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Discrete Circular Distributions with Applications to Shared
Orthologs of Paired Circular Genomes

Tomoaki Imoto" *, Grace S. Shieh> * and Kunio Shimizu®

Abstract: For structural comparisons of paired prokaryotic genomes, an important topic in
synthetic and evolutionary biology, the locations of shared orthologous genes (henceforth
orthologs) are observed as binned data. This and other data, e.g., wind directions recorded
at monitoring sites and intensive care unit arrival times on the 24-hour clock, are counted
in binned circular arcs, thus modeling them by discrete circular distributions (DCDs) is
required. We propose a novel method to construct a DCD from a base continuous circular
distribution (CCD). The probability mass function is defined to take the normalized values
of the probability density function at some pre-fixed equidistant points on the circle. Five
families of constructed DCDs which have normalizing constants in closed form are
presented. Simulation studies show that DCDs outperform the corresponding CCDs in
modeling grouped (discrete) circular data, and minimum chi-square estimation outperforms
maximum likelihood estimation for parameters. We apply the constructed DCDs, invariant
wrapped Poisson and wrapped discrete skew Laplace to compare the structures of paired
bacterial genomes. Specifically, discrete four-parameter wrapped Cauchy (nonnegative
trigonometric sums) distribution models multi-modal shared orthologs in Clostridium (Sulfolobus)
better than the others considered, in terms of AIC and Freedman’s goodness-of-fit test. The result
that different DCDs fit the shared orthologs is consistent with the fact they belong to two kingdoms.
Nevertheless, these prokaryotes have a common favored site around 70° on the unit circle; this
finding is important for building synthetic prokaryotic genomes in synthetic biology. These DCDs
can also be applied to other binned circular data.
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1 Introduction

Most prokaryotic genomes (1158 out of 1194, NCBI, August 2010) are made up of single
circular chromosome (henceforth called circular genomes). Here, our emphasis is on the
structure of circular genomes, which plays an important role in synthetic and
evolutionary biology. For example, the most and least favored regions in which shared
orthologous genes (henceforth orthologs) between bacterial genomes are located are of
interest and important; orthologs are genes directly evolved from an ancestoral gene
[Tatusov, Koonin and Lipman (1997)], and can be traced through different species across
evolution. Further, genome organization may influence gene expression, which is vital
for organisms [Carrera, Rodrigo and Jaramillo (2009)].

While studying structural comparisons between paired circular genomes [Shieh, Zheng,
Johnson et al. (2011)], we found that the locations of shared orthologs are often observed
as binned data. Since shared orthologs and other data, e.g., wind directions recorded at
monitoring sites and intensive care unit arrival times on the 24-hour clock, are counted in
binned circular arcs, modeling them by discrete circular distributions (DCDs) is required,
which was the motivation for this study.

Circular (angular) data can be represented as points on the circumference of a unit circle,
e.g., wind directions at a monitoring site, and others [Fisher (1993); Jammalamadaka and
SenGupta (2001); Johnson and Wehrly (1977); Mardia and Jupp (2000)]. Circular data
are modeled by distributions on the circle, namely circular distributions. Continuous
circular distributions (CCDs) can be generated using several methods such as projection
and wrapping. The wrapping approach is an effective method for generating a probability
density function (pdf) on the circle from a pdf on the line. For example, a wrapped
normal distribution is constructed by wrapping a normal distribution onto the unit circle.
Similarly, any distribution on integers can be wrapped around the circumference of a unit
circle to construct the probability mass function (pmf) on the circle. For instance, the
wrapped Poisson distribution is constructed by wrapping Poisson distribution onto the
unit circle [Mardia and Jupp (2000)]. Moreover, wrapped discrete skew Laplace (WDSL)
and wrapped geometric distributions have been studied [Jayakumar and Jacob (2012);
Jacob and Jayakumar (2013)], respectively. Recently, Mastrantonio and colleagues
introduced the invariant wrapped Poisson (IWP) distribution and investigated the
invariance properties [Mastrantonio, Jona Lasinio, Maruotti et al. (2015)]. The wrapping
method can immediately constuct the corresponding circular distribution from a discrete
distribution on R'; however, the normalizing constants are not analytic in general.

In this article, we propose a novel method to construct DCDs for discrete circular data. The
constructed DCD is defined on the n (>2) pre-fixed equidistant points 2z j/n (=0, 1, 2, ...,
n—1) of the circumference of a unit circle from the pdf f{f) of the corresponding CCD on
[0, 27). The pmf of the DCD from a base pdf f(f) is defined by
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with the normalizing constant C,, = Zj}:ol f <£> We note that in general, the number of
n

divisions is determined by domain knowledge. For example, n=24 is commonly used for
hourly data such as gun crime data [Mastrantonio, Jona Lasinio, Maruotti et al. (2015)]
and intensive care unit arrival times on the 24-hour clock, while n=8 and 16 are used for
wind directions at a monitoring site. As n — o0, the explicit form of p,(j) is shown in
Appendix A.

