the Onco-GPS anal-

ysis provide an intriguing view into RAS biology. It is remarkable

that these components identify and summarize a surprisingly

large number of known results in a systematic and unbiased

manner. The components represent many well-known RAS-
114 Cell Systems 5, 105–118, August 23, 2017
related pathways and processes that

are induced synergistically with a less

familiar combinatorial logic. For example,

C6 clearly recapitulates changes asso-

ciated with BRAF/MEK activation but

it does not appear to be the ‘‘core’’ signal

downstream of KRAS most associ-

ated with KRAS dependency. Instead,

component C3, represents a combined

RAS/WNT activation that associates

more strongly with the KRAS dependency

phenotype. Another key observation is

that C3 and C6 profiles are associated

with the variability in sensitivity to KRAS

and BRAF inhibition. Previous studies

have shown that the EMT program,

through the ZEB1 transcription factor

activity, underlies KRAS independence

(Singh et al., 2009); and that the transition

between MAPK inhibition-sensitive and

-resistant states in BRAF mutant mela-

noma is associated with the interplay

between MITF and NF-kB/AXL (Koniecz-

kowski et al., 2014; Zhu et al., 2014). Our

observations confirm these results and

propose a causal link between default

transcriptional activation of KRAS and
BRAF (i.e., C3, C6), lineage-specific transcriptional program,

and oncogene addiction/dependency. In this model, attenuation

of the default transcriptional activity, and the consequent loss

of oncogene dependency, is substituted by the activation of

NF-kB/AXL and/or EMT programs. This in turn defines bound-

aries between oncogenic states associated with activation/

repression of specific ‘‘transition circuits.’’ In this transition

between two oncogenic states with different properties, the

relevant synergies or incompatibilities of different oncogenic

circuits become explicit and impinge on the overall viability

and pathway activation profiles at both sides of the transition.

These transitional hallmarks are reminiscent of the ‘‘order

parameters,’’ e.g., in a physical phase transition between

different phases of a complex material (Sethna, 2011; Fultz,

2014), and suggest that the specific changes across the

Onco-GPS states can provide a way to identify the most salient

cellular circuits associated with resistance mechanisms. In

addition, the fact that these two related but distinct oncogenic

events display common pattern(s) of functional cooperation be-

tween the oncogene- and lineage-specific transcription factors



(i.e., MITF, HNF4a/CDX2 versus HNF1B/PAX8, epithelial/EMT

cell states, respectively), suggests that the lineage-specific tran-

scriptional program and the de-differentiation program may also

participate in the defining cell states that are relevant for thera-

peutic strategies. The observation that resistant states, for

both KRAS and BRAF mutant cancers, lie next to each other in

theC7/NF-kB ‘‘phase,’’ suggests an intriguing functional conver-

gence of resistance mechanisms that deserves further study.

The Onco-GPS results for both KRAS and BRAF mutant can-

cers strongly suggest that themutation status alone is not a good

proxy for the true ‘‘functional’’ oncogenic state. Indeed recent

work indicates that tumors that harbor KRAS mutations are

heterogeneous and that cell lineage and other genetic alterations

differentiate subtypes of KRAS-driven cancers. Despite their un-

derlying complexities, however, these cancers can be effectively

categorized (Prahallad et al., 2012; Konieczkowski et al., 2014;

Skoulidis et al., 2015). The divergent transcriptional states and

associated features represented on the respective Onco-GPS

maps, also suggest an interplay between oncogene activation

and additional molecular events that ultimately drive cancers

into a few, genetically complex but functionally similar, viable

end states. Knowledge of these cooperating molecular events,

or ‘‘genetic modifiers’’ may be critical in understanding their

role vis-à-vis oncogenic states. For example, in non-small-cell

lung carcinoma cancers mutational changes in TP53 and LKB1

have been shown to be enriched in differential gene expression

changes in KRAS mutant cancers (Skoulidis et al., 2015). More-

over, we observed significant enrichment of genomic aberra-

tions inWNT components associatedwith KRASmutant cancers

in state S4. However, in examining the broader contributions

across a large group of states associated with both KRAS and

BRAF mutant cancers, no single event shows perfect one-to-

one association with the Onco-GPS cellular states. In this situa-

tion, the functional role of those events may only be elucidated

based on their complementarity and joint association against

functional profiles, such as those provided by the Onco-GPS

components or states (e.g., Kim et al., 2016). Another possibility,

not necessarily exclusive of the previous one, is that the tissue of

origin upon which the oncogene was activated also plays an

important role in determining the viable states. This is supported

by the differences we observed between the isogenic systems

(data not shown), and the observation that certain tissues were

more enriched in one state than the other in both the KRAS

and BRAF Onco-GPS maps. However, it is unlikely that this

may be the sole contributor as we also observe many excep-

tions. Another plausible explanation is that epigenetic events

may also cooperate with the oncogenes in determining the

induced states. Epigenetic landscapes have been shown to un-

derlie developmental programs, and perhaps provide a more

molecularly tractable definition of how all of the aforementioned

events might converge (Dawson and Kouzarides, 2012; Pott and

Lieb, 2015). Indeed, the interplay of activated RASwith the PRC2

complex has recently been associated with an EMT-associated

phenotype (De Raedt et al., 2014; Serresi et al., 2016). The diver-

sity of oncogenic states induced by KRAS may also help explain

the striking lack of overlap of the many RAS synthetic lethality

lists published over the last decade (Downward, 2015).

