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Targeted therapies and chemotherapies are prevalent in cancer treatment.
Identification of predictive markers to stratify cancer patients who will respond
to these therapies remains challenging because patient drug response data are
limited. As large amounts of drug response data have been generated by cell lines,
methods to efficiently translate cell-line-trained predictors to human tumors will
be useful in clinical practice. Here, we propose versatile feature selection
procedures that can be combined with any classifier. For demonstration, we
combined the feature selection procedures with a (linear) logit model and a (non-
linear) K-nearest neighbor and trained these on cell lines to result in LogitDA and
KNNDA, respectively. We show that LogitDA/KNNDA significantly outperforms
existing methods, e.g., a logistic model and a deep learning method trained by
thousands of genes, in prediction AUC (0.70–1.00 for seven of the ten drugs
tested) and is interpretable. This may be due to the fact that sample sizes are often
limited in the area of drug response prediction. We further derive a novel
adjustment on the prediction cutoff for LogitDA to yield a prediction accuracy
of 0.70–0.93 for seven drugs, including erlotinib and cetuximab, whose pathways
relevant to anti-cancer therapies are also uncovered. These results indicate that
our methods can efficiently translate cell-line-trained predictors into tumors.
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Introduction

Targeted therapies and chemotherapies are prevalent in cancer treatments. About 7%
(11.1%) of US patients with advanced or metastatic cancer benefited from genome-targeted
(genome-informed) therapy in 2021 (Haslam et al., 2021), with 13.6% (27.3%) estimated
eligibility. Thus, identification of the characteristics of cancer patients who will respond to
chemotherapies or targeted therapies using their molecular profiles is important for
precision medicine. Given that patient drug response data relative to cell lines are
limited, obtaining this information is challenging. However, large-scale drug sensitivity
screens of cell lines have identified clinically meaningful gene–drug interactions (Barretina
et al., 2012; Garnett et al., 2012; Basu et al., 2013; Seashore-Ludlow et al., 2015). In particular,
the Cancer Cell Line Encyclopedia (CCLE) database consists of the transcriptomic profiles,
chromosomal copy number, and mutational profiles of 947 human cancer cell lines screened
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with 24 targeted therapies. Moreover, Iorio et al. published valuable
results and the Genomics of Drug Sensitivity in Cancer (GDSC)
dataset (Iorio et al., 2016), consisting of the multi-omics profiles and
drug sensitivity scores (IC50) of 1,001 cancer cell lines screened with
265 anti-cancer compounds, which may be used to train predictors
to improve drug response prediction in patients. Geeleher et al.
(2014) adopted this approach and showed that the trained ridge
regression models using whole-genome gene expression and the
response of ~700 cell lines in the Cancer Genome Project (Garnett
et al., 2012) resulted in equally good or better predictions of human
tumors than gene signatures derived directly from three clinical
datasets.

Recently, a deep neural network-based method known as multi-
omics late integration (MOLI) was proposed (Sharifi-Noghabi et al.,
2019). This method was used to predict drug response by first
embedding each multi-omics data type separately and then
concatenating all embeddings into one representation, which was
optimized via a cost function. The performance of MOLI was
validated on patient-derived xenograft (PDX)/human tumor
datasets of five chemotherapies and two targeted therapies.
Moreover, data from cell lines screened with drugs targeting the
same pathway, pan-drug data, were also integrated into MOLI to
significantly improve its performance on targeted therapies.

Gene expression data are the most effective of the four omic data
types for pan-cancer drug response prediction (Iorio et al., 2016).
Thus, we used gene expression data in this study. Furthermore,
when transferring the trained predictors from cell lines (the source
domain) to human tumors or PDXs (the target domain), it is
assumed that the features (genes in this study), which are used to
train the predictors, behave similarly in these domains. However,
cell lines and human tumors/PDXs are known to be different in the
following respects (Gillet et al., 2013): there is no tumor micro-
environment and vasculature in cell lines and no immune system in
cell lines/PDXs. Nevertheless, strong positive correlations for
mutational and transcriptomic profiles were found between cell
lines and tumors (Barretina et al., 2012). Thus, it is reasonable to
assume that there is a subset of genes that behave similarly between
cancer cell lines and primary tumors (the two domains). PRECISE, a
domain adaptation-based method, was developed to capture
information shared among the preclinical models and human
tumors (Mourragui et al., 2019). The resulting domain-invariant
predictors were shown to reliably recover known associations
between biomarkers and the corresponding drugs in human
tumors. PRECISE assumes that the conditional distributions for
drug response are the same in both domains (PS(Y|X) � PT(Y|X)),
similar to other existing methods. However, when this assumption is
not met, a negative transfer will occur (Peres da Silva et al., 2021),
e.g., drugs that are effective in vitro but not effective in clinical trials/
practice.

To alleviate this shortcoming, we adopted supervised domain
adaptation (DA) (Koniusz et al., 2017; Motiian et al., 2017).
Although DA uses information of all labels in a test set, it has
been shown to outperform numerous baselines on real-world
datasets in active learning, e.g., the MNIST and USPS datasets
containing images of digits from 0 to 9 analyzed by Motiian
et al. (2017) and the office dataset, which is a benchmark for
visual domain adaptation (Motiian et al., 2017). This study is the
first application of DA to the area of drug response prediction. Here,

we propose feature selection procedures combined with a regular
logistic ridge regression model (called LogitDA) or with a non-linear
classifier K-nearest neighbor (called KNNDA), which have the
following desirable properties: 1) our assumption is weaker than
that of the existing methods, and if the given training and test
datasets satisfy the assumption, the proposed predictors achieve a
high area under the receiver operating characteristic curve (AUC;
Results), even when the training dataset is relatively small; 2) we
devise an adjustment of the prediction probability cutoff for
LogitDA, which leads to high prediction accuracy no matter
whether datasets meet the assumption or not; and 3) the
proposed method can be combined with any linear or non-linear
classifier to be trained, thus being versatile.