In the following section, we derive the normalizing constant of Eq. (1), then we present the
characteristic function and trigonometric moments of DCDs. Next, families of discrete
distributions constructed from von Mises, cardioid, nonnegative trigonometric sums
[Fernandez-Duran (2004)], wrapped Cauchy and four-parameter wrapped Cauchy [Kato
and Jones (2015)] distributions are illustrated, and their trigonometric moments are
presented. Furthermore, we study how well DCDs and the corresponding CCDs model
the grouped circular data, and compares two estimation methods via Monte Carlo
simulations. Finally, we apply the constructed DCDs, IWP and WDSL to model
marginals of the shared orthologs between a pair of circular genomes; these prokaryotes
belong to different kingdoms. The fitting results of our DCDs, IWP and WDSL are also
compared. We close with some discussion in Section 6.

2 Methods

In this section, we derive the expressions of the normalizing constant and trigonometric
moments of the pmf in Eq. (1); the former is required by a DCD while the latter are
basic properties. For this purpose, the following proposition is useful.

Proposition 1. Let i = v/ —1 denote the imaginary unit. When k is an integer such that 0 <k
<n— I, then we have the following.

1. Forp=...,—3n,—2n,—n,0,n,2n,3n, ..., it holds that
k . .

261(2@//’!) =k+1,

=0

and thus,

k ; k .
2 2
E cos<ﬂ> =k+1, E sin(ﬂ> =0.
= n n

J=0



1134 CMES, vol.123, no.3, pp.1131-1149, 2020

2. For an integer p such thatp #...,—3n,—2n,—n,0,n,2n,3n. .., it holds that

9

k .
Zei(anj/n) _ Sll’l{ﬂ?p(k + 1)/1’1} ei(npk/n)
o sin(np/n)

and thus, for k=n—1,
n—1 . n—1 .
2 2
E cos <ﬂ> = g sin <ﬂ> =0.
. n - n

The first part of Proposition 1 is obvious and the second part is proved by induction.
Hereafter, we suppose that f{0) is represented by a Fourier series

7(0) = ipz b =L 142 > oy cos(pt) + f, sm(p0)} .
. &

where ¢,, a, and f, represent the characteristic function, pth cosine moment and pth
sine moment of a circular random variable ® with pdf f{f) respectively, i.e., ¢p=E[e’p®],
a,=E[cos(p®)] and f,=E[sin(p®)].

2.1 The formula for the normalizing constants
From Proposition 1 and the Fourier series expansion for f{#), we find the equation, for &=0,

1,2, ..., n1,
p=1 p=123,.., sin(np/n)

kooom\ 1
S () =52
= n T
p#n,2n3n,...

() nn(2)]

For k£ =n — 1 in the above equation, it holds that
- n) 2n — )
Jj=0 p=1
This equation leads to the identity of the normalizing constant C, in (1) as

n o0
C, :%(1 +2;ank>.

(k+1)(1+2§:ocnp>+2>< 3 sin{rp(k + 1)/n}
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2.2 Trigonometric moments

Suppose that a random variable ®, follows a DCD with the pmf (1). To obtain
its characteristic function qS,,,q:E[e""@”]:a,,,quiﬁ,,,q, it suffices to calculate the cases ¢=0,
1,2, ..., n—1, because obviously, ¢, 4=, , for k=1,2,3,..., and a, ,~0a, 4 and f, =
—pn.q- From Proposition 1, we have

1A 2m g 1 & &R
_ fia/ R i=(q-p)
=52 ()7 -5 X 0
J=0 p=—0c0  j=0
o0 2
n
o 27'CCn k:z—:oo ¢q7kn.
This characteristic function leads to the expressions for the gth cosine and sine moments as
Oy + /;1 (O‘knJrq + O‘kn—q) ﬁq + kzjl (ﬂkn+q - ﬂkn—q)
Ong = — ) ) ﬁn,q = - 0 :
1425 o 1+2 %7 o
k=1 k=1
3 Results

In this section, we show specifically how five families of DCDs are constructed from the
corresponding CCDs. We use discrete von Mises, cardioid, nonnegative trigonometric
sums [Fernandez-Duran (2004)], wrapped Cauchy and four-parameter wrapped Cauchy
[Kato and Jones (2015)] distributions to illustrate the construction. Similarly, other
discrete circular distributions can be constructed.