We also showed that Onco-GPS can be used to predict the

response of individual samples to single agents or combinations
that target states by ablating their corresponding components

for cancers with well-defined oncogenic lesions, but divergent

response profiles. While this presents a powerful approach to

infer combinatorial drug strategies, a key rate-limiting step is

the lack of drug representation in some of the pathways or com-

ponents. For example, there are only few drugs that target com-

ponents C7,C2, and C4, which represent NF-kB, MYC/E2F, and

EMT nodes, respectively. This may simply be due to lack of

appropriate agents against these pathways or lack of chemical

diversity in the available datasets. It is also possible that these

states are intrinsically more robust, and consequently require

the joint targeting of multiple pathways, or multiple entry points

in the same pathway, to elicit a more significant effect on cell

viability. This would be consistent with our prior observation

that no single inhibitor appears to effectively target the entire

NF-kB network in a KRAS oncogenic context (Barbie et al.,

2014; Zhu et al., 2014). An interesting feature exclusively associ-

atedwith stateS3was the overexpression of PDL-1 (Figure S9E).

PDL-1 is known to play an inhibitory role against the immune

system, and our results suggest that S3 KRAS mutant can-

cers may be configured to induce an immune evasion strategy

through cell autonomous expression of PDL-1. This also sug-

gests that Onco-GPS maps may serve as a guide to identify

cancers that may benefit from the use of specific immunological

interventions.

TheOnco-GPSapproach as awhole can serve as a framework

to begin to explore other oncogenic events and pathways that

can be tailored to accommodate differences in the biological

complexities in each scenario. Further, individual steps involved

in the generation of Onco-GPS (steps I to IV) can also facilitate

analysis of relevant questions of interest. For example, the

Onco-GPS map provides an effective analysis and visual para-

digm for the development of network and inferential models

that make explicit use of cellular states and other molecular

hallmarks (i.e., cell state markers and biomarkers), to delineate

differences or similarities and guide effective therapeutics strate-

gies. Furthermore, Onco-GPS visualization facilitates depiction

and tracking of dynamic changes in cell states of individual

samples, rather than display them as static entities. The in-

ferred oncogenic states can also be used as part of a high-

level description and as input to models where they can mediate

the statistical dependencies between genomic hallmarks and

functional cellular phenotypes such as responses to pharmaco-

logical or immunological agents (see, e.g., Figures S15 and

S16). The Onco-GPS approach can serve as a foundation for

more comprehensive, flexible, and effective disease models

for research purposes and as part of individualized precision

medicine paradigms.

The analysis steps of the Onco-GPS method will be made

available as a collection of Jupyter notebooks available at

https://github.com/UCSD-CCAL/onco-gps-paper-analysis.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p-NF-KB Cell Signaling Cat #: 3033; RRID: AB_331284

FRA1 Cell Signaling Cat #: 5281; RRID: AB_10557418

ZEB1 Santa Cruz Technologies Cat #:25388; RRID: AB_2217979

E-cadherin BD Biosciences Cat #:BDB610181; RRID: AB_397580

B-actin Santa Cruz Technologies Cat #:47778; RRID: AB_626632

Chemicals, Peptides, and Recombinant Proteins

Lapatinib Selleck Chemicals Cat #: S1028

PD-032521 Selleck Chemicals Cat #: S1036

Critical Commercial Assays

Cell-titer-glo Promega G7572

IRDye� 800CW Goat anti-Mouse IgG LI-COR P/N 925-32211

IRDye� 800CW Goat anti-Mouse IgG LI-COR P/N 925-68021

RNeasy Plus Mini Kit QIAGEN Cat#: 74134

Pierce BCA Protein Assay Kit Thermo Scientific Cat#: 23225

Deposited Data

Raw data files for RNA sequencing for KRAS signatures NCBI Gene Expression Omnibus GEO: GSE94937

Raw data files for RNA sequencing for CRISPR-Cas9

Experiments

NCBI Gene Expression Omnibus GEO: GSE84706

BRAF signature (L1000) Supplemental Table #7

ETV1 (L1000) Supplemental Table #7

Experimental Models: Cell Lines

HCC44 DSMZ Cat#: ACC 534

YAPC DSMZ Cat#: ACC 382

LS513 ATCC CRL-2134

HCT15 ATCC CCL-225

AGS ATCC CRL-1739

NCI-H2009 ATCC CRL-5911

NCI-H358 ATCC CRL-5807

MIAPACA2 ATCC CRL-1420

KP4 RIKEN RCB1005

CALU1 ATCC HTB-54

RKN Health Science Research Resources

Bank (HSRRB)

IFO50317

SALE Lundberg et al., 2002 N/A

HMLE Elenbaas et al., 2001 N/A

PMEL Garraway and Lander, 2013 N/A

Recombinant DNA

KRAS G12V plx304 Shao et al., 2014 N/A

BRAF V600E plx304 Jané-Valbuena et al., 2010 N/A

ETV1 plx304 Jané-Valbuena et al., 2010 N/A

GFP pdonr223 Addgene #25899

lentiCas9-Blast Addgene #52962

lentiGuide-Puro Addgene #52963

Sequence-Based Reagents

Primer for CRISPR-Cas9 gRNA Supplemental Table #8
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

PICARD https://broadinstitute.github.io/picard/

PRADA Torres-Garcı́a et al., 2014

Cufflinks http://cole-trapnell-lab.github.io/cufflinks/

ssGSEA www.Genepattern.org

Other

Melanoma samples with MEKi treatment NCBI Gene Expression Omnibus GSE51115

Rescue of KRAS suppression in HCT116 colon cancer

cell line

NCBI Gene Expression Omnibus GSE55942

Inducible KRAS model of mouse pancreatic cancer NCBI Gene Expression Omnibus GSE32277

Melanoma patient samples before and after MEKi

treatment

NCBI Gene Expression Omnibus GSE50535

NSCLC cell lines with NF-KB modulations NCBI Gene Expression Omnibus GSE33322

Primary Colorectal Tumors NCBI Gene Expression Omnibus GSE39084

Lung Adenocarcinoma NCBI Gene Expression Omnibus GSE40419

PanCan TCGA datasets (PanCan12) Hoadley et al., 2014 Synapse.org

Achilles www.broadinstitute.org/achilles V2.20.1

CTD2 www.broadinstitute.org/ctrp

(Seashore-Ludlow et al., 2015)

