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Abstract

Nonlinear correlation exists in many types of biomedical data. Several types of pairwise

gene expression in humans and other organisms show nonlinear correlation across time,

e.g., genes involved in human T helper (Th17) cells differentiation, which motivated this

study. The proposed procedure, called Kernelized correlation (Kc), first transforms nonlinear

data on the plane via a function (kernel, usually nonlinear) to a high-dimensional (Hilbert)

space. Next, we plug the transformed data into a classical correlation coefficient, e.g., Pear-

son’s correlation coefficient (r), to yield a nonlinear correlation measure. The algorithm to

compute Kc is developed and the R code is provided online. In three simulated nonlinear

cases, when noise in data is moderate, Kc with the RBF kernel (Kc-RBF) outperforms Pear-

son’s r and the well-known distance correlation (dCor). However, when noise in data is low,

Pearson’s r and dCor perform slightly better than (equivalently to) Kc-RBF in Case 1 and 3

(in Case 2); Kendall’s tau performs worse than the aforementioned measures in all cases. In

Application 1 to discover genes involved in the early Th17 cell differentiation, Kc is shown to

detect the nonlinear correlations of four genes with IL17A (a known marker gene), while

dCor detects nonlinear correlations of two pairs, and DESeq fails in all these pairs. Next, Kc

outperforms Pearson’s and dCor, in estimating the nonlinear correlation of negatively corre-

lated gene pairs in yeast cell cycle regulation. In conclusion, Kc is a simple and competent

procedure to measure pairwise nonlinear correlations.

Introduction

Introduced in the 1990s, a microarray slide can simultaneously detect the expression of thou-

sands of genes from a sample (e.g., from a tissue) under investigation, and cDNA microarray

technology has become widely used following the seminal paper [1]. There are two types of

experiments, namely static and temporal, in studies using microarrays [2]. In the former

experiments, microarrays capture only a single moment of gene expression, whereas, in a
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temporal experiment, the arrays are collected over a time course which allows the dynamic

behavior studied. Because the regulation of gene expression is a dynamic process, it is impor-

tant to identify changes in gene expression, as well as identify correlated genes and correlated

mRNA and protein over time [2–4]. Thus, temporal experiments are commonly carried out in

biological sciences [2], and there is extensive statistical literature on time course data analysis

[5].

Exploring nonlinearity in biomedical data is gaining popularity in biomedical research

methodologies [6]. Several types of pairwise gene expression in humans and other organisms

show a nonlinear correlation across time, e.g., expression of paired genes involved in the early

human T helper (Th17) cell differentiation, show nonlinear correlation across time (Fig 4 of

[7]; Fig 7 of [8]), a phenomenon which motivated this study. Th17 cells have been demon-

strated to play an important role in auto-immune disease and inflammation in humans. More-

over, time-course expression of genes involved in the yeast and human cell cycle are also

nonlinear (see Fig 1A for details; [9, 10]). However, classical correlation coefficients such as

the Pearson’s correlation coefficient (Pearson’s r) and the Spearman’s rank correlation mea-

sure only the linear relationship between two variables (e.g., genes in this study). Fig 7 in [8]

led us to hypothesize other novel Th17-specific genes can be identified by having the top-

ranked absolute nonlinear correlations (across time) with IL17A. Similarly, novel cell cycle

genes may be inferred through the top-ranked nonlinear correlations with a known marker

gene, e.g., HST3 in Fig 1A. This motivated us to develop a measure for the nonlinear correla-

tion between two variables.

Székely and colleagues proposed distance correlation (dCor) as a measure of dependence

and test for independence between two random vectors [11]. Dcor can be easily implemented

in arbitrary dimensions and is widely cited. However, dCor is based on distance covariance,

thus it ranges between 0 and 1, i.e., it can not be negative. Chen and colleagues [12] introduced

a nonparametric test to detect nonlinear correlations of time-course gene expression data

(GED). The maximal local correlation metric was shown to detect the nonlinear association of

five time-point GED between rd mice and age-matched wild-type controls, while other corre-

lation methods such as Pearson correlation could not. Later on, an empirical copula-based sta-

tistic (CoS) was developed to assess the strength of and test for independence between two

random variables [13].