3.1 Discrete von mises distribution
The pdf of a von Mises distribution with mean direction ¢ and concentration x, VM(y, «), is

1 K cos(0—u)

fom(0) = 27l (k) ’

for x>0 and 0 < < 27. The pth cosine and sine moments are expressed by a,, = 1(x)cos(ppe) /1o(x)
and B, = L() sin(pu)/Io(x) respectively, where 1,(-) is the modified Bessel function of the first
kind and order p defined by

L(x) = %/Oh cos(pf)e<<s’dp.

The pmf of the corresponding discrete von Mises distribution is expressed by
eKcos(an/nf,u)

Zz;(l) ek cos(2mp/n—p)’

pvm(j) =

e cos(2mj/n—p)

- I’l{]o(Kf) +2 Z;O:I [np(K) cos(npu)} ’

j=0,1,2,...,n—1,
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which involves Bessel functions in the normalizing constant. This distribution is denoted by
DVM,, (1, k) or DVM,, for short. For calculating this pmf numerically, the first expression is useful
for small n, while the second one is useful for large n since I,,p(rc)<e°'2522 (0.52)"/T(np+1)
and it converges to 0 quickly as p — oco. From (2), the trigonometric moments are
expressed as

Zn* 1 ek c0s(2mj/n—p) i
=0

¢n,q =

ST grcos(2m/ni) (mod g)
j:

B I(1)e + 37 {Ln_ge P 4 T, elrtan)
Io(x) +2 22021 Ipn(K) cos(pnu)

(mod q).

3.2 Discrete cardioid distribution
The pdf of a cardioid distribution with mean direction x and mean resultant length p is

Jfe(0) = 2L{1 +2pcos(0—p)} = %{1 + 2p(cos prcos 0 + sin psin 0) }
T n

for 0<u<2m and 0<p<1/2. The pth cosine and sine moments are a,,=p cos u and f,=p sin u for
p=1 and a,=f,=0 for p=2, 3, 4, .... The pmf of the corresponding discrete cardioid
distribution is expressed by

1 2mj
pclf) =—{1+2PCOS(—HJ—M>}, j=0,1,2,...,n—1,
n n

and is denoted by DC,,(1, p) or DC,, for short. The cumulative sum of pc(j) is also expressed
by a closed form as

k 2psin{n(k +1)/n} cos(nk/n — p)

1
g N==|k+1+ k=0,1,2,...,.n— 1.
jzopC(]) n|: Sin(TC/}’l) ) y Ly &y s 1

The trigonometric moments are

1, q=0,
b,y =13 pe™, g==%1,  (modn),
0, otherwise,

from which we observe that if ©®,,; ~ DC,(u;, p1) and ©,,, ~ DC, (1, p,) are independent,
then ©,,; + 0, > ~ DC,(u; + u2, p1p2).

3.3 Discrete nonnegative trigonometric sums distribution
A family of nonnegative trigonometric sums distributions with order M, denoted as NTS,,,
is defined as
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frs (0) = 1 142 Z{am cos(m0) + by, sin(m0)} |,

2n —
M—m M—m
where a,= Y {rvimrv + cyimev} and by, = > {rvimey — repym} for m=1,2.3,.... M
v=0 M v=0
with real numbers 7, and c,, such that > (2 +c2)=1. To estimate the parameters, some
m=0

constraint, like ¢y = 0, is imposed in order to make the parameters of the model identifiable
[Fernandez-Duran (2007)].

Since the pth cosine and sine moments of NTS,, are a,,=a,, and p,=b, forp=1, 2,3, ..., M
and a,=f,=0 for p>M, the pmf of the corresponding discrete nonnegative trigonometric
sums distribution with order M and division » is immediately obtained as

M . .
2 2
142 g {am cos( n:y) + b, sin( n:y)}
m=1

j=0,1,2,....n—1

and denoted by DNTSy ,(@y, by;m=1, 2, 3, ..., M) or DNTS,,,, for short. DNTS,,,, has
2M-parameters a,, and b,, (m=1, 2, 3, ..., M), and hereafter we suppose that the number
of the equidistant points on the circle (n) is greater than or equal to 2M, or M < n/2, for model
identifiability.

From Proposition 1, the cumulative sum of pnts(f) is expressed by

. 1
PNTS (I) ~ )

2sin{n(k +1)/n}
sin(7/n)

M
k k
X Z{amcos<ﬂ> —i—bmsin(ﬂ)}], k=0,1,2,...,n—1.
— n n

The trigonometric moments are

k

1
E erS(i) =—|:k-|-1—|—
=0 "

ag + iby, 1<g<M,
¢n,q: 07 M<q<l’l—M,
ap—q —ibp_g, n—M <qg<n-—1.