CTRPv2.2

CCLE www.broadinstitute.org/CCLE V2

Gene sets www.msigdb.org C1, C2, C7 collection

OncoGPS This study. https://github.com/UCSD-CCAL/

onco-gps-paper-analysis
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Pablo

Tamayo (ptamayo@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Isogenic Cell Lines
Immortalized lung (SALE) were obtained and propagated as previously described (Lundberg et al., 2002). Briefly, SALE cells were

grown in SABM medium (CC-3119, Lonza) containing SingleQuot Kit Supplement and Growth Factors (CC-4124). HMLE cells

were grown in MEBM medium (Lonza - CC-3151) supplemented with SingleQuot Kit Supplement and Growth Factors (CC-4136).

PMEL cells were grown in TICVA medium containing -100 mM isobutylmethylxanthine IBMX (Sigma), 50 ng/ml 12-O-tetradeca-

noyl-phorbol-13-acetate TPA (Sigma), 1 mM sodium vanadate Na3VO4, 1 mM N6, 2’-O-dibutyryladenosine 3:5-cyclic monophos-

phate dbcAMP (Sigma). All cells were incubated at 37 �C in 5% CO2.

KRAS Mutant Cancer Cell Lines
HCC44, YAPC, LS513, HCT15, AGS, NCI-H2009, NCI-H358, MIAPACA2, KP4, CALU1, RKN were cultured in either DMEM or RPMI

supplemented with 10% FBS. All cells were incubated at 37 �C in 5% CO2.

Authentication of Cell Lines Used
The cancer cell lines were obtained from the Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle/home). All cell

lines were fingerprinted multiple times using one of two genotyping platforms, Sequenom or Fluidigm. Sex of the cell lines are as

follows; Male: YAPC, LS513, HCT15, NCI-H358, MIAPACA2, KP4, CALU1. Female: HCC44, AGS, NCI-H2009, RKN.

METHOD DETAILS

Plasmids and Cloning Constructs
For the generation of the CRISPR-Cas9 gRNAs, we used lentiGuide-Puro (Addgene) vector as a backbone. Single stranded oligos

were ordered through IDT and annealed. LentiGuide-Puro were linearized using BsmBI restriction enzyme (NEB). Complementary
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single-stranded DNA oligos were annealed and the resulting double-stranded oligos were ligated into the linearized vector, followed

by transformation in the Stbl3 (Invitrogen) competent cells for subsequent positive colony screening and propagation of the plasmid.

Lentivirus Generation
293T cells were transfected with respective lentiviral vector along with packaging plasmids (delta8.9 and VSV-G) using TransIT

transfection reagents (Mirus Bio) and Opti-mem reduced serum media (Thermo Scientific). Viruses were collected 48 hours after

infection in DMEM supplemented with 20% FBS. All virus production and infections were carried out in BL2+ designated area by

strictly following biohazard safety regulations.

Experimental Oncogenic Signature Generation
For the generation of the mRNA profile of KRAS, BRAF and ETV1 activation, HMLE, SALE or PMEL cells were infected with lentiviral

constructs in plx304 vector expressing Open Reading Frame (ORFs) KRAS G12V, BRAF V600E, ETV1 or GFP in duplicates, supple-

mented with 8 mg/ml polybrene. Cells were either harvested 24 hours after infection, or selected with blasticidin (10 mg/mL). For the

generation of KRAS signature, three independent experiments were carried using one of the two KRAS G12V expression vector

plx304 or plx302, which expresses selectable marker for blasticidin (10 mg/mL) and puromycin (2ug/mL), respectively. They cells

were harvested after stable cell lines have been established and growth was resumed after 1-2 weeks post infection. For harvesting,

the cells were washed three times in ice cold PBS, and lysed, and harvested using the RNeasy mini kit according to the manufac-

turer’s protocols (Qiagen).

CRISPR-Cas9 Experiments
CRISPR-Cas9 experiments were carried out by first infecting HCC44 and YAPC cells with CAS9 using plx311 vector and selecting

with blasticidin (10 mg/mL) to obtain stable CAS9 expressing cell lines. gRNAs were generated in pxr001 vector by cloning gRNAs

against ZEB1, FOSL1, FOS, JUN and E2F1, as well as GFP, RFP and random gRNA controls. Three independent sequences for

each gRNAs were used for experimentation (1 of 3 FOSL1 gRNA used for RNAseq experiment was flagged after quality control).

These gRNAs were then infected and selected with puromycin (1ug/mL) 1 day after infection. Cells were harvested and RNA was

extracted after 5 days infection using RNeasy mini kit (Qiagen).

Generation of BRAF V600E and ETV1 Signatures Using L1000
The mRNA profiles for BRAF B600E and ETV1 were obtained using the Broad Institute’s Luminex L1000 gene expression profiling

platform (Peck et al., 2006). L1000 is a multiplexed gene expression assay that uses ligation mediated amplification (LMA) of RNA

sequence specific probes combined with Luminex based detection to generate expression profiles of 978 genes (landmark genes)

per sample in a 384 well format using Luminex FlexMap flow cytometry-based scanner. The resulting readout is a measure of mean

fluorescent intensity (MFI) for each landmark gene. The raw expression data are log2-scaled, quantile normalized, and z-scored, such

that a differential expression value is achieved for each gene in each well. Ectopic expression of BRAF V600E and ETV1 was

confirmed by immunoblotting with V5 antibody (Life Technologies) prior to harvesting, or by examining the expression of individual

transcript levels in the mRNA profiles.

