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Abstract

The great amount of gene expression data has brought a big challenge for the discovery of

Gene Regulatory Network (GRN). For network reconstruction and the investigation of regu-

latory relations, it is desirable to ensure directness of links between genes on a map, infer

their directionality and explore candidate biological functions from high-throughput transcrip-

tomic data. To address these problems, we introduce a Boolean Function Network (BFN)

model based on techniques of hidden Markov model (HMM), likelihood ratio test and Bool-

ean logic functions. BFN consists of two consecutive tests to establish links between pairs

of genes and check their directness. We evaluate the performance of BFN through the appli-

cation to S. cerevisiae time course data. BFN produces regulatory relations which show con-

sistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and

specificity when compared with alternative methods of genetic network reverse engineering.

Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of

gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for

the identification of control mechanisms of regulatory processes, which is the special advan-

tage of the proposed approach. In combination with low computational complexity, BFN can

serve as an efficient screening tool to reconstruct genes relations on the whole genome

level. In addition, the BFN approach is also feasible to a wide range of time course datasets.

Introduction

One of the challenging fields of computational biology is the study of gene regulatory networks

(GRNs). The demanding task of recovering the hidden relations between genes at the whole-

genome level can provide insights to the comprehensive understanding of biological pathways

and their mechanisms. It can also enhance the developments for disease treatments and bio-

logical technology. Currently there are two major experimental approaches to identify regula-

tory relations between genes. The first type uses perturbation (knockout or overexpression)

experiments to explore regulatory targets of specific gene. The second type detects targets for
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specific transcription factors (TFs) with protein-DNA binding experiments. Neither of two

experimental techniques can be utilized to reconstruct GRN on genome-wide scale due to the

demand of huge number of experiments. In addition, the abundant high-throughput observa-

tional transcriptomic data [1, 2, 3], including time course expression data, provides indirect

evidence of gene regulatory networks.

To perform the task of gene regulatory network inference (GRNI) or reverse-engineering

from available transcriptomic data, numerous computational methods from statistics and

computer science were developed. Reviews of the existing approaches in GRN reverse-engi-

neering [4, 5, 6, 7, 8] provide the comparisons of methods for a variety of categories: stochas-

tic/deterministic, static/dynamic, discrete/continuous, bivariate/multivariate, linear/nonlinear,

directed/undirected. Below we consider four major groups of methods which are used for

GRN inference from time course data: Boolean networks, Bayesian Networks, information

theory models and graph-based methods.

Boolean networks (BNs) [9, 10] and its stochastic extension to probabilistic Boolean net-

works (PBNs) [11, 12] are discrete dynamic models which operate with binary values. Gene

states are modeled by a Boolean value, “on” or “off” (1 or 0). The global state of BN at every

time-point is a vector of states of all genes and the state transition is defined by the vector of

Boolean functions. The sequence of global states through time in dynamic models is termed as

the trajectory. While there is only one trajectory for deterministic BN, the stochastic PBN pro-

vides multiple possible trajectories which represent different realizations of BN.

Bayesian networks are another class of methods [13], which represent relations between

genes based on directed acyclic graphs (DAGs) and their conditional probabilities. Bayesian

networks can be operated with continuous and discrete variables on continuous and discrete

time. The extension of Bayesian networks is dynamic Bayesian networks (DBNs) [14], which

introduce time delay between genes.

As an alternative to highly detailed and complex BN, PBN and DBN, the information theo-

retic models [15] emerged to provide the simple approach to perform analysis on the whole

genome scale. According to the selected measures of relevance, there are two major categories

based on correlation or mutual information (MI). One typical example of the first category is

the weighted network analysis (WGCNA) [16]. Representative methods in the second category

include the relevance networks (RN) [17], the maximum relevance/minimum redundancy

network (MRNET) [18], the context likelihood relatedness (CLR) [19] and the algorithm for

the reconstruction of accurate cellular networks (ARACNE) [20].

Methods which are able to establish causality are mostly graph based. For example, the

method of GeneNet [21] converts correlation network into partial correlation graphs and fur-

ther establishes partial ordering of nodes based on the covariance matrix. The method of

GENIE3 [22] solves a regression problem for every gene using tree-based ensemble methods.

The method of generalized local learning (GLL) performs local learning and feature selection

in graphs [23, 24].

Based on survey of existing methods, we highlight six characteristics of a GRN inference

approach which ideally should be considered in the state-of-the-art method: accuracy, ability

to capture dynamics of temporal data, differentiation of direct and indirect regulations, detec-

tion of directionality of the link, assigning the most informative function to the link, and com-

putation efficiently on large datasets.

Boolean Function Network (BFN) is a two-step GRN reverse-engineering approach to

achieve the above six aims. At the first step, BFN identifies pairwise dependencies to explore

directionality, optimal Boolean functions and time delays. At the second step, it tests directness

of relations established in the first step. The purpose of ensuring of directness of the gene regu-

latory relations is to achieve the clear structural representation of GRN and reduce the number
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of false positive links. The output of algorithm is controlled by two threshold parameters p1

and p2 which set the significance level of each test in the first and the second step.

As comparison of performance, we evaluate the accuracy of BFN and Boolean Network

[25], Dynamic Bayesian Network [26], information theory based and graph based GRNI meth-

ods [27]. The prior knowledge in form of list of regulators can be incorporated to BFN as well

in order to enhance accuracy of prediction.

BFN can be considered as dynamic GRNI since it uses adaptive time delay between genes.

Another important characteristic of BFN which is seldom addressed by the most existing

approaches is the ability to identify the regulatory function describing the relation between

gene pairs in GRNs. Among the methods reported in literature, the Boolean models (BN and

PBN) are few methods that have such capacity. However, these methods use a limit number of

Boolean functions, such as three Boolean gates (AND, OR, NOT) and their combinations. We

will extend the number of Boolean functions in the proposed approach to describe the com-

plex nature of regulatory relations.

Furthermore, BFN has low computational complexity and computation time. Therefore, it

can be applied to high-throughput data, which is demonstrated for whole genome S. cerevisiae
dataset in the section of “Results”.