Note that the trigonometric moments of DNTS,,, are the same as those of NTS,,. This
means that the discretization from NTS,, to DNTS,,, preserves the mean direction and
the mean resultant length. When n=2M, the moments are expressible by
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ag + iby, 1<g< M,
¢n7q: ay, q:j‘l7
M—q — inM—q, M < q <2M — 1.

This family includes discrete cardioid distribution (DC,) as a special case.

3.4 Discrete wrapped cauchy distribution

The pdf of a wrapped Cauchy distribution with mean direction ¢ and mean resultant length p
is given by

_ L—p

~2n{l + p* —2pcos(0 — w)}

for 0<u<2m and 0<p<1, and the pth cosine and sine moments are a,=p” cos (pu) and S,=p"
sin (pu) forp=1,2,3,....

Since

o
E oy = Re
p=l1

the pmf of the corresponding discrete wrapped Cauchy distribution, denoted by DWC(, p)
or DWC,, for short, is expressed by

(1= p*){1 + p*" —2p" cos(np)}
n(l = p*){1+ p*> —2pcos(2mj/n — )}

and its trigonometric moments are

1 ; i
¢q _ " {(pnfq _ anrq)el(qﬂ’l),u + (pq _ pzn*Q)el‘Ill} (mod }’Z)

i

Swe(0)

ipnpeinp,u — P"{COS(”H) — pn}
= 1+ p¥ —2p" cos(nu)’

pwel(j) = , j=0,1,2,...,n—1

3.5 Discrete four-parameter wrapped cauchy distribution
The pdf of a four-parameter wrapped Cauchy (FWC) distribution is

1 cos(0 — pu) — pcos A
0)=—31+2
Srwe(0) 277:{ + V1+p2—2pcos(9—,u—)\)

for0<u<2m, 0<y<1,0<p<1,and— 7 <. <m, where (p cos A —y)* + (p sin 1)* < (1 — y)*.
In this model, « and y play the roles of location and concentration respectively, and 4 and p
controls skewness and kurtosis of the distribution [Kato and Jones (2015)]. As a special
case, this distribution reduces to the wrapped Cauchy distribution when /=0 and y=p. The
pth cosine and sine moments are ocp:yp”*lcos {p(utA)—A} and B,=yp” “lsin {p(uti)-1},
respectively.
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Since

c- ypnp—lei{np(u-t,-)\)_/\} B '))pn_l{ei”<ll+/\)—/\ _ pnel’,\}

1+ p? = 2pcos{n(u+ N)}’

p=1

taking its real part, we have

$ 30" eos{ni - ) = ) = o
= 1+ p2 —2p" cos{n(+ )}

Thus, the pmf of the corresponding four-parameter discrete wrapped Cauchy distribution is
expressed by

prwe(7)
= 1+ p¥ —2p" cos{n(u+ )}
+n(1+p* —2yp™ Tcos A+ 2p" ycos{n(u+ A) — A} — peos{n(u+ \)}])
2mi/n — 1) —
cos(2mj/n u). pCos A =012 1
14 p2 —2pcos(2mj/n— u—N)

X {1+2y

and is denoted by DFWC,,(1, p, 4, y) or DFWC,, for short. It can be shown that plugging A=0
and y=p into prwc(j) results in pwc(j) of the discrete wrapped Cauchy distribution. The
trigonometric moments are omitted to save space.

4 Estimation and simulation

In this section, we utilize two methods to estimate the parameters of the constructed DCDs.
Next, we compare these methods under different sample sizes and number of divisions via a
simulation study.

4.1 Estimation

Maximum likelihood based inference for grouped circular data is mentioned in Pewsey et al.
[Pewsey, Neuhduser and Ruxton (2013), Section 6.3.5]. As a special feature of our
discretization method, however, there is a relationship between the log-likelihood
functions for the base CCD and the corresponding DCD as follows.

Letf,j=0, 1, 2,...,n—1, be the frequency observed at the value 27j/n on a circumference and
n—1

N=)" f; be the sample size of the dataset. Then, the log-likelihood function of DCD in (1)
j=0

with parameter vector y for the dataset is given by

n—1

n—1
L(y) = filogp,(s) = > _filogf(2mi/n; ) — N log C,(),
Jj=0 Jj=0

which is equal to the log-likelihood function of the base CCD subtracting the penalty term
Nlog C,(y) for the DCD. From this expression, the maximum likelihood estimation (MLE)
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of DCD does not correspond to that of its base continuous circular distribution in general.
An alternative approach to estimate parameters of DCD is the minimum chi-square
estimation (MCSE), where the estimates are given by minimizing Pearson’s chi-square
test statistic

i{f Np,(j)

Np,(j)

4.2 Simulation

We conducted a simulation study to compare how well the original CCDs and the
corresponding DCDs model grouped data, in which various sample sizes N were
generated with 5,000 Monte Carlo repetitions.