We used the labels of the test sets only in the feature selection
procedures. Specifically, we selected genes (Xi’s) that have similar
conditional distributions across the domains, PS(Xi|Y) ≈ PT(Xi|Y),
where S and T denote the source (training) and target (test) domains,
respectively. This approach falls into one category of inductive
transfer learning (Pan and Yang, 2010), in which the target and
source domains are labeled, but the domains and the tasks are
different. In the area of drug response prediction, the source
domain consists of the gene expression data of cell lines and the
associated probability distribution, and its task is to predict the drug
response in terms of IC50 scores. While the target domain consists of
gene expression data of patients/PDX and the associated probability
distribution, the target task is to predict the drug response of patients/
PDX, which is measured by changes in tumor volumes or months-to-
progress of patients. As there is no tumor micro-environment and
immune system in cell lines, we assume that the probability
distribution of the source and target domains is not the same.
Thus, the domains and tasks are different in the area of drug
response prediction. The remaining steps of our feature selection
are prioritizing genes by their differential expression in sensitive versus
resistant cell lines, keeping the top-ranked 1,000 genes for explainable
features, and ranking these genes by a measure of their power to
separate sensitive from resistant cell lines. Next, for each of the ten
drugs, we trained a regular logit model and K-nearest neighbor
(KNN) using expression data of the top-ranked p (p ≤ 1,000)
genes of cell lines in GDSC via 5-fold cross-validation (CV); see
Methods for details. Subsequently, we compared the performance of
LogitDA/KNNDA to that of the baseline ridge regression in the work
of Geeleher et al. (2014) and MOLI (Sharifi-Noghabi et al., 2019) for
ten test sets in human tumors and PDXs. The scheme of the proposed
approach is shown in Figure 1.

Notably, LogitDA and KNNDA turned out to be very powerful
for drug response prediction. For example, LogitDA (KNNDA),
trained by the top-ranked 50 (220) selected genes of the 370 cell lines
screened with erlotinib, resulted in a prediction AUC of 0.94 (0.90)
for NSCLC tumors. The high prediction power of LogitDA
(KNNDA) for targeted therapies suggests that these predictors
may help physicians stratify patients with NSCLC who will
respond to erlotinib and spare those who do not from adverse
effects, illustrating that these predictors have clinical implications.
Finally, we uncovered the pathways of the top-fitted genes of
LogitDA/KNNDA for erlotinib and cetuximab, which include
pathways relevant to anti-cancer therapies and several metabolic
pathways. These results indicate that our methods can efficiently
translate cell-line-trained predictors into human tumors.

Frontiers in Genetics frontiersin.org02

Yuan et al. 10.3389/fgene.2023.1217414

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1217414


Methods

Datasets

The gene expression data and drug response of 1,001 cell lines
screened with 265 drugs in the GDSC dataset (Iorio et al., 2016) were
used as training sets, and ten sets of gene expression data and the
response of PDX/patients treated with chemotherapies and targeted
therapies were used for testing. The test sets consisted of three
clinical trial datasets for docetaxel, erlotinib, and sorafenib (Geeleher
et al., 2014), four sets from PDX Encyclopedia datasets (Gao et al.,
2015), and three sets of TCGA patients (Weinstein et al., 2013; Ding
et al., 2016). The sources for both training and testing datasets are
detailed in Data Availability Statement. All datasets are publicly
available.

Gene expression profiles of cell lines, which were RMA-
normalized, log-transformed, and aggregated to the level of
genes, were downloaded from the GDSC database. The gene
expression profiles of the first three test datasets were
preprocessed by Geeleher et al. (2014), and those of the
remaining seven test sets (from MOLI) were converted to TPM
and log-transformed by Sharifi-Noghabi et al. (2019).

Pre-processing of gene expression data

The GED of cell lines from the GDSC dataset was first
standardized by the mean and standard error (s.e.) of each gene.
Next, the GED of each cell line was normalized by the house-keeping
gene GAPDH across cell lines and homogenized with the GED of
test sets by the ComBat() function from the sva library in R

(Geeleher et al., 2014). The details of each dataset, such as the
drug name, the number of samples, and the number of genes in the
training and test sets, are provided in Table 1. Similar to existing
methods (Geeleher et al., 2014; Sharifi-Noghabi et al., 2019), we
included only genes present in both training and test sets for the
subsequent analysis; the four columns from the right-hand side of
Table 1 show the number of overlapping genes.

Feature selection procedures

For a given drug d, let Xd, Yd{ } consist of Xd ∈ Rnd×p expression
profiles of p genes of nd cell lines (PDXs or human tumors) and drug
response values Yd ∈ 0, 1}nd{ for drug d. Here, we dichotomized the
drug response of cell lines (IC50) into 0 (resistant) or 1 (sensitive) if a
drug response is greater or less than or equal to its maximum drug
concentration (given in the GDSC website), respectively (Iorio et al.,
2016).

The proposed feature selection consisted of three procedures: 1)
supervised DA (Mourragui et al., 2019), 2) differential expression
between sensitive and resistant cells, and 3) the ratio of “between-
group to within-group sums of squares” (the BW ratio) (Dudoit
et al., 2002), where the two groups refer to sensitive cell lines and
resistant cell lines for each drug. As cell lines (the training sets) are
different from patients and mouse models in the test sets, we applied
DA to sift genes whose conditional distributions given the label Y
across domains were not significantly different. The intuition for
feature selection procedures 2) and 3) is stated in Supplementary
methods. In a pilot study, we also studied Logit (KNN) trained by
genes and sifted by unsupervised DA in combination with the latter
two proposed feature selection procedures. However, the predictors

FIGURE 1
The scheme of the proposed approach.
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employing unsupervised DA performed in a manner considerably
inferior to those employing supervised DA, given that the remaining
procedures were kept the same. Thus, we used supervised DA in this
study.