Results

Method overview

The proposed BFN method is based on a hidden Markov model (HMM). We assume that the

true status of a gene at discrete moment of time is a hidden state, while the measured expres-

sion level of gene transcript at the specific time is an observation. In a nutshell, the BFN

method consists of two major steps: identification of pairwise dependencies between genes by

Test 1 and the subsequent check whether those links are direct or indirect by Test 2.

Both Test1 and Test 2 are based on the comparison of likelihoods of two alternative models.

Test 1 search for the best Boolean function and time delay between two genes, which would

maximize the likelihood ratio of a model with a link over a model without a link. Fig 1

Fig 1. Linked model vs not-linked model. Model M not linked assumes that Gene 1 and Gene 2 are

unrelated; whereas Model M linked assumes that Gene 1 regulates Gene 2. For both models, x1 and x2 are

hidden gene states; while y1 and y2 are observed values.

https://doi.org/10.1371/journal.pone.0185475.g001
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provides a graphical illustration of Test 1. Analogously, Test 2 is illustrated with Fig 2 that

compares the likelihoods of the model with a direct link and that with an indirect link. The

reason why Test 2 is needed is that it helps to avoid collisions in causation order upon struc-

tural network reconstruction. Suppose, we have detected the following links x1! x2, x1! x3,

x2! x3 by Test 1. As it is shown at Fig 2 there are two ways to place those links at the map. In

the first scenario, x1 has indirect effect on x3 through x2. In the second scenario, both x1 and x2

regulate x3 directly. Therefore the question arises which one of the two maps is correct? With

the increasing number of genes, the resulting network can differ dramatically if the directness

of the links is not tested. Further method’s details are explained in the section of Materials and

Methods.

The proposed BFN method needs time course data to discover the regulatory relationships.

The minimum number of time points required for proper inference is 10. To investigate the

performance of BFN, we will use the widely used data of yeast expression in Spellman et al.

[28]. Details about the dataset and its preprocessing are described in the section of Materials

and Methods.

Fig 2. Indirect model M0 vs direct model M1. In the indirect model M0, gene x1 regulates gene x2 through

intermediate gene x3; while in the direct model M1, both x1 and x3 regulate gene x2 directly. In this figure for

the sake of simplicity we omit depicting observed values yi.

https://doi.org/10.1371/journal.pone.0185475.g002
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Whole genome analysis and comparison to the other methods

Ma et al. [27] provided the combined binding and knockout data in 3 golden-standard net-

works for various levels of significance from the most conservative gene relationship #1 to the

most liberal gene relationship #3. They used those as reference to evaluate the performance of

18 statistical approaches over 4 data types based on the assessments of 3 combined statistical

metrics. We evaluate the performance of the proposed BFN with those 18 methods by the

same assessment metrics. However, those data sets tested in Ma et al. [27] do not contain suffi-

cient time course data for the application of the proposed BFN method. Thus, we will use the

dataset in Spellman et al. [28] that is of the same data type for observational data obtained

across time and/or environmental conditions studied in Ma et al. [27].

For BFN, we ran Test 1 and Test 2 consecutively with the p-value threshold of 0.05 for

both tests. The time delay range is set to be the range from 0 to 5 on the Spellman dataset. 185

genes are assigned as TFs in according to SGD (Saccharomyces Genome Database) [29],

which are served as sources. The list of genes and TFs can be found in the columns 1 and 2 of

S7 Table. We found the gene relationships for the entire network that are comprised of

335531 direct links in S1 Table. Table 1 summarizes the performance of the BFN method for

3 networks and the details are explained in S2 Table. The performance in Table 1 is assessed

with seven metrics: sensitivity or true positive rate (TPR), specificity or true negative rate

(TNR), precision or positive predictive value (PPV), negative predictive value (NPV) and 3

combined metrics which show Euclidean distance from the ideal performance point

(C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � sensitivityÞ2 þ ð1 � specificityÞ2
q

, C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � PPVÞ2 þ ð1 � NPVÞ2
q

,

C3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � sensitivityÞ2 þ ð1 � PPVÞ2
q

). Since these three combined metrics describe the

distance from the ideal performance point (e.g., sensitivity = 1, specificity = 1 in C1), the

smaller score indicates the better performance.

According to the scores reported in Table 1, the performance of the BFN method is similar

for three gold-standards. The performance is slightly better for the gold-standard GRN #1

which contains only regulatory relations with highly significant links.

Table 2 provides an overview of BFN performance compared to the performance of 18 sta-

tistical approaches reported in Ma et al. [27] by 3 combined metrics. Each sub table in Table 2

reports the performance comparison to every specific combined metric, C1, C2 or C3. The

performance comparison incorporates the followings. 1) The average score over 18 approaches

and 4 observational datasets obtained by changing time and/or environmental conditions (i.e.,

Gresham et al. [30], Gasch et al. [31], Smith et al.[32], Yeung et al.[33]) measured with one of

three GRN gold-standard networks. 2) The corresponding BFN score. 3) The best values

among 18 methods in each of 4 datasets.

From these comparisons, the performance of BFN is better than the average results. The

performance in C1 and C3 metrics shows that the BFN can achieve improvements on the aver-

age. In particular, the improvement of BFN is appealing for C1 metric (sensitivity and specific-

ity) across all GRNs gold-standards. When compared with the best individual scores, the BFN

Table 1. Performance of BFN on the whole genome Spellman dataset measured with seven accuracy metrics for three gold-standard regulatory

relation datasets.

Reference TPR TNR PPV NPV C1 C2 C3

GRN#1 0.3482 0.7548 0.0287 0.9823 0.6964 0.9714 1.1697

GRN#2 0.3276 0.7585 0.0286 0.9811 0.7144 0.9716 1.1814

GRN#3 0.3188 0.7561 0.0283 0.9803 0.7235 0.9719 1.1867

https://doi.org/10.1371/journal.pone.0185475.t001
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has better performance in C1 metric than any method applied to Smith and Yeung datasets,

while no advantage can be seen for C2 and C3 metrics. It should be noted that performance

ranks of those methods in Table 2 differ with distinct metrics. For example, the method pro-

ducing the best score (0.69) for C1 metric (sensitivity and specificity) will generate the worst

score (0.98) in C2 (PPV and NPV) in the Gasch dataset when GRN #1 is used as the gold-stan-

dard. Thus it is rather difficult to make comparison of performance among individual

approaches and average scores seem to be more informative.