For a continuous distribution whose distribution function is not analytic, it is difficult to
generate random numbers directly; see Appendix A for further explanation. Thus, we
first generated random numbers from DCD with large divisions m=1,152 (=9x27) using
the method in Appendix A, then we grouped them into equidistant division »=9, 18 and
36 of [0, 2x), each number in [27zj/n, 27 (j+1)/n) was rounded to (2j+1)a/n. The number
of divisions 36 and 18 were chosen, because the number of orthologs in every 10° and
20° arcs were of interest in the Application section, while #=9 was studied as a small
number of divisions.

From these rounded numbers, we estimated the parameters of the base CCD and the
corresponding DCD by MLE and MCSE in the Estimation section and compared the
fitting performance.

As measures of fitting performance, we use the chi-square test statistic

¥ _Z(f_npj

and Freedman’s test statistic [Freedman (1981)], which is a modified version of Watson’s U*
statistic for discrete data,
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and
)250)) for DCD
o 2n(j+1)/n
pr= / 7(0)do for CCD, ;j=0,1,2,...,n—1.
2nj/n

Because the exact distributions of y* and U"? are intractable, the exact p-values are difficult
to calculate. Thus, we calculated the approximated p-values by the bootstrap method.
Specifically, we generated bootstrap samples y*® of »* and U™>® of U™, b=1, 2, 3, ...,
B and B=10,000, under the true parameters. Next, we calculated bootstrapped p-values
Pl o= #7P >x, b=1,2,3, ..., By/B and pP, = # {U P >u, b=1,2,3, ..., B}/B,
where #4 is the number of elements in the set 4, and x and u are the realizations of the
chi-square and Freedman’s test statistics obtained from the estimated distribution,
respectively.

We conducted the simulation for discrete cardioid, wrapped Cauchy and four-parameter
wrapped Cauchy distributions. The results are very similar, so we only show the result of
discrete four-parameter wrapped Cauchy distributions and omit the others. Tab. 1 shows
the bias and mean squared error (MSE) of the estimates by MLE for FWC,(z, 0.6, 7/2,
0.3) and those by MLE and MCSE for DFWC,, (%, 0.6, /2, 0.3) with their measures of
fitting performance pfz and pg*z.

The original CCD fits the data as well as the corresponding DCD, only when the sample size
is small (N=50) and the number of divisions is large (#=36). While in other cases, the DCD
performs better than its corresponding CCD in terms of pfz and pf]*z. This result is natural
since large n leads to a continuous sample while small » leads to a discrete sample.

Comparing the estimations, we see that when the number of divisions is large (n=36 for N
ranging from 50 to 200), MLE is better than MCSE in the sense of pg*z, small bias and MSE
of the estimated parameters. However, when the number of divisions and sample size are not
large (n=9 and 18; N=50 and 100, respectively), MCSE outperforms MLE in most cases for
estimating parameters and fitting to discrete circular data.

Our algorithm was written in Mathematica 8.0 and we optimized the functions L(y) and CS
(w) in Section 4.1 by the NMaximize and NMinimize commands of the Nelder-Mead method.
The running time (CPU: Core i7-5820K, 3.30 GHz) of the simulation was very fast. For
N=50, 100 and 200 simulated data with the number of divisions #»=9, 18 and 36, the
running time was bounded by data grouped by 36 divisions. Of these, applying MLE and
MCSE to DFWC;4 took 2.0 and 0.1 seconds, respectively, while applying MLE to FWC
took about 2.8 seconds.

5 Application

Most prokaryotic (bacteria and archaea) genomes are made up of single circular
chromosomes, called circular genomes. Orthologs are genes in different species that
evolved directly from a common ancestral gene by speciation, and they can be used to
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Table 1: Comparisons of estimates for the parameters in the original and discretized FWC
(m, 0.6, ©/2, 0.3)

N 36 divisions 18 divisions 9 divisions

MLE MLE MCSE MLE MLE MCSE MLE MLE MCSE
FWC DFWC;, DFWC; FWC DFWC,3 DFWC;3 FWC DFWC, DFWC,

50 wu Bias 0.037 0.035 -0.059 0.041 0.028  —0.031 0.103  0.066 0.025
MSE 0.111 0.112 0.129  0.117  0.115 0.128  0.138  0.200 0.198

p Bias  0.005  0.007 0.009 -0.002 -0.003 -0.004 0.028 —0.015 -0.019
MSE 0.029  0.029 0.030  0.031 0.028 0.030  0.050 0.035 0.036