Specifically, for each drug and geneX, the Kolmogorov–Smirnov
(KS) test for equality of the conditional distribution of selected genes
X given the label Y in the source and target domains, FS(X|Y) and
FT(X|Y), was conducted at P ≥ α, where α � 0.6, 0.7, 0.8, and 0.9. It
should be noted that DA used all the information about the
responses of the samples in both domains. In this study, we used
stringent cutoffs P ≥ α and α � 0.6, 0.7, 0.8, and 0.9, as the source
(cell lines) and target (PDX/patients) domains are quite different.
Let Xi denote gene i. It should be noted that the aforementioned KS
test is equivalent to using the distance measure sup|FS(Xi|Y � 1) −
FT(Xi|Y � 1)| and sup|FS(Xi|Y � 0) − FT(Xi|Y � 0)|, where
FS(Xi|Y) andFT(Xi|Y) denote the conditional distribution of Xi

given Y in the source and target domains, respectively.
Given the features X � (X1, X2, . . . , Xp), we define PS(Y � 1)

and PT(Y � 1) to be the population proportion of responders in the
source and target domains, respectively. Furthermore, let
P̂S(Y � 1|X) and P̂T(Y � 1|X) be the estimated proportions of
responders given X in the source and target domains,
respectively, and r � [PS(Y � 1)/PS(Y � 0)]/[PT(Y � 1)
/PT(Y � 0)] be the odds ratio of these two domains. Proposition
1 states that if the selected features satisfy the required DA condition
and the odds ratio equals to 1, then the features are invariant across
the source and target domains and vice versa.

Proposition 1. assumed that the features X � (X1, X2, . . . , Xp)
satisfy the DA condition and marginal conditional distributions of
Xi|Y are independent for i =1, . . ., p. Then, PS(Y � 1|X) �
PT(Y � 1|X) if and only if r = 1.

The proof is given in Supplementary information.
Genes that passed the DA selection were then prioritized by their

differential expression among all overlapping genes in sensitive cell
lines versus resistant cell lines. To reveal explainable classifiers, we
kept at most the top-ranked 1,000 genes with the smallest false
discovery rate (FDR) values obtained from the two-sample t-test and
sorted these genes by the BW ratio. The BW ratio for a gene j of the
cell line i in group k is defined as follows:

BW j( ) � ∑i ∑k I yi � k( ) �xkj − �x.j( )
2

∑i ∑k I yi � k( ) xij − �xkj( )
2,

where �x.j and �xkj denote the average expression level of gene j across
all cell lines and the cell lines of group k only, respectively.

Training models using GDSC datasets

For fixed top-ranked p genes, where p ranged from 50 with step
size 10 to 200 (denoted by 50 (10)200), 200 (20)400, and 400 (100)
1,000) genes of the cell lines, we trained the hyperparameter λ (the
penalty constant of logit regression) and p using 5-fold CV with ten
repeats. We used grid-search to tune the hyper-parameter as follows.

TABLE 1 Information about the training and test datasets of the studied drugs.

Training set (GDSC) Test set No. of overlapping genes Geeleher et al.

Drug (test
dataset)

No. of
cell lines

NSa NRa No. of
samples

NS NR In training and
test setsb

Sifted
by DAc

No. of genes in
commonb

No. of the
remaining
genesd

Docetaxel
(GSE6434)

850 564 286 24 10 14 7,963 5,173 7,964 6,371

Erlotinib
(GSE33072)

370 28 342 25 11 14 16,898 12,264 16,760 13,408

Sorafenib
(GSE33072)

403 117 286 37 21 16 16,898 12,961 16,760 13,408

Cetuximab (PDX) 877 40 837 60 5 55 16,191 7,509 15,121 12,096

Erlotinib (PDX) 370 28 342 21 3 18 16,190 10,343 18,232 14,585

Gemcitabine
(PDX)

866 680 186 25 7 18 16,190 10,115 18,232 14,585

Paclitaxel (PDX) 399 284 115 43 5 38 16,190 8,548 18,232 14,585

Cisplatin (TCGA) 850 275 575 66 60 6 16,026 8,550 18,216 14,572

Docetaxel
(TCGA)

850 564 286 16 8 8 16,168 12,968 18,216 14,572

Gemcitabine
(TCGA)

866 680 186 57 21 36 16,003 9,728 18,216 14,572

aNS and NR denote the number of sensitive (responder) and resistant (non-responder) samples.
bThe number of overlapping genes between the training and test sets. The initial input genes of the work of Geeleher et al. (2014) were the same as our method, as we could not assess the input

genes of the former.
cThe number of genes which distributed similarly, namely, filtered by supervised domain adaptation (p > 0.05); Kolmogorov–Smirnov test).
dThe number of genes remained after removing genes with the lowest 20% variability in expression across all samples.
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First, let λ � 10a0 and a0 ∈ [−3, 0] with step size 100.3, i.e., we ran 5-
fold CV of LogitDA with grid points 10–3, 10–2.7, . . ., and 100 and
found the grid point whose associated CV score was the maximum,
which was termed 10a1 , e.g., a1 � −2.7. Second, we further evaluated
LogitDA with grid points in [10a1−0.05, 10a1+0.05] and step size 100.01.
The grid point 10amax , whose corresponding CV score is the
maximum, determines the tuned hyperparameter λ � 10amax . The
logit model with the highest averaged CV AUC determined p and λ,
which yielded one LogitDA. Then, we applied the LogitDA to a test
set to determine its prediction AUC. The aforementioned
procedures were repeated ten times (with different seeds for CV)
to obtain the mean and s.e. of the prediction AUC.