RNAseq Library Preparation and Sequencing
mRNA profiles for the generation of KRAS signature and the CRISPR perturbation profiles were carried out by RNAseq profiling ap-

proaches. Libraries were prepared using Illumina TruSeq Stranded mRNA sample preparation kits from 500ng of purified total RNA

according to the manufacturer’s protocol. The finished dsDNA libraries were quantified by Qubit fluorometer, Agilent TapeStation

2200, and RT-qPCR using the Kapa Biosystems library quantification kit according to manufacturer’s protocols. Uniquely indexed

libraries were pooled in equimolar ratios and sequenced on an Illumina NextSeq500 with single-end 75bp reads by the Dana-Farber

Cancer Institute Molecular Biology Core Facilities.

RNAseq Data Processing
FASTQ files were processed into BAM files using picard, a set of command line tools for manipulating high-throughput sequencing

data using Homo Sapiens genome assembly 19 as the reference genome (McKenna et al., 2010) http://broadinstitute.github.io/

picard/. These files were subsequently processed through the Broad Institute’s firehose RNASeq pipeline by using the following

modules; PRADA - BAM to FASTQ for RNA-Seq (version 27), Align RNA Fastq (version 32), Mark Duplicates for RNA-Seq (version 25),

Recalibrate RNA-Seq Bam Erase Intermediate Files for RNA-Seq (version 28). RPKM values were derived from processing through

the Cufflinks (version 12).

Immunoblots
KRAS mutant Cancer cell lines, were grown in RPMI or DMEM supplemented with 10% FBS. Cells were harvested by removing the

media and washing twice in ice cold Phosphate Buffered Saline (PBS), followed by cell lysis with Radioimmunoprecipitation assay

buffer (RIPA). The resulting lysate was centrifuged at maximum speed for 30 minutes and supernatant was resolved on a 4-12% Tris-

Glycine gel using SDS-Page electrophoresis. Proteins were transferred to PVDF membrane and incubated overnight at 4 degrees

with following antibodies; p-NF-KB - Ser536 (3033) (Cell Signaling), FRA1 (D80B4) (Cell Signaling). ZEB1 (Santa Cruz Technologies)
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E-cadherin (Santa Cruz Technologies) and B-actin (Santa Cruz Technologies). The membranes were further washed in PBS supple-

mented with 0.01% Tween and imaged on a LI-COR system.

Drug Sensitivity Experiments
DV90 (250 cells/well), LOVO (250 cells/well), NCI-H2122 (250 cells/well), NCI-H1792 (250 cells/well), NCI-H23 (500 cells/well) and

SW620 (1000 cells/well) were plated at optimized cell densities in media (30 uL) in 384 well plates and incubated for 24 hours in stan-

dard cell culture conditions. Lapatinib and PD-032501 were dissolved in DMSO and added as a single agent or combination in serial

dilution ranging from concentration (6 dilutions ranging from 0 to 0.5uM for PD-032521 and 9 dilutions ranging from 0 to 33uM for

Lapatinib). After 72 hours, Celltiter-Glo (Promega) diluted 1:2 with PBS was added to each well (30 uL) and incubated at room

temperature for 10 minutes. Luminescence was measured using the EnVision plate reader (Perkin-Elmer). Cell viability was normal-

ized to the appropriate no treatment control. All experiments were carried out in triplicates on independent days. The data points are

averages of % viability in quadruplicates normalized to cells alone and plotted on a log scale.

QUANTIFICATION AND STATISTICAL ANALYSIS

Generation of Oncogenic Signatures
The BRAF and ETV1 signatures shown in Figure 2 were generated using consensus signatures combining the top 50 differentially

expressed genes between isogenic cells controls and those infected with lentiviral constructs of BRAF V600, and wild-type

ETV1 vs. controls in HMLE (breast), PMEL (skin) and SALE (lung) epithelial cell lines (see Isogenic Cell Lines above).

The KRAS I signature was generated using lentiviral constructs of KRAS G12V in lung SALE epithelial cell lines. The cell lines were

immortalized by the introduction of TERT, and transformed by SV40 early region (Large-T and small-t antigen) and the relevant onco-

gene. These samples have been harvested post 24 hours after infection for early time point, and 2-3 weeks after infection to capture

the activity of these oncogenes at a later time point. The mRNA profiles for BRAF B600E and ETV1 were obtained using the Broad

Institute’s Luminex L1000 gene expression profiling platform (Peck et al., 2006). mRNA profile for KRAS signature was generated

using Illumina NextSeq500 with single-end 75bp reads to generate RNAseq reads. The other 3 KRAS signatures (KRAS II-IV) corre-

spond to the following gene sets:

d KRAS II: gene set ‘‘CHIARADONNA_NEOPLASTIC_TRANSFORMATION_KRAS_UP’’ from MSigDB 5.1 sub-collection C2

(www.msigdb.org).

d KRAS III: gene set ‘‘KRAS.LUNG.BREAST_UP.V1_UP’’ from MSigDB 5.1 sub-collection C6 (www.msigdb.org).

d KRAS IV: gene set ‘‘SWEET_KRAS_ONCOGENIC_SIGNATURE’’ from MSigDB 5.1 sub-collection C2 (www.msigdb.org).