A Bias —0.135 -0.130 —0.035 —0.144 -0.125 —0.087 —0.217 -0.113 —0.079
MSE 0457  0.457 0.659  0.501 0.510 0.646  0.544  0.655 0.712

y Bias 0.017 0.018 —0.026 0.013 0.023 —-0.002 -0.014 0.040 0.030
MSE 0.008  0.007 0.006  0.008  0.008 0.006  0.010 0.014 0.012

pfz 0.671 0.672 0.715  0.691 0.711 0.735  0.629  0.787 0.799
pg*z 0.824  0.827 0.734  0.799  0.840 0.815  0.675 0.861 0.860

100 x Bias 0.012  0.011  —0.041 0.017  0.008 —0.028  0.140 0.018 —0.007
MSE 0.049  0.048 0.055 0.057  0.052 0.053  0.093  0.082 0.082

p Bias  0.000  0.001 0.002 -0.007 -0.010 -0.010 0.094 -0.019 -0.021
MSE 0.014 0.014 0.015 0.017 0.015 0.016  0.050 0.020 0.020

A Bias —0.036 —0.033 0.025 -0.039 —0.029 0.008 -0.226 —0.026 0.011
MSE 0.156  0.153 0220  0.204  0.199 0.218 0302 0.316 0.328

y Bias  0.009  0.009 —-0.020 0.005 0.009 —-0.006 -0.048 0.014 0.008
MSE 0.004  0.003 0.003  0.004  0.004 0.003  0.011  0.005 0.004

pfz 0.649  0.656 0.688  0.683  0.707 0.723 0483 0.793 0.801
pg*z 0.817  0.817 0.751 0.803  0.828 0.816  0.487 0.867 0.867

200 x4 Bias 0.003  0.002 —0.023 0.006  0.003 —0.016 0.178 -0.002 —0.018
MSE 0.024  0.024 0.025  0.027  0.025 0.025  0.072  0.037 0.036

p Bias —0.002 —0.002 0.000  0.010 -0.012 -0.011 0.148 -0.021 —0.022
MSE 0.006  0.006 0.006  0.007  0.006 0.007  0.053 0.011 0.011

A Bias —0.004 -0.002 0.029 -0.005 —0.002 0.016 -0.254 0.009 0.036
MSE 0.067  0.066 0.074  0.074  0.075 0.079  0.153  0.152 0.151

y Bias 0.004 0.004 —0.013 0.002  0.003 —0.004 -0.074 0.003 0.000
MSE 0.002  0.002 0.002  0.002  0.002 0.002  0.011  0.002 0.002

pfz 0.653  0.646 0.669  0.685  0.696 0.706  0.290  0.794 0.799
plg,*z 0.803  0.809 0.767  0.799  0.811 0.807  0.286  0.866 0.866
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compare structures of paired bacterial genomes [Shieh, Zheng, Johnson et al. (2011)].
Comparisons of structures, e.g., the most and least favoured spots, between paired
genomes are important and useful in the area of synthetic and evolutionary biology. The
data were downloaded from NCBI (ftp:/ftp.ncbinlm.gov/refseq/release/bacteria), and
were preprocessed as stated in Shieh et al. [Shich, Zheng, Johnson et al. (2011)] The
processed data are available at http://www.stat.sinica.edu.tw/gshieh/DCDs/data.txt.

When comparing the genomes of paired bacteria, e.g., Clostridium and Sulfolobus, whose
genomes were plotted at http://www.stat.sinica.edu.tw/gshiech/DCDs/genomes.pdf, in the
different kingdoms, their shared orthologs are discrete when depicted in binned
circumferences on unit circles. Fig. 1 shows rose diagrams of the shared orthologs
between Clostridium and Sulfolobus. The distributions of the shared orthologs in both
genomes look different, because they have evolved to belong to different kingdoms.
Henceforth, we call the binned shared orthologs in Clostridium and Sulfolobus the
Clostridium and Sulfolobus data, respectively, which are sometimes presented in degrees
on the circumference of a unit circle, for clarity of depiction. The total number of shared
orthologs N is 192 for both data sets. We use 18 pre-fixed equidistant (20°) bins and
center the number of shared orthologs in each bin between 20; and 20(j+1) degrees for
j=0,1,2,...,17, namely at 10°,30°,50°,...,330°. For the Clostridium data, the sample
mean direction is =0.52 (in radian) and the sample mean resultant length is R=0.19
with p-value 0.001 of the Rayleigh test for uniformity based on 2NR?>=13.41 which
means that the Clostridium data is not uniform on the circle; for the Sulfolobus data, they
are 0=0.18 and R=0.14 with 2NR*>=7.03 and p-value 0.03, respectively. Fig. | shows

(a) (b)
0 0
330 30 330 30
300 60 300 60
30 30
270 = 90 270 5 %
240 120 240 120
210 150 210 150
180 180

Figure 1: Rose diagrams of (a) Clostridium and (b) Sulfolobus data with 18 pre-fixed
equidistant (20°) points


http://ftp://ftp.ncbi.nlm.gov/refseq/release/bacteria
http://www.stat.sinica.edu.tw/gshieh/DCDs/data.txt
http://www.stat.sinica.edu.tw/gshieh/DCDs/genomes.pdf
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that the distribution of the Clostridium data looks asymmetric and has the mode around
350°, followed by 330° and 70°, while the Sulfolobus data looks symmetric and is
multimodal with modes around 70°, 250° and 270°, respectively.