Performance comparison with Boolean network and Bayesian network

models on simulated data

De Caluwé et al. [34] proposed a compact model of circadian clock in Arabidopsis thaliana
which consists of 8 genes paired (based on expression pattern similarity) into 4 modules

(Fig 3).

We run the corresponding computational model obtained from BioModels Database [35]

(BIOMD0000000631) with simulator for biochemical networks COPASI (ver. 4.19) [36] to

acquire the time course transcriptome data. Fig 4 depicts COPASI generated time course data

representing the concentration of 5 gene-pairs transcripts over 50 hours period with intervals

of 2 hours and the initial state equals 1.

We compared the ability of BFN to reconstruct gene regulations shown in Fig 3 with two

Boolean Network methods of REVEAL [37] and Best-Fit [38] (included in the R “BoolNet”

package [25]) and the Dynamic Bayesian Network (DBN) inference (coded in the R “G1DBN”

R package [26]). The REVEAL approach has failed to infer any network from given data, while

the best results of Best-Fit, G1DBN and BFN are provided in Table 3.

Table 4 contains the performance analysis for Boolean Network (Best-Fit), Dynamic Bayes-

ian Network (G1DBN) and Boolean Function Network (BFN). To make a comprehensive

comparison, we conduct the Boolean Network method of Best-Fit with three different discreti-

zation approaches (k-means, edgeDetector and scanStatistic). The result with edgeDetector is

removed from Table 4 due to the poor performance. We evaluate the performance of k-means

Table 2. Performance comparisons of BFN with 18 statistical approaches evaluated by Ma et al. [27]. Each sub table represents the comparison by

the score of C1, C2 or C3 metric correspondingly.

Golden standard network used

as reference

Average of C1 scores over 18 approaches and 4

observational datasets

C1 score of network

obtained with BFN

The best values of C1 among 18

methods in each of 4 datasets.

Gresham Gasch Smith Yeung

GRN#1 0.86 0.70 0.70 0.69 0.72 0.77

GRN#2 0.87 0.71 0.70 0.69 0.73 0.79

GRN#3 0.87 0.72 0.70 0.71 0.73 0.80

Golden standard network used

as reference

Average of C2 scores over 18 approaches and 4

observational datasets

C2 score of network

obtained with BFN

The best values of C2 among 18

methods in each of 4 datasets.

Gresham Gasch Smith Yeung

GRN#1 0.97 0.97 0.97 0.95 0.93 0.95

GRN#2 0.97 0.97 0.97 0.96 0.94 0.95

GRN#3 0.97 0.97 0.97 0.97 0.94 0.95

Golden standard network used

as reference

Average of C3 scores over 18 approaches and 4

observational datasets

C3 score of network

obtained with BFN

The best values of C3 among 18

methods in each of 4 datasets.

Gresham Gasch Smith Yeung

GRN#1 1.23 1.17 1.04 1.07 1.00 1.00

GRN#2 1.23 1.18 1.04 1.07 1.00 0.99

GRN#3 1.24 1.19 1.05 1.07 1.00 1.00

https://doi.org/10.1371/journal.pone.0185475.t002
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and scanStatistic by three options for maximum arity of Boolean functions (2, 3 or 4). The

DBN was tested with different approaches to regression estimates (Huber, Tukey and Least

Squares). However, only the Least Squares method managed to converge in given number

iterations.

As it can be seen from Table 4, the BFN performs better in this example with respect to

most performance measures (sensitivity, specificity, precision and NPV). Moreover, the BFN

can assign both Boolean function and time delay for each relation.

Performance evaluation of BFN by Saccharomyces Genome Database

(SGD) regulatory information

The performance improvement of BFN over the classical approach of Pearson correlation is

evaluated by the Saccharomyces Genome Database (SGD) regulatory information. We focus

on the 103 cell-cycle regulated S. cerevisiae genes annotated from previous studies [28].

Among them, 7 are TFs according to SGD and they are used as source genes. The relations dis-

covered with each method were assessed with the SGD regulatory information. The detailed

information about numbers of true positive, false positive, true negative and false negative

Fig 3. Circadian clock model. Red links represent negative regulation and blue link is a positive regulation.

https://doi.org/10.1371/journal.pone.0185475.g003
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links obtained with BFN at varying p-value thresholds of Test1 is described in S3 Table. More-

over, S3 Table contains the list of all possible links between cell-cycle regulated genes (listed in

columns 3 and 4 of S7 Table) with corresponding p-values. Two ROC curves describing the

performances of BFN and Pearson correlation are shown in Fig 5. With significant improve-

ment in sensitivity and specificity, the proposed BFN method outperforms the classical

approach of Pearson correlation.

Fig 4. Change of mRNA concentration over time for CCA1/LHY, ELF4/LUX, PIF4/PIF5, PRR5/TOC1,

PRR9/PRR7 gene pairs.

https://doi.org/10.1371/journal.pone.0185475.g004

Table 3. Inference results of Boolean network (Best-Fit with optimal discretization k-means and maxK = 2), Dynamic Bayesian Network (with least

squares estimation, and default parameters alpha1 = 0.5 and alpha2 = 0.05 for first order dependencies and full dependencies correspondingly)

and Boolean Function Network (maxTimeDelay = 10 and p1 = 0.005).