For the classifier KNN, we used the distance measure 1 − rho,
where rho is Spearman’s rho between any two cell lines with selected
p genes because the default Euclidean distance did not work well for
the GED of any two cell lines in our pilot study. For each drug and
fixed top-ranked p gene, where p = 50 (10)200, 200 (20) 400, and 400
(100)1,000 genes of the cell lines, we first trained the hyperparameter
K of KNN, via 5-fold CV with ten repeats and using the GED and
drug response of cell lines, and computed the AUC in the cross-
validation experiments. The hyperparameter K was determined by
the experiment with the highest averaged CV score. We then fitted
all data into this KNN classifier with each top-ranked p gene. Of all
the top-p-ranked KNN classifiers trained, the one with the highest
averaged CV score determined the value of p, which was one trained
KNNDA predictor. We repeated the aforementioned procedures ten
times to yield the mean and s.e. of the prediction AUC of KNNDA.

Adjustment of the probability cutoff

The following lemma and Proposition 2 established the
theoretical foundation for adjusting the prediction probability
cutoff when the drug response rates between cell lines and
tumors differ.

Lemma. When r> 1 and PS(Y � 1|X)>PT(Y � 1|X), the
prediction probability is overestimated. Similarly, when r< 1 and
PS(Y � 1|X)<PT(Y � 1|X), the prediction probability is
underestimated.

The proof is given in Supplementary information.

Proposition 2. assumed that the predictors X � (X1, X2, . . . , Xp)
satisfy the DA condition and marginal conditional distributions of
Xi|Y are independent for i =1, . . ., p. When the odds ratio between
the source and target domains is r ≠ 1, the cutoff of the prediction
probability PS(Y � 1|XT) should be adjusted to r/(r + 1).

The proof is given in Supplementary information.
As Proposition 2 suggests, the prediction probability cutoff

will deviate from 0.5 when the population proportion of
responders in the target and source domains differ. Due to a
lack of information on the ratio of responders in the target
domain (patients), we estimated it using test data directly in
this study. However, a better estimate of the ratio can be obtained
once more responses to these drugs are released. We note that
Proposition 2 considers a continuous prediction probability
function. It does not apply to the KNN classifier that makes a
prediction on a test sample based on the majority voting for its
K-nearest neighbors.

External validation of the trained classifiers

Finally, we applied the trained predictors LogitDA with α =
0.7 and KNNDA with α = 0.7 to the ten external test sets. To
compare with the results of the baseline ridge regression (Geeleher
et al., 2014) and MOLI complete (Sharifi-Noghabi et al., 2019), we
repeated the experiments ten times for estimating the s.e. of the
predictors for each drug.

Results

Experimental design

In this study, we aimed to investigate the following questions:
Do logistic ridge regression and KNN with adequately selected
features outperform a deep learning-based predictor, MOLI
complete (Sharifi-Noghabi et al., 2019), in terms of prediction
AUC on external test sets (PDX and patient data)? Do the
proposed predictors, LogitDA and KNNDA, work well for
targeted therapies and/or chemotherapies? Information about the
training and test datasets of the ten studied drugs is provided in
Table 1.

After the features (namely, genes in this study) were selected by
the proposed procedures (see Methods for details), we trained
logistic ridge regression (KNN) with 5-fold CV using the GED of
the prioritized features of GDSC cell lines screened with seven drugs,
which included docetaxel, erlotinib, sorafenib, cetuximab,
gemcitabine, paclitaxel, and cisplatin, in a total of ten sets. These
drugs were chosen because we planned to compare LogitDA and
KNNDA to the baseline logistic ridge regression (Geeleher et al.,
2014) and MOLI complete (Sharifi-Noghabi et al., 2019).

Training our predictors LogitDA and KNNDA

As the training set (GDSC cell lines) is quite different from the
test sets (PDX and patient data) (Sharifi-Noghabi et al., 2019), the
cutoff for domain adaptation should be strict. Nevertheless, this
threshold should allow sufficient features to pass so that a classifier
can be adequately trained; see Methods for details. Therefore, we
trained LogitDA with features (Xi) that passed the KS test for
equality of FS(Xi|Y) and FT(Xi|Y) with P ≥ α, where α = 0.6,
0.7, 0.8, and 0.9, and we denote the resulting predictor as LogitDA_α,
where α = 0.6, 0.7,0.8, and 0.9.

Supplementary Table S1 shows that the CV scores of LogitDA_

0.6 were equivalent to those of LogitDA_0.7 for the ten drugs.
However, to satisfy the DA condition required by Proposition 1,
namely, the marginal conditional distribution of selected genes X
given the label Y in both domains is equal, the value of α should be
large, so we chose LogitDA_0.7. Proposition 1 shows that features
that satisfy the conditions will be domain-invariant. That is, if the
features perform well in the source domain, they will also perform
well in the target domain.

Moreover, we observed that each averaged CV score of
LogitDA_0.7 was higher than that of LogitDA_0.8 and LogitDA_0.9,
except that they had the same CV score for cetuximab (PDX). Thus,
among the LogitDA predictors, we suggest using LogitDA_0.7 for the
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prediction of the drug response of patients/PDX and denote it by
LogitDA, henceforth, for simplicity; for details, we refer to Table 2.