The signatures profiles shown in the heatmaps were obtained using single-sample GSEA (Barbie et al., 2009). The heatmaps in

Figures 2A and 2B correspond to the skin, lung, pancreas and ovary cancer cell lines in the CCLE dataset (Barretina et al., 2012),

and the heatmaps in Figures 2D and 2E correspond to the lung, pancreas, ovary, large intestine and breast cancer cell lines from

the same dataset. The mutation status of BRAF and KRAS used in those heatmaps, and for model fitting, was part of the mutation

dataset part of the CCLE (Barretina et al., 2012). The models to predict activation are logistic generalized linear models (R function

glm, Venables and Ripley, 2002) fitted to the mutations status of BRAF or KRAS using as input the ssGSEA score for the relevant

signature. The threshold for activation was set at 50% probability (Figures 2B and 2E). For the signature used in the decomposition

step of the Onco-GPS method we generated a higher-resolution KRAS signature based on RNASeq profiling of lentiviral con-

structs of KRAS G12 vs. controls in lung SALE epithelial cell lines. We also performed pilot experiments to identify optimal set

of conditions (time, viral titer) to carry out the main experiments as well as to confirm the expression of these genes in the cell

lines described above (Figure S2). This signature contains the 1,000 most differentially expressed genes (top 500/bottom 500)

according to the Information Coefficient (IC) (Kim et al., 2016). We have also repeated the analysis using different number of genes

from 500 to 2,000 and found very similar results indicating that the exact number of genes is not critical and the results are robust

in general as long as the selected number of genes is not too small or too large. In other applications of the Onco-GPS method-

ology e.g. to new datasets, if the number of samples is enough, one can alternatively select the signature genes using a threshold

on the The FDRs are computed from empirical p-values using the standard Benjamini-Hochberg procedure. The empirical

p-values are obtained from an empirical permutation test where the target profile is randomly permuted to generate a null distri-

bution for the Information Coefficient values. Discovery Rates (FDR) on both sides (up-regulated and down-regulated) of the gene

list. In the case of the KRAS isogenic samples presented in the manuscript their number is rather small and as consequence the

FDR estimates are not very reliable and we opted to use the gene-number threshold of 1,000. This threshold is roughly equivalent

to an FDR of about 0.05.

Decompose Signature and Generate Transcriptional Components
The oncogenic signature defined above is decomposed using Non-Negative Matrix Factorization (NMF) (Brunet et al., 2004; Tamayo

et al., 2007) in the Broad-Novartis Cell Line Encyclopedia Reference Dataset (CCLE)(Barretina et al., 2012). This dataset, hereafter
e4 Cell Systems 5, 105–118.e1–e9, August 23, 2017

http://www.msigdb.org
http://www.msigdb.org
http://www.msigdb.org


denoted asAn3m, contains n rows (oncogenic signature) andm samples representingmany instances of the cellular states of interest.

In the KRAS example featured in the main text n = 1,000 and m = 750. The procedure is performed as follows:
Generate Onco-GPS Transcriptional Components:
a. Normalize the input matrix An3m by replacing each gene expression entry by its column rank and obtain matrix An3m
norm.

b. Perform a standard non-negative matrix factorization (NMF) (Cichocki et al., 2008; Brunet et al., 2004) of matrix An3m
norm,
n3m n
Anorm � W 3 k 3Hk3m; (Equation 1)

where the resulting matrices Wn3k and Hk3m have lower rank than the original matrix An3m (k << n,m).

c. Find an optimal number of components kC based on the numerical stability of multiple projections using different random seeds

following the procedure from (Brunet et al., 2004). The peaks of the cophenetic coefficient represent the more stable decom-

positions and in our KRAS example we found an optimal solution at kC = 9 (Figure S2D).

Notice that Matrix Hk3m has the same number of samples as An3m but a smaller number of rows and can be interpreted as a sum-

marized version of the original dataset, i.e., one described in the space of the most salient transcriptional programs (components)

rather than the original variables (genes). In the KRAS example this procedure produces the 9 transcriptional components C1-C9

described in the main text.

Analyze and Annotate the Transcriptional Components
In this step we perform a detailed analysis of the transcriptional components produced by the NMF decomposition in order to assign

a biological interpretation to each component. The analysis consists of the following steps:

I) Define a target profile for each component in the CCLE Reference Dataset using the amplitudes of the Hk3mmatrix. This matrix

represents the intensity of each NMF component per sample.

II) Using the Information Coefficient (IC) (Kim et al., 2016) estimate the degree of association of each component target profile and

the following genomic features:
1. Mutations and Copy Number Alterations (CNA). CCLE mutation and copy number datasets, www.broadinstitute.org/ccle

(Barretina et al., 2012). (The CCLE and Achilles datasets used in this analysis are preliminary versions of official releases that

will become publicly available in 2016.)

2. Gene expression. CCLE RNA Seq dataset*, www.broadinstitute.org/ccle (Barretina et al., 2012).

3. Pathway expression (single sample GSEA of MSigDB gene sets) MSigDB v5.1 sub-collections c2, c5, c6 and h www.

msigdb.org (Liberzon et al., 2011, 2015) and a few additional gene sets (Table S7):

d TAUBE_EMT_UP/DN, EMT gene set (Taube et al., 2010).

d GROGER_EMT_UP/DN, EMT gene set (Groger et al., 2012).

d Isogenic cell lines signatures (see Isogenic Cell Lines and Generation of Oncogenic Signatures sections above):
B BRAF_UP/DN (BRAF/V600 consensus signature in SALE, HMLE and PMEL),

B ETVI_UP/DN (ETV1 consensus signature in SALE, HMLE and PMEL),

B KRAS.Lung_SALE.Weeks_UP/DN (KRAS mut G12 signature in SALE),

B KRAS.Breast_HMLE.Weeks_UP/DN (KRAS mut G12 signature in HMLE).

B KRAS.Skin_PMEL.Weeks_UP/DN (KRAS mut G12 signature in PMEL).
4. TF and master regulators expression (single sample GSEA of gene sets) MSigDB v5.1, (Liberzon et al., 2011) www.msigdb.

org, sub-collection c3 and 1,598 IPA gene sets, http://www.ingenuity.com.

5. Protein expression. CCLE Reverse Phased Protein Array (RPPA) dataset*, www.broadinstitute.org/ccle (Barretina

et al., 2012).