Here, we propose a procedure to measure the nonlinear correlation between two variables

across time, using time-course microarray and RNA-seq gene expression data. To the best of

our knowledge, this nonlinear measure is the first one that can quantify a negative correlation

(a complementary pattern) of two variables by a negative value, e.g., HST3-RAD51 in Fig 1A.

This procedure first transforms nonlinear data on the plane (say, x in R2) via a function (called

a kernel, usually nonlinear) to a high-dimensional (Hilbert) space (say, ~x, [14, 15]). A chosen

kernel implicitly defines a transformation that conducts a “nonlinear transformation” of the

original observation x to ~x. Next, we plug the transformed data ~x into a classical correlation

coefficient, e.g., Pearson’s r. Because this is a nonlinear transformation, the correlation com-

puted of ~x will be the nonlinear correlation of the original observation x; more details can be

found in the Materials and Methods section. This nonlinear correlation coefficient, called ker-

nelized correlation (denoted by Kc), can capture the nonlinearity across time between two vari-

ables or nonlinear relationships of any two pairwise variables in general. As indicated in [13],

nonlinear correlations are prevalent in many applications, but not many have been developed.

If any approach is developed, there will be many applications in data exploration, variable

selection, and others. Thus, Kc can also be applied to data exploration and variable selection.

For example, of the human genome, genes with the top-ranked absolute Kc values with IL17A,

a known marker gene in early Th17 cell differentiation, may be of interest to biologists.
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Kc is applicable to detect the correlation of any two genes over time within a single biologi-

cal group, such as the pairwise correlations of ~800 cell cycle genes in yeast [9]. Furthermore,

Kc can also detect the correlation of one gene’s expression over time between two groups. For

example, pairwise correlation of each gene’s expression in the mouse genome, profiled from

age-matched wild type controls and rd mice with rod degeneration at five postnatal time points

(6, 10, 14, 17, and 21 days of age) [11]. Although examples of short time-course experiments

are demonstrated for Kc, as Kc plugs transformed data into any correlation coefficient, it can

be applied to long series of data in the same way as any classical correlation coefficient.

As an important application, the proposed Kc has been demonstrated to uncover known

and novel genes involved in the early differentiation of Th17 cells, by revealing genes having a

nonlinear correlation with a known marker gene such as IL17A, whose expression is com-

monly used to assess the Th17 polarization efficiency ([8, 16, 17]). These uncovered genes are

likely to be involved with the early Th17 cell differentiation. Thus, Kc is a simple but efficient

way to identify genes associated with early Th17 cell differentiation. Aijo and colleagues gener-

ated RNA-seq data to measure gene expression during early human T helper 17 (Th17) cell dif-

ferentiation and T-cell activation (Th0) [8]. They let RNA-seq (count data) of a gene assume a

negative binomial distribution with the mean following a Gaussian process at the ith time

point of the jth replicate. Further, they employed an MCMC method to identify differential

expression dynamics between Th17 and Th0; some selected identified differentially expressed

genes were verified by qRT-PCR. The method was called DyNB, which extended maSigPro-

GLM [18]. maSigPro-GLM is a package, that takes temporal dimension and correlation of

RNA-seq time series into account, to detect differential expression of time-course RNA-seq

data with or without replicates.

Furthermore, we applied Kc to reveal the nonlinear correlation between pairs of cell cycle

genes in yeast [9]. Proper regulation of the cell cycle is crucial to the growth and development

of all organisms, and understanding this regulation is central to the study of many diseases. As

shown in Fig 1A, the gene pair RAD51-HST3 in yeast has a complementary pattern which sug-

gests that their correlation is negative. The nonlinear correlation of RAD51-HST3 is also sup-

ported by the PARE score -18.6, which is mainly based on the area enclosed by the two curves

(Section 2.3, [19]). Although Pearson’s r for RAD51- HST3 is -0.50, it is not significant

Fig 1. A. Original time-course expression of the gene pair RAD51-HST3, where the red cross (green circle) denotes expression levels of RAD51 (HST3). B. Kernelized

(using polynomial kernel of degree 2) expression of the gene pair RAD51-HST3.

https://doi.org/10.1371/journal.pone.0270270.g001
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(P = 0.203); see S2 Dataset for details). Thus, it does not reflect the negative nonlinear correla-

tion between RAD51 and HST3, as Pearson’s r only measures linear association between the

two genes (variables).