Taking the training result of LigitDA into account, we trained
the non-linear KNNDA with α = 0.7, 0.8, and 0.9 for the KS test and
summarized the 5-fold CV result in Table 3. KNNDA_0.7 performed
better than KNNDA_0.8, as the former had higher (lower) averaged
CV scores for five (two) drugs than the latter; the differences ranged
from 1% to 4%. Moreover, KNND_0.8 outperformed KNNDA_0.9 in
terms of higher averaged CV scores for nine of the ten drugs. Thus,
we suggest using KNNDA_0.7 among these non-linear predictors for
the test sets. For simplicity, we denote KNNDA_0.7 by KNNDA
henceforth.

LogitDA and KNNDA predict well for the ten
drugs

Next, Table 4 and Figure 2 report the prediction AUC of
LogitDA and KNNDA for the ten test sets. The predictor
LogitDA achieved a prediction AUC >0.8 for five drugs and

predicted AUCs of 0.71 and 0.70 for docetaxel and sorafenib,
respectively. In particular, LogitDA using the top-ranked 50, 130,
50, 100, and 650 genes resulted in prediction AUCs of 0.94, 0.93,
1.00, 0.83, and 0.81 for erlotinib, cetuximab (PDX), erlotinib
(PDX), gemcitabine (PDX), and docetaxel (TCGA), respectively.
This result shows that LogitDA may be useful for precision
oncology, especially for the targeted therapies erlotinib and
cetuximab.

Of the ten drugs, the predictor KNNDA achieved a prediction
AUC >0.8 for four drugs. Specifically, KNNDA using the top-ranked
110, 220, 110, and 60 genes resulted in prediction AUCs of 0.87, 0.90,
0.95, and 1.00 for docetaxel, erlotinib, cetuximab (PDX), and
erlotinib (PDX), respectively. This result shows that KNNDA
may also be useful for precision oncology.

We further compared LogitDA to KNNDA. Of the ten drugs,
LogitDA had a significantly higher (21% higher) (11% lower)
prediction AUC compared to KNNDA for gemcitabine (PDX)
(docetaxel) and performed equivalent to KNNDA for the
remaining eight drugs. Thus, these predictors performed
equivalently; we refer to Table 4 for details.

TABLE 2 Cross-validation result of LogitDA_α with various cutoffs of the KS test.

Method LogitDA_0.70 LogitDA_0.80 LogitDA_0.90

pa λ CV score p λ CV score p λ CV score

Drug (test set) Genesb Genes Genes

Docetaxel (GSE6434) n = 24 170 0.447 0.76 170 0.242 0.75 50 0.424 0.660

437 223 59

Erlotinib (GSE30072) n = 25 50 1.039 0.80 100 0.962 0.78 50 1.122 0.677

860 391 90

Sorafenib (GSE30072) n = 37 110 1.122 0.68 90 1.122 0.67 50 1.122 0.633

1,000 752 207

Cetuximab (PDX) n = 60 130 0.019 0.86 150 0.041 0.84 50 0.048 0.802

827 440 157

Erlotinib (PDX) n = 21 50 0.495 0.85 50 0.521 0.82 50 1.122 0.786

877 499 163

Gemcitabine (PDX) n = 25 100 0.414 0.71 70 0.521 0.69 50 0.242 0.666

1,000 541 151

Paclitaxel (PDX) n = 43 50 0.221 0.69 50 1.122 0.64 50 1.039 0.493

643 311 78

Cisplatin (TCGA) n = 66 130 0.224 0.71 110 0.192 0.67 50 1.066 0.598

628 293 79

Docetaxel (TCGA) n = 16 650 0.521 0.79 240 0.424 0.77 80 0.236 0.741

1,000 691 193

Gemcitabine (TCGA) n = 57 140 0.447 0.74 70 0.192 0.72 50 0.414 0.659

841 399 94

ap denotes the top-p genes sifted by the feature selection procedures.
bGenes denote the number of genes that passed DA screening across the training and test domains for each drug.
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Our predictors outperform the deep
learning-based MOLI

As shown in Table 4 and Figure 2, the predictors LogitDA and
KNNDA performed significantly better (16%–35% and 13%–37%
higher prediction AUC) than the baseline logistic ridge regression
model (Geeleher et al., 2014) for nine and ten out of the ten drugs,
respectively.

Next, we compared LogitDA and KNNDA to the deep neural
network (DNN)-based method MOLI (Sharifi-Noghabi et al., 2019),
which outperformed DNNs with early integration, with 5-fold CV
and 10 repeats. Of the ten drugs in Table 4, LogitDA and KNNDA
outperformed MOLI complete (expression data) for seven and eight
drugs, respectively. In particular, LogitDA and KNNDA had 31%–

61% and 44%–61% higher prediction AUCs compared to MOLI
complete for docetaxel, cetuximab (PDX), erlotinib (PDX), and
gemcitabine (PDX). Furthermore, LogitDA and KNNDA also
had significantly higher (18%–21% and 14%–17%) prediction
AUCs compared to MOLI complete for erlotinib and docetaxel
(TCGA). LogitDA and KNNDA only performed significantly worse

than MOLI complete (13% and 8% lower prediction AUC) for
cisplatin (TCGA).

The prediction AUC of LogitDA for both cisplatin and
gemcitabine (TCGA) was only 62%, which may be because the
ratio of sensitive (responders) versus resistant (non-responders)
samples is reversed from the training to the test sets (from about
1:2 to 10:1 for cisplatin); in other words, our assumption that the
ratio of sensitive to resistant samples in both domains is equal was
not met.

EGFR expression has been used as a biomarker to treat
colorectal cancer (CRC) patients with wild-type KRAS in the
US (patients with metastatic CRC and HNSCC in the EU).
However, EGFR expression does not predict a response to
cetuximab (Messersmith and Ahnen, 2008). The high
prediction AUC of LogitDA for cetuximab (PDX) suggests
that the fitted 130 genes may be promising for selecting KRAS
wild-type patients with CRC for cetuximab, provided more test
sets are validated.