6. Drug sensitivity1. CTRP dataset, www.broadinstitute.org/ctrp (Seashore-Ludlow et al., 2015).

7. Drug sensitivity2. CCLE pharmacological profiling, www.broadinstitute.org/CCLE (Barretina et al., 2012)

8. Gene dependency. RNAi Achilles dataset*, www.broadinstitute.org/achilles, (Cowley et al., 2014).
The Information Coefficient (IC) (Linfoot, 1957; Joe, 1989; Kim et al., 2016) used for this task is a normalized version of the mutual

information defined as,

ICðx; yÞ= signðrðx; yÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� expð2Iðx; yÞÞÞ

p
; (Equation 2)

where I(x,y) is the differential mutual information between x e.g. one of the component profiles (i.e. a row of theHk3mmatrix), and y e.g.

a genomic feature such as, e.g., the mRNA profile of a gene. This quantity is easier to interpret than the mutual information because

it lies in the range [-1, 1], in analogy with the correlation coefficient. The sign of the correlation coefficient r(x,y) is used to provide

directionality to the association measure. The differential mutual Information I(x,y) is a function of the ratio of joint and marginal

probabilities,
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Iðx; yÞ=
ZZ

Pðx; yÞlog Pðx; yÞ
PðxÞPðyÞdxdy (Equation 3)

Estimating this quantity using the component profiles and the genomic features requires the empirical approximation of continuous

probability density distributions using kernel density estimators (Sheather, 2004). Our implementation is based on the R packages

MASS (Venables and Ripley, 2002), misc3d (Feng and Tierney, 2008), and bcv (Scott, 1997; Venables and Ripley, 2002). When

y is a binary variable, e.g. a mutation of copy number alteration status, the mutual information between them becomes the Jen-

sen-Shannon divergence between the two continuous target distributions indexed by the summary variable (Lin, 1991).

We selected top scoring features that match the profile of each component and based on those we propose a biological interpre-

tation for each component. Examples of the results of this analysis are shown in Figures 4, 5, 6, S3, and S5, for components C3, C6,

C7, C2, C4 and C5. A summary of the biological interpretation of all the components is shown in Table S3. The complete set of top

scoring genomic features for each component is included in Supplemental Information.

Define Oncogenic States
As described in the main text the clustering of the selected subset of the Hk3m matrix samples and components is achieved by a

Hierarchical Consensus Clustering algorithm (Monti et al., 2003) using as similarity metric the Information Coefficient (IC) described

above between columns of the Hk3m matrix. The procedure is as follows:
Define Onco-GPS States:
a. Standardize the rows of the Hk3m matrix. The standardized values above/below a threshold (3.25/-3.25) are set to that

threshold to avoid extreme values.

b. Rescale the standardized-thresholded rows of the Hk3m matrix to the interval [0, 1].

c. Implement a consensus clustering procedure by bootstrap re-sampling of the columns of the Hk3m matrix and by clustering

them using hierarchical clustering (Ward agglomeration method, R function hclust) (Hartigan, 1975). The pairwise distance be-

tween columns of the H-matrix is computed using one minus the Information Coefficient (IC).

d. Repeat the re-sampling 50 times for number-of-clusters/states values between a minimum and maximum (2 and 10 for the

KRAS example) and generate a membership matrix for each of the number-of-clusters values.

e. Compute the cophenetic coefficient of the membership matrices and use it to choose an optimal value kS for the number of

clusters/states (Monti et al., 2003).

f. Generate a final consensus clustering membership table for each of the number-of-clusters values.

g. Train a multi-class support vector machine (SVM) classifier using as inputs the component amplitudes to predict each of the

states (clusters). This is implemented using the svm function (C-classification mode) from R package e1071 (Fan et al., 2005).

This classifier will be useful to assign states to samples from independent test datasets.

When this procedure is applied in the case of the KRAS mutant cancers, using components C1–C7–C2, an optimal solution cor-

responding to kS = 4 clusters/states was chosen (S1-S4). The corresponding heatmap is shown in Figure 7C.

A similar annotation analysis as the one performed for the components is performed for the KRAS mutant S1-S4 states using the

state membership as a putative phenotype. For example, in order to annotate component S1 we define a binary vector where the

samples that belong to S1 are assigned 1’s and the rest are assigned 0’s. This target vector is used to estimate the degree of asso-

ciation of each state and the same collection of genomic features described in section 5.3 above. The complete set of top scoring

genomic features for each of the 4 states (S1-S4) is included in Supplemental Information.

Generate Onco-GPS Map
The generation of the Onco-GPS map requires as input the subset of the Hk3m matrix and the state membership computed above,

and consists of three main steps:

A. Generating the Onco-GPS layout.

B. Projecting samples onto of the Onco-GPS layout.

C. Generating the Onco-GPS contour lines and state-membership background colors.

Wewill describe each of those steps in detail. The layout is generated by defining component ‘‘nodes’’ on a ternary diagram as e.g.

was done for the KRAS C1–C7–C2 components featured in Figure 6C. The procedure is as follows:
Generate Onco-GPS layout:
e6
a. Compute and the location of each component node, ðCj
x;C

j
yÞ with j = 1, 2, 3 (corresponding to C1, C2 and C7 in the KRAS

example), as the vertices of an equilateral triangle (ternary diagram or Gibbs triangle),
C1
x = 0; C1

y = 0; C2
x =

1

2
; C2

y =

ffiffiffi
3

p

2
; C3

x = 1; C3
y = 0; (Equation 4)

b. Plot a blue circle symbol and a text label representing the component node.

c. Plot straight lines connecting the component nodes.
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Once the components layout is defined this way the samples are placed on themap according to their component amplitudes. The

procedure is as follows:
Project Samples on Top of the Onco-GPS Layout:
a. Compute the location for each sample as a vectorial sum of the components’ locations ðCj
x; C

j
yÞ weighted by the normalized

component amplitudes raised to an exponent a,
Wi =
Xk

j =1

Ha
ij ; Si

x =
Xk

j = 1

Ha
ij

Wi

Cj
x; Si

y =
Xk

j = 1

Ha
ij

Wi

Cj
y; (Equation 5)

b. The exponent a provides a free parameter to tune the projection in such way that the samples are placed in appropriate loca-

tions, e.g., not too close or far away from the component nodes. This a global parameter that can be tuned for each problem.