Although we demonstrate Kc using time-course gene expression data, it can be applied to

any two pairwise variables in general and other types of multi-dimensional data, e.g., proteo-

mics and metabolomics data. In the Materials and Methods section, sources of data for appli-

cations are stated, the kernelized correlation is introduced and the algorithm provided.

Furthermore, a code of Kc to compute [n(n-1)]/2 pairwise correlations in a set of data consist-

ing of n variables, where n could be 20,000 genes in a microarray, can be downloaded at http://

staff.stat.sinica.edu.tw/gshieh/KC/Kc.html. In the Result section, Kc is applied to measure non-

linear relationships between two experimental units (genes in the case of the motivating appli-

cations), using the time-course expression of paired genes. First, we compare Kc to Pearson’s

correlation coefficient via a simulation study. Next, we show that Kc reveals known and poten-

tial genes involved in the differentiation of Th17 cells in Application 1. As biological verifica-

tions are available in [8], we compare Kc to dCor [11], in addition to DyNB [8] and a time

point-wise analysis DESeq [20]. Furthermore, Pearson’s correlation, dCor, and Kc are applied

to measure nonlinear relationships of gene pairs involved in the cell cycle of yeast [9] in Appli-

cation 2, and their performances are compared. We close with some discussions and future

directions.

Materials and methods

Data

In the Application section, we used publicly available data. Specifically, the time-course expres-

sion levels (RNA-seq; in normalized read counts) of eight genes involved in the differentiation

of human Th17 cells, profiled in Th0 and Th17 cells were downloaded from [8]. Moreover,

time-course microarray gene expression of six gene pairs was downloaded from [9]. Both data-

sets are available in the S1 and S2 Datasets, respectively.

Transforming nonlinear data to a high-dimensional space via a kernel

Kernelization is known to help reveal nonlinear structures of data [15], provided that there is

sufficient data. Here, we propose mapping the original nonlinear data in Euclidean space R2

(e.g., the data in Fig 1) to a high-dimensional Hilbert space, then computing a linear correla-

tion, e.g., Pearson’s r, based on the kernelized data to result in the nonlinear correlation.

Suppose that X and Y are two random variables, and x1,. . .,xT (y1,. . .,yT) are T observations

of X(Y). Let x! ¼ x1; . . . ; xTð Þ
0
and y! ¼ y1; . . . ; yTð Þ

0
denote two T×1 vectors. For example, T is

the total number of time points in experiments, and T = 5 for immune genes [8]. Note that this

kernelization is not limited to time-course data, it can be applied to any pairwise variables. In

the following, we introduce the polynomial and Gaussian (or Radial Basis Function (RBF))

kernels, which are commonly used to transform the data into the high-dimensional Hilbert

space.

Definition. A polynomial kernel of degree d (� 2) is defined as kðx!; y!Þ ¼ ð1þ < x!; y! >Þd,

where the inner product between x! and y! is defined as< x!; y!> ¼
XT

i¼1
xi � yi.

Definition. A Gaussian (RBF) kernel is defined as kðx!; y!Þ ¼ expð� gk x! � y! k2
Þ where

the parameter γ (> 0) is known as the inverse kernel width and the norm of x! is defined as

k x! k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1
þ x2

2
þ � � � þ x2

T

p
.
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The following steps are executed to transform a given data set to a nonlinear high-dimen-

sional space and compute the proposed kernelized correlation.

(i) Standardize the original gene expression data across time points of each variable (gene

here).

(ii) Choose a kernel, e.g., Gaussian kernel.

(iii) Let u!i
0 ¼ ðxi; yiÞ and calculate the kernel matrix K, where

K ¼

kðu1

*
; u1

*
Þ kðu1

*
; u2

*
Þ . . . . . . kðu1

*
; uT
*
Þ

kðu2

*
; u1

*
Þ kðu2

*
; u2

*
Þ . . . . . . kðu2

*
; uT
*
Þ

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

kðuT
*
; u1

*
Þ kðuT

*
; u2

*
Þ . . . . . . kðuT

*
; uT
*
Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

and K is a T×T symmetric and strictly positive definite matrix.