Furthermore, we compared LogitDA (KNNDA) to MOLI
complete (multi-omics data). LogitDA (KNNDA) has a

TABLE 3 CV result of KNNDA_α with various cutoffs of the KS test.

Method KNNDA_0.70 KNNDA_0.80 KNNDA_0.90

pa Best K CV score p Best K CV score p Best K CV score

Drug Genesb Genes Genes

Docetaxel (GSE6434) n = 24 110 23 0.76 90 21 0.74 59 19 0.69

437 223 59

Erlotinib (GSE30072) n = 25 220 9 0.80 140 15 0.78 50 15 0.72

860 391 90

Sorafenib (GSE30072) n = 37 120 17 0.64 80 19 0.65 150 19 0.60

1,000 752 207

Cetuximab (PDX) n = 60 110 23 0.80 50 29 0.76 50 29 0.76

827 440 157

Erlotinib (PDX) n = 21 60 19 0.83 200 19 0.83 110 17 0.81

877 499 163

Gemcitabine (PDX) n = 25 240 17 0.69 190 27 0.68 100 29 0.66

1,000 541 151

Paclitaxel (PDX) n = 43 100 9 0.65 80 9 0.63 60 7 0.57

643 311 78

Cisplatin (TCGA) n = 66 190 29 0.66 100 25 0.66 79 19 0.59

628 293 79

Docetaxel (TCGA) n = 16 200 25 0.75 90 19 0.76 60 29 0.74

1,000 691 193

Gemcitabine (TCGA) n = 57 180 29 0.67 70 29 0.67 50 27 0.63

841 399 94

ap denotes the top-p genes sifted by the feature selection procedures.
bGenes denotes the number of genes that passed DA screening across the training and test domains for each drug.
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significantly higher prediction AUC 19%–40% (19%–42%) in the
test set of cetuximab (PDX), erlotinib (PDX), gemcitabine (PDX,
LogitDA only), and docetaxel (TCGA) and performed equivalent
(<6% differences of test AUC) toMOLI complete (multi-omics data)

for the remaining drugs, except that KNNDA had 9% less test AUC
for paclitaxel; please refer to Table 4 for details.

For targeted therapies such as erlotinib and cetuximab, Sharifi-
Noghabi and colleagues further trained MOLI on multi-omics data

TABLE 4 Performance of LogitDA and KNNDA compared to the other methods in terms of prediction AUC across four targeted therapies and six chemotherapies.

Method Geeleher et al.
(2014)

MOLI complete (expression
data)

MOLI complete (multi omics
data)

LogitDA KNNDA

Drug (test dataset)

Docetaxel (GSE6434) 0.74a 0.31a X 0.76 ± 0.019 0.87b ±
0.010

Erlotinib (GSE33072) 0.60 0.73 X 0.94 ± 0.004 0.90 ± 0.004

Sorafenib (GSE33072) 0.45 0.65 X 0.70 ± 0.003 0.71 ± 0.044

Cetuximab (PDX) 0.58 0.51 0.53 0.93 ± 0.006 0.95 ± 0.018

Erlotinib (PDX) 0.67 0.39 0.63 1.00 ± 0.000 1.00 ± 0.000

Gemcitabine (PDX) 0.59 0.52 0.64 0.83 ± 0.015 0.62 ± 0.006

Paclitaxel (PDX) 0.52 0.69 0.74 0.68 ± 0.022 0.65 ± 0.073

Cisplatin (TCGA) 0.62 0.75 0.66 0.62 ± 0.012 0.67 ± 0.028

Docetaxel (TCGA) 0.59 0.63 0.58 0.81 ± 0.005 0.77 ± 0.041

Gemcitabine (TCGA) 0.53 0.64 0.65 0.62 ± 0.004 0.68 ± 0.031

aThe initial input genes of the work of Geeleher et al. (2014) andMOLI complete were the same as those of LogitDA and KNNDA, as we could not assess the input genes of the work of Geeleher

et al. (2014). The parameters of MOLI complete were optimized using the training data.
bThe bold-faced values indicate the highest prediction AUC among the five methods for a drug.

FIGURE 2
Performance of LogitDA and KNNDA compared to other methods in terms of the prediction AUC for the ten drugs.
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of five drugs targeting the EGFR pathway (MOLI complete (pan-
drug)), which consisted of >3,000 samples. It is interesting that
LogitDA (KNNDA) (using merely hundreds of samples)
outperformed MOLI (pan-drug) for erlotinib (PDX) and
cetuximab (PDX) with 28% and 13% (28% and 15%) higher
prediction AUCs, respectively.

In addition to the high prediction AUC for the aforementioned
drugs, our approach also has the advantages of being interpretable
and using much fewer (50–650) genes that are interpretable in
comparison with the baseline logistic ridge regression and MOLI,
which used more than 12,000 genes, except for docetaxel, for which
~6,370 were used, as shown in Table 1. The use of much fewer genes
(features) and hyperparameters may prevent LogitDA and KNNDA
from overfitting problems.