Best-Fit G1DBN BFN

CCA1/LHY = <f(CCA1/LHY,PRR9/PRR7){0010}> (PIF4/PIF5; PIF4/PIF5) (CCA1/LHY; PRR9/PRR7; f = 1, t = 3)

PRR9/PRR7 = <f(PRR9/PRR7){01}> (CCA1/LHY; ELF4/LUX) (CCA1/LHY; PRR5/TOC1; f = 2, t = 1)

PRR5/TOC1 = <f(CCA1/LHY,ELF4/LUX){0100}> (CCA1/LHY; PRR5/TOC1) (CCA1/LHY; ELF4/LUX; f = 2, t = 1)

PRR5/TOC1 = <f(CCA1/LHY,PRR5/TOC1){0100}> (ELF4/LUX; PRR5/TOC1) (PRR9/PRR7; CCA1/LHY; f = 2, t = 2)

ELF4/LUX = <f(CCA1/LHY,ELF4/LUX){0100}> (CCA1/LHY; CCA1/LHY) (PRR9/PRR7; PRR5/TOC1; f = 1, t = 4)

ELF4/LUX = <f(CCA1/LHY,PRR5/TOC1){0100}> (ELF4/LUX; ELF4/LUX) (PRR9/PRR7; ELF4/LUX; f = 1, t = 4)

PIF4/PIF5 = <f(PRR9/PRR7,PIF4/PIF5){0001}> (PRR9/PRR7; PRR9/PRR7) (PRR5/TOC1; CCA1/LHY; f = 1, t = 4)

(PRR5/TOC1; ELF4/LUX) (PRR5/TOC1; PRR9/PRR7; f = 2, t = 2)

(PRR9/PRR7; CCA1/LHY) (PRR5/TOC1; ELF4/LUX; f = 2, t = 5)

(PRR9/PRR7; PIF4/PIF5) (ELF4/LUX; PRR9/PRR7; f = 2, t = 2)

(ELF4/LUX; PIF4/PIF5) (ELF4/LUX; PRR5/TOC1, f = 1, t = 1)

(ELF4/LUX; PRR9/PRR7)

https://doi.org/10.1371/journal.pone.0185475.t003
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Cell cycle genes and their succession along cell cycle phases

Conventionally cell cycle is partitioned into four consecutive phases: mitosis (M), gap1 (G1),

synthesis (S) and gap 2 (G2). In this study, we focus on the list of 103 cell-cycle genes [28]

along with their corresponding cell phase labels assigned according to literature (Columns 5

and 6 in S7 Table). We allow all these 103 genes to be sources and targets. The cut-off values of

p1 = 0.005 and p2 = 0.05 are used for Test1 and Test2 correspondingly. The time delay range

varies from 1 to 5 sample time points. We consider links of positive Boolean functions only. As

a result, we obtained 68 links in S4 Table. We check the consistency of 68 relations discovered

via the BFN method with cell phase annotation of these 103 genes. If the label of one target

Table 4. Performance characteristics for Boolean Network, Dynamic Bayesian Network and Boolean Function Network.

Method TPR(sensitivity) TNR(specificity) PPV(precision) NPV

Best-Fit (k-means, maxK = 2) 0.50 0.69 0.56 0.64

Best-Fit (scanStatistic, maxK = 2) 0.30 0.77 0.50 0.59

Best-Fit (k-means, maxK = 3) 0.50 0.50 0.42 0.58

Best-Fit (scanStatistic, maxK = 3) 0.10 0.38 0.11 0.36

Best-Fit (k-means, maxK = 4) 0.50 0.50 0.42 0.58

Best-Fit (scanStatistic, maxK = 4) 0.10 0.38 0.11 0.36

DBN (Least Squares) 0.60 0.60 0.50 0.69

BFN 0.70 0.73 0.64 0.79

https://doi.org/10.1371/journal.pone.0185475.t004

Fig 5. ROC curves of BFN (based on Test1) and Pearson correlation applied to the set of 103 cell-

cycle regulated genes. The BFN curve is depicted in blue and the Pearson correlation curve is shown in

magenta.

https://doi.org/10.1371/journal.pone.0185475.g005
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gene is the same as its source’s label or is successive to the source’s label, then this relation is

consistent with cell cycle information. It turns out that all these 68 links listed in S4 Table are

consistent with cell cycle information.

Fig 6 shows the average expression values for source and target genes in 6 largest groups of

positive links representing consecutive phases of cell cycle identified with BFN method for the

set of 103 genes. Most of the links in Fig 6 have the time delay parameter equals to 1, except

the links of S->G2/M where the time delay parameter is identified as 2. Thus, the relationship

and the time delay parameters discovered by BFN can reveal the relationship of these 103

genes hidden in transcriptome data correctly.

Functional enrichment analysis

The capacity of BFN to identify a Boolean function and a time delay for each regulatory rela-

tion can be utilized not only for the reconstruction of gene regulatory map but also the analysis

of gene sets. For each transcription factor (TF), the pool of target genes can be naturally

divided into groups according to their Boolean functions and time delay parameters detected

by BFN. For each TF, the results of the whole genome S. cerevisiae analysis (S1 Table) can be

divided up to 36 groups because there are 6 possible Boolean functions and 6 possible time

Fig 6. Six largest groups of positive links discovered by BFN on the list of 103 genes annotated with

cell cycle phases. On the horizontal axis, there are time points. On the vertical axis, there are the average

expression values of source (up) and target (bottom) genes which belong to corresponding group of links.

https://doi.org/10.1371/journal.pone.0185475.g006

Boolean Function Networks for Saccharomyces cerevisiae

PLOS ONE | https://doi.org/10.1371/journal.pone.0185475 October 5, 2017 10 / 23

https://doi.org/10.1371/journal.pone.0185475.g006
https://doi.org/10.1371/journal.pone.0185475


delays. S5 Table contains the results of gene ontology (GO) and pathway enrichment for

detected groups of target genes (with TFs excluded from target groups) which are positively

regulated by each of 185 TFs with time delays of 0 and 1. Annotations were obtained with the

YeastMine, which is the embedded tool in SGD [29] for data searching, retrieving and annotat-

ing. In total, there are 210 out of 370 possible gene groups received annotation of Molecular

Function, Biological Process or Pathway.

The obtained information is useful both for elaboration of TF’s function and for establish-

ing candidate genes of regulatory targets. To illustrate the former case, we consider the

YHL020C (OPI1) transcription factor. The annotation by SGD shows that the regulatory tar-

gets are related to the “carboxylic acid biosynthetic process” (GO: 0046394). When we consider

the subgroup according to time delay 0 (No. 37 in S5 Table), the targets of YHL020C suggest

the “methionine biosynthetic process” (GO:0009086) annotation which is one more specific

GO category positioned two levels below in GO hierarchy. Therefore, the BFN suggests that

YHL020C can be involved in the positive regulation of biosynthesis of methionine and this

process is time-constrained within one time interval.