(iv) Center the above kernel matrix K by the following formula and denote the modified

matrix by Kc, where

Kc ¼ IT �
1T10T

T

� �

K IT �
1T10T

T

� �

;

IT is a T×T dentity matrix and 1T is a vector of one’s in RT.

(v) Calculate Kcx
!

and Kcy
!

to result in the kernelized data corresponding to the original data.

Next, we plug the associated elements of Kcx
!

and Kcy
!

into a correlation coefficient such

as Pearson’s r, to produce the proposed kernelized correlation coefficient.

Note that Kc is nonlinear, thus the standardization of variables in Step 1 is essential, where

standardization means the z-score of the original variable. Moreover, the values of kernelized

data depend on the choice of the kernel and its associated parameter which is trained by cross-

validation. Fig 1B is the kernelized gene expression of (RAD51, HST3) using the polynomial

kernel of degree 2, which depicts the nonlinearity of the original data well. As an illustration,

we use gene expression of the three-time points, t = 2, 3, and 4 of the gene pair RAD51-HST3
in [9], to compute the corresponding K and Kc in the following. We also obtain Kc = -1 for

RAD51-HST3; the expression of RAD51 and HST3 is depicted in Fig 1A.

K ¼

1 0 0

0 1 0:988

0 0:988 1

0

B
@

1

C
A Kc ¼

0:886 � 0:443 � 0:443

� 0:443 0:227 0:216

� 0:443 0:216 0:227

0

B
@

1

C
A

Statistical analyses

One sample t-test was used to test for the significance of all estimated correlation coefficients.

All statistical tests were one-sided except where otherwise specified, and all analyses were con-

ducted in the R software [21].
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Results

Simulation study

Spellman and colleagues built a comprehensive catalog of yeast genes involved in the cell cycle

[9], i.e., their mRNA levels vary periodically within the cell cycle. Specifically, the profiled mRNA

levels of yeast genes using two-color cDNA microarray, using synchronized cell cultures, e.g.,

synchronized by α factor arrest. In the alpha set of microarray data, they profiled gene expression

for two cell cycles at 18-time points, where time t = 0,7,14,. . .119 min. They identified the 800

cell cycle regulation genes by their correlations with genes known to be regulated by the cell

cycle. As indicated in [9], these genes were regulated in a periodic way coincident with the cell

cycle, for the adequate functioning of mechanisms that maintain order during cell division. In

Fig 3(A) of [9], genes peaked at the G1 phase of the cell cycle and regulated similarly to the G1

cyclin CLN2 were clustered. In particular, the similar-patterned RNR1-SWE1 gene pair was stud-

ied by a time-lagged correlation and machine learning approach (Fig 1(a) of [19]).

We mimicked yeast cell-cycle genes in the alpha data set [9], e.g., RNR1-SWE1, to generate the

expression of two genes across time. We generated pairwise gene expression in three cases repre-

senting different nonlinear relationships and compared the performances of six correlation mea-

sures. The six correlation measures studied are Kc with the polynomial kernel of degree 2 and

degree 3 (denoted by Kc-poly2 and Kc-poly3, respectively) and the RBF kernel (Kc-RBF), Pear-

son’s correlation (r), Kendall’s correlation (τ) and distance correlation (dCor). Case 1 is com-

posed of the time-course expression of two genes that follow the same sine function except with a

π/6 time difference. In Case 2, the expression of two genes follows the same cosine function, but

the magnitudes of gene 1 (G1) are twice of gene 2 (G2)’s. Identical time-course expression of two

genes is generated in Case 3, except that G2 has a location shift of 3 in the y-axis above G1.

Specifically, time-course expression of paired genes with 18-time points was generated with

100 replications in each of the three cases. We mimicked yeast cell cycle genes in the alpha data

set [9] to generate gene expression 7 minutes apart, i.e., Ti = 0, 7, . . ., 119, using Eqs (1)–(6) in

the following section. The error terms ε1i and ε2i were independent and generated from i.i.d. N

(0,1), i = 1, . . ., 18, and c = 0.5, 1, and 2 which provided small, medium to large random errors

to mimic noises in real data. When a = 0 in Eqs (1)–(6), G1 and G2 are independent, by which

we estimated the false positive rate (FPR) of the five correlation measures using 100 repeat sim-

ulations. The FPR is interpreted as the Type I error. When a = 1 in Eqs (1)–(6), we simulated

100 replicates to estimate the true positive rates (TPRs; statistical power) and summarize the

mean (the estimate for nonlinear correlation) and p-value for each correlation measure at the

bottom of the result tables. We set the significance level at α = 0.05, and the significance for

each measure in each replicate is determined after a Bonferroni correction (< 5�10-4). The fol-

lowing Case 1 shows that G2 potentially regulates G1, so G1 expresses behind G2.