Prediction accuracy of LogitDA for the ten
drugs

For some of the ten drugs whose odds ratios of the source and
target domains r �
[PS(Y � 1)/PS(Y � 0)]/[PT(Y � 1)/PT(Y � 0)] deviate much
from 1 (Supplementary Table S2A), Proposition 2 shows that
their cutoff of the predicted probability should be adjusted to r/
(r+1) to account for the differences of the ratios across domains.
Therefore, we adjusted the cutoffs accordingly and obtained the
prediction accuracy of the ten drugs in Table 5. Notably, for seven
of the ten drugs, the resulting prediction accuracy is greater than or
equal to 0.70. In particular, for 25 tumors treated with erlotinib,
LogitDA achieved a prediction accuracy of 0.76, and its prediction
accuracy increased to 0.85 if we focused on the 20 EGFR and KRAS
wild-type patients with NSCLC; LogitDA correctly predicted all
12 resistant tumors and five of eight tumors sensitive to
erlotinib(Supplementary Table S2B). To the best of our
knowledge, to date, there is no efficient biomarker to predict
the response to erlotinib of such patients (Geeleher et al., 2014),
who were estimated to represent ~30% of Caucasian patients with
lung adenocarcinoma (Wang M. et al., 2021).

Ablation study

In a pilot study, we found that DA considerably improved the
prediction AUC of logistic ridge regression (KNN) combined with
feature selection using DE genes and BW ratio. Thus, it was of
interest to evaluate the contribution of DA. We trained logistic ridge
regression and KNN with the features selected by the two
aforementioned feature selections (denoted as LogitDA-DA and
KNNDA-DA, respectively) for the ten drugs. Supplementary Table
S3 shows that LogitDA-DA (KNNDA-DA) used a few hundred
genes to achieve equivalent test AUCs as the baseline logit model
trained by more than 5,100–13,400 features for the ten drugs
(Figure 2). Table 6 shows that DA increases the averaged
prediction AUC of LogitDA (KNNDA) from 0.55 to 0.79
(0.57–0.78) over LogitDA-DA (KNNDA-DA), where the
averaged prediction AUC was averaged over the ten drugs; the
improvements are quite significant.

Pathways relevant to erlotinib and
cetuximab discovered

As LogitDA and KNNDA perform well in the prediction AUC
for erlotinib and cetuximab (PDX), it is of interest to find the
pathways in which the fitted genes of these predictors are involved.
Thus, we first submitted the top-ranked 220 genes of LogitDA and
KNNDA for erlotinib into the database Ingenuity Pathway Analysis
(IPA; http://www.ingenuity.com) and uncovered the relevant
pathways in Supplementary Table S4. Interestingly, several
important metabolic pathways were discovered, e.g., Purine
Nucleotides de novo Biosynthesis (Ali et al., 2020; Taha-Mehlitz
et al., 2021) and Histidine Degradation VI (Tominaga et al., 2019;
Han et al., 2020). Furthermore, pathways for epigenetic regulation
(Yu et al., 2018; Du et al., 2019) and DNA repair (nucleotide excision
repair enhanced pathway) (Dong et al., 2019; Wang T. et al., 2021;
Sato et al., 2021) were also uncovered. The aforementioned
pathways play essential roles in tumor malignancy and response
to anti-cancer therapies.

TABLE 5 Prediction accuracy of LogitDA with the adjusted cutoffs of the ten drugs.

Drug (resource) na Cutoff Prediction accuracy False positive rate False negative rate

Docetaxel (GSE6434) 24 0.73 0.62 0.36 0.40 (4/10)

Erlotinib (GSE33072) 25 0.09 0.76 0.00 0.55 (6/11)

Sorafenib (GSE33072) 37 0.24 0.62 0.63b 0.19 (4/21)

Cetuximab (PDX) 60 0.34 0.93 0.00 0.80 (4/5)

Erlotinib (PDX) 21 0.33 0.86 0.00 1.00 (3/3)

Gemcitabine (PDX) 25 0.90 0.72 0.06 0.86 (6/7)

Paclitaxel (PDX) 43 0.95 0.88 0.00 1.00 (5/5)

Cisplatin (TCGA) 66 0.05 0.88 0.83b 0.05 (3/60)

Docetaxel (TCGA) 16 0.66 0.69 0.38 0.25 (2/8)

Gemcitabine (TCGA) 57 0.86 0.70 0.17 0.52 (11/21)

an denotes the sample size.
bThe false positive rate of sorafenib (GSE33072) and cisplatin (TCGA) are 10/16 and 5/6, respectively.
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The overlap of the aforementioned fitted genes and the
uncovered pathways (in the molecules column of Supplementary
Table S5) has been reported to contribute to tumor progression (cell
proliferation, survival, invasion, andmetastasis) and drug resistance.
Specifically, LIG1 is an attractive target for personalization of
ovarian cancer therapy (Ali et al., 2021), and decreased
eEF2 phosphorylation, mediated by increased PP2A activity,
contributes to resistance to HER2 inhibition (McDermott et al.,
2014). ADSL has been suggested as a predictive biomarker of
response to 6-mercaptopurine (under the brand name
Purinethol) in a pre-clinical setting (Taha-Mehlitz et al., 2021).

Moreover, MTA3 downregulates SOX2OT, and the MTA3/
SOX2-OT/SOX2 axis has been reported as a potential cancer
stratification marker in human esophageal squamous cell
carcinomas (Du et al., 2019). Finally, CAD, a key enzyme of de
novo pyrimidine biosynthesis essential for cell proliferation, has
been found to directly interact with the second generation of EGFR-
TKI Afatinib, which also targets EGFR in the same pathway as
erlotinib (Tu et al., 2021).

Similarly, we submitted the top-ranked 130 genes of LogitDA for
cetuximab (PDX) and uncovered DNA repair, metabolic processes,
and lysosome-associated pathways; the details of the pathways are
listed in Supplementary Table S5. The overlap of the fitted genes and
the uncovered pathways includes CDK7, IGF-1R, and others. In
particular, CDK7 is a key regulator of transcription and cell-cycle
control, and its deregulation in cancer has been linked to a worse
prognosis (Jagomast et al., 2022). Inhibition of CDK7/12 promotes
resistance emergence in response to targeted therapy in lung cancer
cells (Rusan et al., 2018; Terai et al., 2018). Moreover, cetuximab
therapeutically blocks EGFR, and this might concurrently induce the
activation of IGF-1R, which could activate EGFR-downstream Akt
signaling, thus mediating cetuximab resistance in gastric cancer cells
(Li et al., 2015).