As an example for the second type of information that can be extracted from the functional

annotation results by BFN, we consider the YPR008W (HAA1) transcription factor (group

No. 208 in S5 Table). According to the results positively regulates genes, the BFN suggests that

the target genes are YML100W (TSL1), YBR126C (TPS1), YDR074W (TPS2) and YMR261

(TPS3) with time delay 1. Protein subunits TPS1, TPS2, TSL1 and TPS3 constitute the alpha,

alpha-trehalose-phosphate synthase complex which converts glucose 6-phosphate plus UDP-

glucose to trehalose in two-steps trehalose biosynthetic pathway. Currently, only TSL1 is a reg-

ulatory target of HAA1 registered in SGD. However, according to our functional annotation,

the other three genes YBR126C(TPS1), YDR074W(TPS2), YMR261(TPS3) are also strong can-

didates to be the regulatory targets of YPR008W(HAA1) together with YML100W(TSL1)

because they show highly significant (p-value = 0.0001) pathway enrichment. The detailed

information about the list of genes referring to each GO category is not included in S5 Table

for table concreteness. But they can be easily obtained if the list of target genes (excluding TFs)

for a specific TF in S1 Table is loaded into YeastMine.

Transcriptional regulation of metabolic pathway

Based on the references [39, 40], we schematically illustrate the conversion of D-glucose to

Pyruvate in the process of glycolysis in Fig 7. Using the SGD regulatory information for genes

encoding 9 essential glycolytic enzymes (provided in Fig 7) as the reference to eliminate false

positive results, we are able to highlight the regulatory subnetwork for glycolytic genes from

our whole-network results in S1 Table. The results can be found in S6 Table which contains

147 regulatory relations out of 398 registered with SGD for these 9 genes. We use Cytoscape

[41] to illustrate the simplified map with positive links only in Fig 8. In the map of Fig 8, there

are two TFs that are well-known activators of glycolysis in yeast, GCR1 (YPL075W) and GCR2

(YNL199C). Remarkably in the map of Fig 8, YPL075C causes not only direct activation of

genes but also induce cascade of TFs (YCR084C, YLR403W, YER159C, YJR127C) which also

activate glycolytic genes.

Discussion

The proposed BFN approach is a fast and efficient way to explore the regulatory relations

between genes for further experimental analysis. By adjusting those two threshold parameters

p1 and p2 which set significance level in two consecutive tests, we can trade off the numbers of

false positive and false negative links. Thus, the smaller values of p1 and p2 are set, the more

Boolean Function Networks for Saccharomyces cerevisiae

PLOS ONE | https://doi.org/10.1371/journal.pone.0185475 October 5, 2017 11 / 23

https://doi.org/10.1371/journal.pone.0185475


stringent restrictions we apply for the output. Consequently, the smaller size of output links

will be generated with the smaller number of false positive links and the larger number of

falsely rejected links. The user can utilize the prior knowledge about known regulatory rela-

tions to decide the level of significance. Moreover, the choice of p1 and p2 also depends on the

number of time-points in dataset. The more time-points there are at disposal, the more links

will be discovered to be significant, thus more stringent limits on p1 and p2 need to be applied.

Even though the range of time delay is another parameter to be set, it can be easily decided

based on the number of time points and biological knowledge such as periodicity of cell cycle

or circadian rhythm as demonstrated in this study. The lower bound of time delay range

should be chosen depending on whether we need to consider co-regulated sets of genes (time

delay equals to 0) or we are only interested in pairwise relations when regulatory effect can be

seen over time (time delay equals to 1 or higher). Based on our empirical experience, the maxi-

mum time delay should be no larger than one third of number of time-points in dataset and at

least a half of the time interval between cell’s steady states.

Similar to any other computational methods based solely on transcriptome data, the BFN is

not sufficient to reconstruct GRN entirely because the posttranslational modification should

Fig 7. Glycolysis metabolic pathway in S. cerevisiae. Intermediates of glycolysis are expressed in italic.

The names of enzymes whose abundance controls conversion of one intermediate into another are on the

right side of arrow.

https://doi.org/10.1371/journal.pone.0185475.g007
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be taken in to account. Moreover, the observational dataset can reflect the status of GRN only

under specific experimental conditions. However, the proposed BFN method can become

valuable tool for biologists to reduce the search space for relations between genes. And it will

help to recover the overall picture of regulatory pathways when it is applied to several related

time-series data under different experimental conditions.

When the prior knowledge is available, such as a list of TFs, it can be integrated to the pro-

posed BFN to reduce computational complexity and improve prediction precision. The appar-

ent advantage of the BFN method is that it not only determines direct relationships between

genes but also provides direction and Boolean function with time delay. The follow-up division

into groups based on the assignment of Boolean functions and time delays to each relation can

be incorporated to clustering and for the analysis of functional enrichment.

The proposed BFN can identify directness of a link between a pair of genes. It could be

expanded to discover structures of three and more genes with higher computational complex-

ity in future studies.

Materials and methods

S. cerevisiae dataset and its preprocessing

Spellman et al. [28] provide data from 3 microarray experiments with different synchroniza-

tion techniques. For this study, we use data obtained with α-factor cells arrest since this experi-

ment has the highest time resolution (the measurements of RNA were taken every 7 min). The

total number of genes in data set is 6075 measured along 18 time-points. There are 59 genes

excluded from analysis since there were 4 or more missing values for each gene. For the rest of

genes, the missing values were replaced with spline extrapolation. Therefore the whole genome

dataset analyzed in this study consists of 6016 genes.

Fig 8. Part of the reverse-engineered GRN (with true positive links only). Map displays the regulation of

15 genes encoding 9 enzymes involved in glycolysis with transcription factors. Genes are colored with light

green and TFs regulating them are colored with dark green. All links are positive and labeled with time delays.

https://doi.org/10.1371/journal.pone.0185475.g008
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Discretization

The expression profile is the measured abundance of mRNAs for each determined point in

time. The source for this type of data can be microarray, next generation sequencing and other

types of biochip experiments. Hereafter, we arrange the variables (genes) horizontally and n is

the number of genes. The observations (time-points) are arranged vertically with the total

number of columns is m, n�m. Naturally, the range of values varies greatly from one gene to

another. In order to enable comparison of the expression profiles of different genes, the

expression values have to be standardized to the same scale, i.e. converted to the standard

range of [0, 1] for every gene. We will apply the approach of empirical cumulative distribution

function (ECDF) transformation, which can be described as follows.