When fitting distributions to the Clostridium and Sulfolobus data, we apply the MCSE to
estimate the parameters of DVM,,, DC,, DNTS,,, DWC,, and DFWC,,. In addition, we
also fit uniform distribution and two recently studied DCDs (IWP and WDSL), and
compare their performances to those of our constrcuted DCDs. IWP assumes the
following pmf.

e NOU=nu/(2m))+kn
Prwe(f) = E e j=0,1,2,...,n—1,
0 (0( — u/(2m)) + kn)!
27 47 6 27(n — 1
where >0, 0 € {-1, 1}, u € {0 —n,—n,—n,...,M}. To apply this distribution,
n n n n

we need to approximate the infinite summation by truncation, and the truncation point
depends on the parameter A. For stable calculation, we restrict the parameter space of 1 to
0<A<60 and fix the truncation point at 100.

The WDSL distribution (Jayakumar and Jacob, 2012) has the following pmf.

1—p)(1— (1 —p" (1 —q"

(1—p)( q)[q (1—p")+P( q)}, =012 1.
1 —pq (1=p")(1—¢")

where 0<p<1, 0 <g<lI. Since this distribution does not have the location parameter and the

periodicity, i.e., Pwpsi(j) # PwpsL(j T 1), we use the generalized WDSL (denoted by
gWDSL) which has the following pmf.

PwpsL(j) =

o on . np
PWDSL<]—ﬁ+”>a ]<ﬂ7
PowpsL(j) = ni ny
PWDSL(j—E)v ]'ZE,

where p € {O 2—n,4—n,6—n,...,m}.
n'n’'n n

Tabs. 2 and 3 show the MCSE for the parameters of each distribution, model selection
criterion AIC and bootstrapped p-value of the Freedman’s goodness-of-fit statistic pf]*z for
the Clostridium and Sulfolobus data, respectively. In the sense of AIC and pf}*z, DFWC g
gives the best fit for the Clostridium data with the smallest AIC and p-value 0.629. For the
Sulfolobus data DNTS; ;5 gives the best fit with the smallest AIC and the largest p-value
0.882 (the significance level equal to 0.05). Figs. 2 and 3 show the linear histograms of the
Clostridium data and Sulfolobus data, respectively, superposed by well-fitted distributions
as line plots. As shown in Fig. 3, DNTS, s models the Sulfolobus data better than the
remaining ones.
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Table 2: Fitting DCDs to the Clostridium data by MCSE at 18 pre-fixed equidistant points

Distribution MCSE AIC Pho

Uniform 1109.90 0.0004
DC ¢ 1=0.4290, $=0.1699 1100.36 0.3666
DVM 1=0.3244, $=0.3554 1100.37 0.3958
DWC £=02176, p=0.1760 1100.52 0.3762
DFWC ¢ ’;zgzi?g g:g_'fj;;) 1099.11 0.6290

@1=0.1603,  5;=0.0674

DNTS 1102.94 0.6394
18 4,=0.0745, by=—0.0611

WP A=2T025, A=DIIE 1131.57 0.0000
[i=5.5851, p=0.9418

gWDSL 4—0.0100 1163.06 0.0000

Table 3: Fitting DCDs to the Sulfolobus data by MCSE at 18 pre-fixed equidistant points

Distribution MCSE AIC Py

Uniform 1109.90 0.0034

DC\¢ [i=3.7723, H=0.0000 1113.90 0.0032

DVM, 5 [1=0.0260, p=0.1991 1106.84 0.0636

DWCig [i=0.1606, p=0.0834 1107.96 0.0428
0=6.0284, H=0.6698

DFWC g A—3.6262 501731 1096.10 0.3008
4, =0.1310, b, =0.0294

DNTS 4 0 1086.66 0.8824

»18 a,=—0.2085, b,=0.1014

WP gf?'@gl’ A=33.9697 1109.41 0.0348
i=1.0472, p=0.4768

gWDSL 4—0.9532 1115.87 0.0212

Furthermore, in terms of running time (CPU: Core 17-5820K, 3.30 GHz), our constructed
DCDs took less than 0.5 seconds, while IWP and generalized WDSL took 900 and five
seconds, respectively. This is because IWP and generalized WDSL have discrete location
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0.06 i
0.04

0.02

Figure 2: Linear histogram of the Clostridium Data superposed by the fitted DFWCg
(line plot) at 18 pre-fixed equidistant points

(a) (b)

0.10 -

I
1 2 3 4 5 6

Figure 3: Linear histograms of the Sulfolobus Data superposed by the fitted (a) DFWCig
and (b) DNTS,, 5 at 18 pre-fixed equidistant points

parameters, which are estimated by profile MLE like method. In addition, IWP has a sum of
many terms.