Discussion

Our feature selection approach can be used in combination
with any classifier or regression model, not restricted to the
logistic ridge regression and KNN demonstrated here, to
predict the response of cancer patients using gene expression
data. In particular, the ablation study shows that DA increases the
prediction power by ~24% (21%) from LogitDA-DA (KNNDA-
DA). Following standard practice, we have chosen the K value of
KNNDA that yielded the largest average AUC from 5-fold CV.
To see the impact of the selection of K, we computed the test AUC

of KNNDA with various values of K in Supplementary Table S6
(p. 17, Supplementary File). The result shows that excluding the
smallest value of K (3), within the neighborhood of the optimized
K (say, K ± 3), the yielded test AUC of KNNDA deviates from the
reported AUC only within 0.05, except for sorafenib (−0.08, 0),
paclitaxel (−0.06, 0.04), and docetaxel (0, 0.09). This may be due
to the large s.e. of KNNDA for these drugs, 0.03, 0.07, and 0.04 in
the test AUC from 10 repeats (Table 4).

LogitDA (KNNDA) performed very well on prediction for
five (four) out of the ten targeted therapies and chemotherapies
(AUC >0.81), i.e., erlotinib (two sets), cetuximab, gemcitabine,
and docetaxel. Thus, these predictors may efficiently uncover
novel biomarkers and pathways, although large test sets are
warranted. In addition to the high prediction AUC for the
aforementioned drugs, our approach also has the advantage of
using much fewer (50–650) genes than the baseline logistic ridge
regression and MOLI, which used more than 5,100 or
12,000 genes.

Notably, using the novel adjusted cutoff of prediction
probability, LogitDA achieved a prediction accuracy of
0.70 or higher for seven of the ten drugs. In particular, the
prediction accuracy of LogitDA increases to 0.76 from 0.56
(using the default cutoff of 0.5), using the adjusted cutoff of 0.09,
as Proposition 2 suggests. Moreover, its prediction accuracy
increased to 0.80 if we focused on 20 EGFR and KRAS wild-type
patients with NSCLC, whereas there is no currently effective
predictive marker of drug response for these patients. Thus,
LogitDA may be useful for stratifying such NSCLC patients for
erlotinib in clinical practice. Although the test AUCs for
chemotherapies such as paclitaxel and cisplatin were only
0.68 and 0.62, respectively, their prediction accuracy achieved
0.88 and 0.88 for paclitaxel (PDX) and cisplatin (66 patients in
TCGA), using the adjusted cutoffs for the prediction
probability.

As LogitDA and KNNDA performed well in prediction
responses to erlotinib and cetuximab, we used the fitted genes of
the predictors to uncover several important metabolic pathways for
these drugs, in addition to DNA repair pathways. The
aforementioned pathways play essential roles in tumor
malignancy and response to anti-cancer therapies.

It is interesting to point out that LogitDA performed particularly
well for certain targeted therapies. LogitDA used 370 cell lines for
training and achieved test AUCs of 0.94 and 1.00 for erlotinib
(clinical trial and PDX). In contrast, deep learning-based methods,
e.g., MOLI aggregated related samples (of drugs targeting the same
EGFR pathway) to a larger training set (>3,000 cell lines) and used
multi omics data to train the classifier, increased the test AUC from
0.63 to 0.72 for erlotinib (PDX). These differences may be because
our approach prioritizes important features, limiting the number of
parameters in the logistic ridge regression to at most 1,000 genes to
fit. Nevertheless, MOLI (gene expression) performed very well in the
prediction of chemotherapies, e.g., with a prediction AUC of 0.75 for
cisplatin (TCGA), which outperformed LogitDA (using 130 genes)
and KNNDA (using 190 genes).

This study employed GED, which has been shown to be the most
predictive data type among omics data (Iorio et al., 2016), to predict
the drug response of cancer patients; integrating GED and other
omics data types to predict the drug response is a natural extension.

TABLE 6 Ablation study of the proposed predictors with DA versuswithout DA.

Experimental setting Averaged prediction AUC (s.e.)a

LogitDA 0.79 (0.14)

LogitDA-DA 0.55 (0.11)

KNNDA 0.78 (0.14)

KNNDA-DA 0.57 (0.14)

aThe averaged prediction AUC and its s.e. were computed over those of the ten drugs

studied.
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We postulate that chemotherapies usually target broad biological
mechanisms, so predictors for these therapies may require more
genes to train to predict well. This suggests a future research
direction in which biological domain knowledge (Ma et al., 2021)
is incorporated to integrate samples screened with several
therapeutics targeting the same tumorigenesis mechanism to
improve the performance of our approach. This research
direction is similar to a recent development in which adversarial
inductive transfer learning (Pan and Yang, 2010) is applied to drug
response prediction (AITL, Sharifi-Noghabi et al., 2020). AITL
applied adversarial domain adaptation and multi-task learning to
tackle discrepancies in the input and output spaces of drug response
prediction. Moreover, combining the proposed feature selection
method with deep learning-based methods may prove powerful
for drug response, as the former has been shown to improve the
prediction power of linear and nonlinear predictors for drug
response. Finally, applying the concept of few-shot learning (Ma
et al., 2021), namely, applying DA to only partial test samples and
keeping the remaining procedures the same, may reveal the
minimum number of test labels required for adequate
performance of our predictors.
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