For each gene xi:

• Sort observations xij along m time-points in ascending order.

• Assign to corresponding observation a probability piIj ¼
j
m, j = 1. . .m, where I is array of sort-

ing indices.

If there are ties (the same values of observations) for some genes, then the above standardi-

zation procedure can generate skewness. Thus, we use the following modified procedure for

standardization in this study.

For each gene xi:

• Sort observations xij along m time-points in ascending order.

• Identify unique values uik, k = 1. . .K, K<m

• For each unique value uik:

• Count the number of ties ck for given unique value

• Compute and assign to corresponding xiIj ,. . ., xiIjþck � 1
probabilities fpiIj . . . piIjþck � 1

g ¼ Cþck
m ,

where I is array of sorting indices and C ¼
X

k
ck� 1.

After applying the above standardization, we obtain the corresponding empirical cdf value

F̂ iðtÞ for every gene i at time point t.

Boolean Network and Boolean Functions

We define the Boolean network as a set of vertices V = {x1. . .xn} representing genes together

with the set of all unary and binary Boolean functions f = {f1. . .f6,F1. . .F42} which defines rela-

tions between nodes.

Boolean function is a mapping of the form f: Bk! B, where B = {0,1} is a Boolean domain

and k is arity of the function. For every k there exist a finite set of non-trivial Boolean functions

which can be represented in the form of truth table. In Tables 5 and 6, we enumerate all possi-

ble non-trivial Boolean unary and binary functions correspondingly:

Table 5. Truth table for unary functions f1-f6. x1 is input of function (source gene) and x2 is output of func-

tion (target gene).

x1 x2

f1 f2 f3 f4 f5 f6

0 0 1 0 1 {0,1} {0,1}

1 1 0 {0,1} {0,1} 0 1

https://doi.org/10.1371/journal.pone.0185475.t005
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Besides all possible non-trivial Boolean functions with unique definite output, we also con-

sider functions with two possible outputs, {0, 1}, which means that either 0 or 1 may appear in

the output for the same input assignment. In Table 5, function f1 (equivalence) represents

upregulation of gene x2 by gene x1. Function f2 (negation) stands for downregulation of gene

x2 by gene x1. Functions f3 and f4 reflect relation of necessity and its negation correspond-

ingly. That is, function f3 explains condition “gene x2 cannot be turned on unless gene x1 is

turned on” and function f4 states opposite “gene x2 cannot be turned off unless gene x1 is

turned on”. Functions f6 express sufficiency and f5 is its negation. If gene x1 is sufficient for

gene x2 it means that knowing that gene x1 is on we can claim that gene x2 is on as well. How-

ever, it is not legit to assert that if gene x1 is off then gene x2 is off too. Whilst function f5

stands for statement “if gene x1 is on then gene x2 must be off”.

In Table 6, functions F1-F42 with binary inputs may or may not have simple and intuitive

forms. For instance, F1 realizes an AND gate of two inputs; yet F24 does not have a simple

Boolean functional form. In this study, we concern primarily pairwise dependencies in the

gene network. The Boolean functions with binary inputs are auxiliary in determining the

directness of links.

Test 1

In order to identify the pairwise dependencies between genes, we examine two models for

every possible pair of genes. One model represents the situation where genes are linked and

the other model suggests there is no link between genes under consideration.

Assume that y1(t) and y2(t) are continuous observed values of Gene 1 and Gene 2 at time

point t respectively. The notations of x1(t) and x2(t) are the corresponding discrete latent vari-

ables. The notation of τ represents the time delay between genes. For example, τ = 1 means the

time delay of 7 minutes for the expression data of α -factor cells arrest in Spellman et al. [28].

Two competitive models are shown at Fig 1. In order to establish which one of the models

Table 6. Truth table for binary functions F1-F42. x1 and x2 are input of the function and x3 is output.

x1 x2 x3

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

0 0 0 0 0 0 0 1 1 1 1 1 {0,1} {0,1} {0,1} {0,1}

0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0

1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1

1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1

x1 x2 x3

F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28

0 0 {0,1} {0,1} {0,1} {0,1} 0 0 0 0 1 1 1 1 0 0

0 1 1 1 1 1 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} 0 0

1 0 0 0 1 1 0 0 1 1 0 0 1 1 {0,1} {0,1}

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x1 x2 x3

F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41 F42

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} 0 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}

https://doi.org/10.1371/journal.pone.0185475.t006
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explains data better, we use the likelihood ratio to evaluate:

R ¼
Llinked
Lnotlinked

:

The larger this ratio is, the more significant the link is. The likelihoods of models can be

written respectively:

Lnot linked ¼
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx1ðtÞÞ � Pðx2ðt þ tÞÞ � Pðy1ðtÞjx1ðtÞÞ � Pðy2ðt þ tÞjx2ðt þ tÞÞ; ð1Þ

Llinked ¼
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx1ðtÞÞ � Pðx2ðt þ tÞjx1ðtÞÞ � Pðy1ðtÞjx1ðtÞÞ � Pðy2ðt þ tÞjx2ðt þ tÞÞ: ð2Þ

where the product is taken over all time points; at each time point t the likelihood score is mar-

ginalized over all possible latent variable states of x1(t) and x2(t).
According to Bayes’ theorem,

PðykðtÞjxkðtÞÞ ¼
PðxkðtÞjykðtÞÞPðykðtÞÞ

PðxkðtÞÞ
: ð3Þ

When P(y1(t)|x1(t)) and P(y2(t)|x2(t)) in formulas (1) and (2) are replaced with (3), we

obtain the followings:

Lnot linked ¼
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx1ðtÞÞ � Pðx2ðt þ tÞÞ �
Pðx1ðtÞjy1ðtÞÞ � Pðy1ðtÞÞ

Pðx1ðtÞÞ
�
Pðx2ðt þ tÞjy2ðt þ tÞÞ � Pðy2ðtÞÞ

Pðx2ðt þ tÞÞ
¼

¼
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx1ðtÞjy1ðtÞÞ � Pðy1ðtÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ � Pðy2ðtÞÞ ¼