Plot a circle symbol (and optional sample label) on the Onco-GPS using the corresponding color of the sample’s state (e.g. in Fig-

ure 6C: S1=purple, S2=blue, S3=red and S4=green).

This projection procedure is shown in Figure 1, panel III, for three representative samples. Once the layout, i.e., components nodes,

of theOnco-GPS has been computed, and the samples have been placed on their corresponding locations as described above, it is

useful to add an additional element to the Onco-GPS map: contour lines and color background to represent the states. These back-

ground colors and contours (S1=purple, S2=blue, S3=red and S4=green) can be seen at the bottom of Figure 6C. These graphical

elements are computed following this procedure:
Generate Onco-GPS Contour Lines and Background Colors:
a. Define a square lattice Lab, typically 200 x 200 or larger, on top of the Onco-GPS layout.

b. Use the state membership to subdivide samples into mutually exclusive state-groups and define a probability density PSi

ab on

each lattice point for each of them using kernel density estimation (R function kde2d).

c. Compute the winning state S�
ab for each point in the lattice according to the largest state-group probability, and define a cor-

responding winning state probability P�
ab;
S�
ab = argmax

Si

�
PSi
ab

�
; P�

ab =P
S�
ab

ab (Equation 6)

d. Define contour lines and background colors using the winning state probability (R function contourLines) and plot them to form

the background of the Onco-GPS map.

An independent test dataset can also be projected on top of the Onco-GPS by following the following procedure:
Project Independent test samples onto the Onco-GPS:
a. Normalize the test dataset by replacing each gene expression value by its column rank.

b. Obtain the component amplitudes for the test samples by projecting them onto the space of the NMF components (Hk3m ma-

trix space) using the Moore-Penrose pseudo-inverse of the Wn3k matrix (Tamayo et al., 2007),
k3mB
�

HB = inv Wn3 k
�
3BnB 3mB (Equation 7)

c. Normalize the Hk3mB

B matrix by standardization, thresholding and rescaling in the same way as was done with the Hk3m when

the Onco-GPS was first generated.

d. Compute the Onco-GPS location of the samples by using Equation 5 with Hk3mB

B instead of Hk3m

e. Use the svm classifier described above to provide predicted putative states to the test samples.

f. Plot the samples onto the Onco-GPS using colors corresponding to the predicted states.

This completes the description of the basic Onco-GPS used in the main text. In some cases one is interested in generating an

Onco-GPS using all the NMF components or a subset of more than 3 component nodes. This can be accomplished using a gener-

alization of the procedure outlined above using all the relevant components nodes. In order to generate this generalOnco-GPS layout

there is an additional component-projection step. Instead of using the equilateral triangle of Equation 4, location of the component

nodes ðCj
x; C

j
yÞ is obtained by a multidimensional scaling projection of the rows of the Hk3m matrix. This is necessary to be able to

generate a layout that includes all the desired components, e.g., from kC down to 2-dimensional space. The component-projection

procedure is as follows,
Generate General Onco-GPS layout:
a. Compute the location of the component nodes ðCj
x; C

j
yÞ by performing a multi-dimensional scaling projection of the H-matrix

from kC to 2-dimensions. We implement this step using a Sammon map projection (function gx.2dproj from R package rgr).

Other multidimensional scaling projection algorithms, such as PCA or tSNE, can also be used. Figure S1A shows the example

of this projection for all the 9 KRAS components.
Cell Systems 5, 105–118.e1–e9, August 23, 2017 e7



e8
b. To facilitate the visualization of the component nodes in the general Onco-GPS we add lines connecting each of them with its

neighbors on the layout. This is implemented using a Delaunay triangulation procedure on the components nodes 2D coordi-

nates (R function delaunay from package spatstat). Figure S1B shows these resulting lines connecting the projected KRAS

component nodes.

c. The projection of the samples on this generalOnco-GPS layout can then proceed in the same way as described by Equation 5

but using all the component nodes in the vectorial sums. Figure S1C shows the resulting projection of the samples on top of the

9-node Onco-GPS.

d. The contours lines and color background are also generated as in the original ternaryOnco-GPS described above. Figure S1D

shows the final 9-componentOnco-GPS and its corresponding 17 states (S1-S17) obtainedwhen applying the procedure from

section 5.4 using all the samples and all the components.
Applications of the Onco-GPS
Original or independent test samples that have been projected on top of theOnco-GPSmap can be color coded to represent specific

characteristics of molecular features. This can be simply done by using color maps that map e.g. discrete feature values onto distinct

colors. Continuous values can be mapped to rainbow palettes as in show for example in Figures 6D–7E, S6, S7, S9, and S12–A15. In

addition one can generate matching scores to assess the degree of association between the feature of interest and the state mem-

bership using box plots and Information Coefficients (IC) as shown in Figures 7B-C, S9, and S13B–S13D.

Inferential Models Based on the Onco-GPS
Besides representing primary characteristics of the samples, theOnco-GPS can also be used to develop inferential models based on

specific component, states, relevant sample characteristics or a combination of all of them, in order to predict a quantity of interest.

For example, in Figure S15 we show this application modality using the Onco-GPS BRAF example. We developed a probabilistic

predictor of drug response based on the amplitude of two specific components and three complementary genomic features.