We summarize the modeling of the Clostridium and Sulfolobus data by DCDs as follows.

1. For the Clostridium data, asymmetric DCDs yield good fits and, among these, the
DFWC,; yields the best fit in terms of AIC and Freedman’s goodness-of-fit test.

2. For the Sulfolobus data, DNTS, ;5 gives the best fit in terms of AIC and Freedman’s
goodness-of-fit test. Fig. 3 also shows that DNTS, ;g fits the data better than the
second best DFWCg, in terms of the line plots fitting to the linear histogram of the
data. Note that DFWC,g can not exhibit bimodality.

3. The above results suggest that these shared orthologs are distributed differently, which is
consistent with the fact that these prokaryotes belong to different kingdoms.
Nevertheless, the rose diagrams (Fig. 1) show that these shared orthologs have a
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common favored region (near 70°) out of two to three favored regions. This finding is
important for building synthetic prokaryotic genomes in synthetic biology.

6 Conclusions

We have investigated the construction of DCDs by generating the pmfs from circular pdfs.
The normalizing constant is simply represented by the cosine moments of the base CCD,
and the constructed discrete distributions are tractable. Simulation studies show that
DCDs outperform the corresponding CCDs in modeling grouped (discrete) circular data,
and MCSE is better than MLE. The constructed DCDs, IWP and WDSL were applied to
compare the structures of shared orthologs in a pair of prokaryotes, an important topic in
synthetic and evolutionary biology. Specifically, DFWC (DNTS) distribution is shown to
model multi-modal shared orthologous genes in bacteria Clostridium (archaea Sulfolobus)
well. We conclude that of the distributions considered, DFWC, fits the asymmetric
Clostridium data the best in terms of AIC and Freedman’s goodness-of-fit test, and
DNTS, , fits the symmetric and multi-modal Sulfolobus data better than the remaining
DCDs considered. Although these shared orthologs followed different DCDs, they do
have a common favored region around 70° out of two to three top-favored regions. This
finding is important for building synthetic prokaryotic genomes in synthetic biology.

The constructed DCDs are versatile, namely these families of distributions can fit both uni-
modal and multi-modal and symmetric and asymmetric discrete circular data. Moreover, the
computation of our algorithm, consisting of estimation of the parameters and goodness of fit
test, is very fast. The presented discretization method can be applied to any univariate
CCDs, but it is limited to univariate circular distributions. Nevertheles, our method is the
basis for bivariate DCDs which is of interest and have applications in many scientific
areas. Therefore, we leave construction of discrete bivariate circular models for future study.
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Appendix A. Random number generation for DCDs
The distribution function F,,(k) of a DCD defined on m pre-fixed equidistant points is a step
function with m steps. Therefore, we can easily use the inverse transform method to generate

2n . .
random number as — min{k; F,,(k) > y}, where y is the random number of continuous
m

uniform distribution defined on (0, 1). When m is a large integer, the generated random
number approximates that of the base continuous circular distribution. This fact is
confirmed as follows.
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Let f{6) be the pdf of a base CCD and p,,,(j) be the pmf of the corresponding DCD defined on
m pre-fixed equidistant points. Assuming that /'€ C*(0, 2x), then we have

2y lm=Nel 2mnj
[(m=1)al m Z ! <_> 2na |
> pulk) = = £(0)do + 0<%>,

=0 2n mzl <27TJ> 0

for any 0<a<1, where [x] denotes the greatest integer less than or equal to x since

mif(””) "0 )d0+0<%> :1+0<%>

j=0

and
E)
_ [(m —nizla] +1 = _211)2] - Kn;gl:)a]{f([(fn—%lt%) + 0(#) }

(oo L)

2na

= [ f(0)do+ O(riz)'

0

For a continuous distribution whose distribution function is not expressed by an elementary
function, it is difficult to apply the inverse transform method. In such a case, the acceptance-
rejection method is often applied. However, the acceptance-rejection method will take time
to generate the random numbers in general and will reject many random numbers from the
proposal distribution. In contrast, our method can be executed easily by finding the point
where the distribution function (step function) is larger than the random variable of
uniform distribution.
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