¼
Y

t

Pðy1ðtÞÞ � Pðy2ðtÞÞ
X

x1ðtÞ
x2ðtÞ

Pðx1ðtÞjy1ðtÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ;

Llinked ¼
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx1ðtÞÞ � Pðx2ðt þ tÞjx1ðtÞÞ �
Pðx1ðtÞjy1ðtÞÞ � Pðy1ðtÞÞ

Pðx1ðtÞÞ
�
Pðx2ðt þ tÞjy2ðt þ tÞÞ � Pðy2ðtÞÞ

Pðx2ðt þ tÞÞ
¼

¼
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx2ðt þ tÞjx1ðtÞÞ
Pðx2ðt þ tÞÞ

� Pðx1ðtÞjy1ðtÞÞ � Pðy1ðtÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ � Pðy2ðtÞÞ ¼

¼
Y

t

Pðy1ðtÞÞ � Pðy2ðtÞÞ
X

x1ðtÞ
x2ðtÞ

Pðx2ðt þ tÞjx1ðtÞÞ
Pðx2ðt þ tÞÞ

� Pðx1ðtÞjy1ðtÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ:

The terms of P(y1(t)) and P(y2(t)) are taken outside of the sum in both formulas because P
(yk(t)) is constant as yk(t) is the realization of random variable xk(t). They will be cancelled out

in likelihood ratio and they can be omitted in formulas for Lnot linked and Llinked. So, the
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formulas be rewritten as next:

Lnot linked /
Y

t

X

x1ðtÞ
x2ðtÞ

pðx1ðtÞjy1ðtÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ; ð4Þ

Llinked /
Y

t

X

x1ðtÞ
x2ðtÞ

Pðx2ðt þ tÞjx1ðtÞÞ
Pðx2ðt þ tÞÞ

� pðx1ðtÞjy1ðtÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ: ð5Þ

The estimate of conditional probability P(xk(t)|yk(t)) is the empirical cdf F̂ kðtÞ and

PðxkðtÞ ¼ 1jykðtÞÞ ¼ F̂ kðtÞ; PðxkðtÞ ¼ 0jykðtÞÞ ¼ 1 � F̂ kðtÞ:
For simplicity, we will use px1x2

t notation instead of product P(x1(t)|y1(t))‧P(x2(t + τ)|y2(t + τ)).
For example, p00

t = P(x1(t) = 0|y1(t))‧P(x2(t + τ) = 0|y2(t + τ)).
Note that P(xk(t)) is a marginal probability and it can be computed as follows:

q0k ¼ PðxkðtÞ ¼ 0Þ ¼

X

t

PðxkðtÞ ¼ 0jyðtÞÞ

m
;

q1k ¼ PðxkðtÞ ¼ 1Þ ¼

X

t

PðxkðtÞ ¼ 1jyðtÞÞ

m
:

The conditional probability of Boolean state of variable x2(t+τ) given x1(t) in (5) becomes:

Pðx2ðt þ tÞjx1ðtÞÞ ¼
dðx2ðt þ tÞ ¼ f ðx1ðtÞÞÞ; if f ðx1ðtÞÞ 6¼ O;

Pðx2ðt þ tÞÞ; if f ðx1ðtÞÞ ¼ O;

(

O ¼ f0or1g:
ð6Þ

Eq (6) specifies the pattern for each of six possible Boolean functions of one variable. If it is

f1 (equivalence), then p00 and p11 are given weight 1, while p01 and p10 are set to zero for the

accordance to the truth table of f1. For computation reason in practice, we will use ε and 1−ε
instead of 0 and 1 to avoid computing log(0) in log likelihood. The parameter ε can be adjusted

if needed. Based on our empiric experience, it does not notably affect output. The default value

of ε in software implementation is set to 0.005 in this study. However, the decrease of ε can

slightly increase number of regulatory relations in output. For the functions which have indefi-

nite output for one of inputs (f3-f6), we use the marginal probability of the second gene to be 1

or 0 as weight function. With all notations explained above, the likelihoods corresponding to
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all possible six functions between two genes can be written as follows:

Lt;f 1 ¼
Y

t

½ðp00
t=q02 þ p11

t=q12Þ � ð1 � εÞ þ ðp01
t=q12 þ p10

t=q02Þ � ε�;

Lt;f 2 ¼
Y

t

½ðp01
t=q12 þ p10

t=q02Þ � ð1 � εÞ þ ðp00
t=q02 þ p11

t=q12Þ � ε�;

Lt;f 3 ¼
Y

t

½p00
t � ð1 � εÞ=q02 þ p10

t þ p11
t þ p01

t � ε=q12�;
ð7Þ

Lt;f 4 ¼
Y

t

½p01
t � ð1 � εÞ=q12 þ p10

t þ p11
t þ p00

t � ε=q02�;

Lt;f 5 ¼
Y

t

½p10
t � ð1 � εÞ=q02 þ p00

t þ p01
t þ p11

t � ε=q12�;

Lt;f 6 ¼
Y

t

½p11
t � ð1 � εÞ=q12 þ p00

t þ p01
t þ p10

t � ε=q02�:

Similarly, Lt;not linked ¼
Y

t

½p11
t þ p00

t þ p10
t þ p01

t�:

The largest of likelihoods Lf1. . .Lf6 will suggest the function f̂ which is the best in explaining

relation between two genes for given time delay τ. At the same time we need to find optimal

time delay between genes. Thus we repeat procedure for all possible time delays and choose

the one which corresponds to the largest difference in log-likelihoods of two models.

Significance of the established link is measured with p-value. Under the null hypothesis, the

test statistic of 2 log(R) can be approximated by the Chi-square distribution.