The drug sensitivity target variable is defined were from the PLX-4720 BRAF inhibitor responses of the BRAF mutant samples in

the CTRP v2 dataset (www.broadinstitute.org/ctrp, Seashore-Ludlow et al., 2015). In Figure S15A, we show the Onco-GPS for

BRAFmutant samples where the samples are color-coded to represent their observed sensitivity to BRAF inhibition (blue=sensitive,

red=resistance). We then define a sensitivity target binary variable equal to 1, if the sample is sensitivity and equal to 0 if it is resistant,

using as threshold the mean sensitivity over all samples. We fit a Bayesian cumulative log odds model (Tamayo et al., 2011) (Mozina

et al., 2004) to estimate the posterior probability of response conditional to the 3 model inputs,

x1: component amplitude of C6 (BRAF/MAPK),

x2: component amplitude of C7 (NFkB), and,

x3: combined mutation status of NRAS, EGFR and KRAS,
Pðdjx1; x2; x3Þ= log
�
PðdÞ�P�d��+ X3

k =1

log

PðdjxkÞ
P
�
d
��xk�

PðdÞ
P
�
d
�

; (Equation 8)

where d = 1� d and each term in the sum represents the amount of evidence that each variable provides to the model (Good, 1985).

Each conditional probability is estimated using a single-variable logistic regression model. In this case these features were chosen

based on prior knowledge of the MAPK-MITF/NFkB cell state distinction that influences sensitivity to MAPK pathway inhibitors (Ko-

nieczkowski et al., 2014). In other more general cases appropriate features for the model can be derived from other relevant prior

knowledge and/or from a targeted feature selection process. The probabilistic model is then used to predict the samples in the

same training set achieving a very significant model fit (Figure S15B, AUCROC: 0.943 p-val: 8.17x10-9) indicating that those variables

indeed have high information content with respect to BRAF inhibition sensitivity. The p-values associated with the area under the

ROC values were computed using a Wilcoxon test as part of the functionality provided by the R package verification (release 1.2).

We test the model in an independent dataset of BRAF mutants cell lines (Sanger dataset) (Yang et al., 2013). As there are some

cell lines represented in both datasets we removed them from the training set before fitting the model. The inferential model is effec-

tive at predicting sensitivity to BRAF inhibition (SB590885) in this independent test dataset (Figure S15C, AUC ROC: 0.735, p-val:

0.00237). The model not only provides a prediction for each sample but it also produces a Bayesian nomogram that summarizes

the amount of evidence that each variable contributes to the final prediction (Figure S15D). This demonstrates that the Onco-GPS

provides a suitable framework for implementing high-level probabilistic or graphical inferential models or networks that can be

used to predict functional characteristics, such as drug response.

Onco-GPS States and the Statistical Dependence between Gene Expression and Drug Response
The strong correlation between component C1/state S4 activity and sensitivity to drugs lapatnib and PD-0325901 suggests

that oncogenic states can be effective latent variables that mediate the statistical dependence, e.g., between gene expression
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and functional cellular phenotypes such as drug response. To investigate this possibility we identified 50 genes and 50 drugs relevant

to KRAS mutant cancers, and verified whether the Onco-GPS state membership labels could mediate the statistical dependency

between those two sets of features. We define X = {x1,x2,x3,.,x50}, a collection of random variables corresponding to the set

of 50 representative gene expression profiles, and Y = {y1,y2,y3,.,y50}, a collection of random variables corresponding to the

representative 50 profiles of drug response, and z a random variable representing Onco-GPS state membership labels (S1-S4). Var-

iable z can completely capture the statistical dependence between X and Y if these are conditionally independent given z. However,

since X and Y are continuous random variables and z is a discrete random variable, canonical models depicting conditional indepen-

dence, such as Bayesian networks or Markov random fields, would have an overly complex structure. Instead, we quantified the level

of conditional independence with a normalized conditional mutual information score (NCMI),

NCMI
�
xi; yj

��z�= I
�
xi; yj

��z��I�xi; yj�; (Equation 9)

where the numerator is the mutual information between a (gene expression, drug response) pair conditioned on the oncogenic state

label z, and the denominator is the mutual information between the same pair without conditioning. NCMIðxi; yj
��zÞ=N if xi and yi are

conditionally independent given z. Generally a small NCMIðxi; yj
��zÞ indicates a strong capability of the Onco-GPS states to mediate

the dependency between gene expression and drug response.

We selected gene expression-drug response pairs whose mutual information is equal or greater than 0.05 and calculated the dis-

tribution of their NCMI scores. To assess its statistical significance, we randomly permuted the Onco-GPS state membership labels

1,000 times, calculated the NCMI score distribution for each random trial, and compared the empirical NCMI score distribution with

the top-ranking NCMI score distributions from the randomly-permuted data. Figure S16 shows the NCMI score distributions of

observed and permuted data for the 4-state KRAS Onco-GPS data. The observed NCMI score distribution is within 1% of the cor-

responding distribution for permuted data, in terms of their capacity to explain the dependency between gene expression and drug

response. This suggests that the 4 Onco-GPS states (S1-S4) effectively mediate a significant fraction of the statistical dependence

between gene expression and drug response for KRAS mutant samples. This suggest that a coarse-grained network, generated

using the components as latent variables or ‘‘master hubs,’’ can be used to model the most salient relationships between genomic

variables, clinical and biological phenotypes etc. We will explore this possibility in a future publication.

DATA AND SOFTWARE AVAILABILITY

Raw data files for RNA sequencing for KRAS signatures have been deposited to NCBI Gene Expression Omnibus accession number

GSE94937. Raw data files for RNA sequencing for CRISPR-Cas9 Experiments have been deposited to NCBI Gene Expression

Omnibus accession number GSE84706. The different analysis steps of the Onco-GPS method will be made available as a collection

of Jupyter notebooks available at ccal.ucsd.edu (https://github.com/UCSD-CCAL/onco-gps-paper-analysis ).
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