In summary, the algorithm of link identification can be formulated as follows:

ðx1; x2; f̂ ; t̂Þ ¼ arg max
ti
ðmax
f ðx1Þ

llinked � lno linkÞ:

Test 2

Fig 2 provides the graphical representation for two models: M0 assumes that there is interme-

diate gene x3 between genes x1 and x2; while in model M1 gene x1 regulates x2 directly. We

assign τ0 to be time delay between x1 and x3, and τ@ to be time delay between x3 and x3. After

the significant pairwise dependencies found by Test 1, Test 2 will test each link ðx1; x2; f̂ 1� 2; t̂Þ

such that links of ðx1; x3; f̂ 1� 3; t̂
0

Þ and ðx3; x2; f̂ 3� 2; t̂
@Þ exist and their time delays satisfy

τ0 + τ@� τ.
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The corresponding likelihoods of direct model M1 and indirect model M0 in Fig 2 can be

expressed as next:

L0 ¼
Y

t

X

x1ðtÞ
x3ðtþ� 0Þ
x2ðtþ�Þ

Pðx1ðtÞÞ � Pðx3ðt þ t
0

Þjx1ðtÞÞ � Pðx2ðt þ tÞjx3ðt þ t
0

ÞÞ�

�Pðy1ðtÞjx1ðtÞÞ � Pðy3ðt þ t
0

Þjx3ðt þ t
0

ÞÞ � Pðy2ðt þ tÞjx2ðt þ tÞÞ;

L1 ¼
Y

t

X

x1ðtÞ
x3ðtþ� 0Þ
x2ðtþ�Þ

Pðx1ðtÞÞ � Pðx3ðt þ t
0

Þjx1ðtÞÞ � Pðx2ðt þ tÞjx3ðt þ t
0

Þ; x1ðtÞÞ�

�Pðy1ðtÞjx1ðtÞÞ � Pðy3ðt þ t
0

Þjx3ðt þ t
0

ÞÞ � Pðy2ðt þ tÞjx2ðt þ tÞÞ:

However, it is unnecessary to compute all parts since we are only interested in the differ-

ence, that is, the unary function of f(x3) against the binary function of F(x1, x3). Since the link

x1!x3 is present in both models and it does not contribute to models differentiation, we can

remove it from computation. Thus the corresponding likelihoods for two models can be writ-

ten as next:

L0 ¼
Y

t

X

x3ðtþ� 0Þ
x2ðtþ�Þ

Pðx3ðt þ t0ÞÞPðx2ðt þ tÞjx3ðt þ t
0

ÞÞ � Pðy3ðt þ t
0

Þjx3ðt þ t
0

ÞÞ � Pðy2ðt þ tÞjx2ðt þ tÞÞ;

L1 ¼
Y

t

X

x1ðtÞ
x3ðtþ� 0Þ
x2ðtþ�Þ

Pðx1ðtÞÞ � Pðx3ðt þ t0ÞÞ � Pðx2ðt þ tÞjx3ðt þ t
0

Þ; x1ðtÞÞ�

�Pðy1ðtÞjx1ðtÞÞ � Pðy3ðt þ t
0

Þjx3ðt þ t
0

ÞÞ � Pðy2ðt þ tÞjx2ðt þ tÞÞ:

After applying Bayes’ theorem and all reductions similar to Test 1, the likelihood of indirect

model M0 and direct model M1 can be written as follows:

L0 ¼
Y

t

X

x3ðtþ� 0Þ
x2ðtþ�Þ

Pðx2ðt þ tÞjx3ðt þ t0ÞÞ

Pðx2ðt þ tÞÞ
� pðx3ðt þ t0Þjy3ðt þ t0ÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ;

L0 ¼
Y

t

X

x1ðtÞ
x3ðtþ� 0Þ
x2ðtþ�Þ

Pðx2ðt þ tÞjx3ðt þ t0Þ; x1ðtÞÞ
Pðx2ðt þ tÞÞ

� pðx1ðtÞjy1ðtÞÞ � Pðx3ðt þ t0Þjy3ðt þ t0ÞÞ � Pðx2ðt þ tÞjy2ðt þ tÞÞ:

Similarly to (6), we have

Pðx2ðt þ tÞjx1ðtÞ; x3ðt þ t0ÞÞ ¼
d½x2ðt þ tÞ ¼ Fðx1ðtÞ; x3ðt þ t0ÞÞ�; if Fðx1ðtÞ; x3ðt þ t0ÞÞ 6¼ O;

Pðx2ðt þ tÞÞ; if Fðx1ðtÞ; x3ðt þ t0ÞÞ ¼ O;
O ¼ f0or1g:

(
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Analogously to (7), we can have some examples of the formulas for above mentioned likeli-

hoods as follows:

Lt;t0 ;F1 ¼
Y

t

ðp000
t=q02 þ p010

t=q02 þ p100
t=q02 þ p111

t=q12Þð1 � εÞþ

þðp001
t=q12 þ p011

t=q12 þ p101
t=q12 þ p110

t=q02Þε

" #

;

Lt;t0;F11 ¼
Y

t

ðp010
t=q02 þ p100

t=q02 þ p110
t=q02Þð1 � εÞ þ p000 þ p001þ

þðp011
t=q12 þ p101

t=q12 þ p111
t=q12Þε

" #

:

Among all candidates, we choose such intermediate gene in model M1 which can maximize

likelihood of this model and therefore maximize difference between models. In the last step,

we need to make sure that we choose optimal time delay τ@ between intermediate gene x3 and

target gene x2. Thus we select τ0 such that the largest likelihood ratio Rx3(τ, τ0) refers to the best

choice of x3.

On the whole, the Test 2 procedure can be expressed as next:

ðx1; x3; x2; F̂ ; t̂; t̂
0Þ ¼ arg max

t
0

max
x3

ðmax
Fðx1 ;x3Þ

l1 � max
f ðx3Þ

l0Þ:

Complexity of the algorithm

Boolean networks can be very useful in finding dependencies among genes. However the

exhaustive search of the optimal Boolean network is infeasible for the study of a large number

of genes. The proposed BFN algorithm has the computational complexity of O(n3) in worst

case when the GRN is a complete directed graph. In Test 1, we consider n (n– 1) possible gene

pairs. For every gene pair which passed Test 1, we consider at most (n– 2) intermediate genes

in Test 2. However, these two tests are conducted in sequence, not in a nest loop. This allows

the reduction of computational complexity significantly because there are only a limited num-

ber of gene pairs that will pass Test 1 and enter Test 2.
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S2 Table. Detailed description of BFN performance measured with reference to SGD,
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