Case 1.

G1i ¼ 2a sinð
Tip

42
Þ � 0:5þ c� ε1i; ð1Þ

G2i ¼ 2a sinð
ðTi � 7Þp

42
Þ � 0:5þ c� ε2i; ð2Þ

The true time-course expression of G1 and G2 (when c = 0.0) and a set of simulated data (when

c = 0.5, 1.0, and 2.0) are plotted in Fig 2, in which the two dotted sine curves have a time differ-

ence of π/6.

As shown in Table 1, when a = 0 and noise in data increases from low, medium to high (c =
0.5, 1.0 to 2.0), the FPR of Kc-poly2 and Kc-poly3 are high (24-28% and 30-52%, respectively),
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while the FPR of Pearson’s, Kendall’s and distance correlation remain 0.0. When a = 1 and

noise is low (c = 0.5), Kc-RBF, Pearson’s correlation, and dCor have high TPRs (99%, 92%, and

92%, respectively), while Kendall’s correlation has only 4%; Kc-RBF has a moderate FPR

(18%). The advantage of Kc-RBF is clearer when noise is increased to moderate (c = 1.0), its

Fig 2. The simulated expression of gene G1 and G2 generated by Eqs (1) and (2) with various values of c, where_(▲) denotes the values of G1i (G2i) and i = 0, 1,

. . ., 17.

https://doi.org/10.1371/journal.pone.0270270.g002
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TPR is much higher (63%) than that of Pearson’s correlation (21%), Kendall’s correlation (0%)

and dCor (33%), while its FPR (1%) is equivalent to that of Pearson’s and Kendall’s correlation

and dCor (0%). Further, Fig 2 shows that when c = 1.0, G1 and G2 are nonlinearly correlated,

Kc-RBF (0.71) is significant, but dCor, Pearson’s and Kendall’s correlation are not (their p-val-

ues are not< 5�10-4; Table 1).

The results show that Kc-RBF outperforms Pearson’s and Kendall’s correlation on the esti-

mation of the nonlinear correlation in data generated with low to medium noise in Case 1.

When noise is low, Pearson’s correlation and dCor performs slightly better than Kc-RBF, Kc-

RBF outperforms Pearson’s correlation and dCor when noise is moderate. However, Kc with

polynomial kernels have high FPRs which may result in overestimation, and Kendall’s correla-

tion coefficients are small and insignificant, thus these measures are not suitable for estimation

of nonlinear correlation.

Case 2.

G1i ¼ 2a cosð
ðTi � 21Þp

42
Þ þ c� ε1i; ð3Þ

G2i ¼ a cosð
ðTi � 21Þp

42
Þ þ c� ε2i: ð4Þ

Table 1. Comparison of the six correlation measures on the nonlinear correlation between genes G1 and G2, gen-

erated by Eqs (1) and (2) with 100 replicates.

c = 0.0 0.5 1.0 2.0

a = 0 False positive rates

Kc-poly2a -- 0.28 0.24 0.27

Kc-poly3 -- 0.30 0.45 0.52

Kc-RBF (γ = 0.5) -- 0.18 0.01 0.00

Pearson’s corr.b -- 0.00 0.00 0.00

Kendall’s corr. -- 0.00 0.00 0.00

Distance corr. -- 0.00 0.00 0.00

a = 1 True Positive rates

Kc-poly2 -- 1.00 0.88 0.47

Kc-poly3 -- 1.00 0.96 0.69

Kc-RBF (γ = 0.5) -- 0.99 0.63 0.08

Pearson’s corr. -- 0.92 0.21 0.02

Kendall’s corr. -- 0.04 0.00 0.00

Distance corr. -- 0.92 0.33 0.04

Correlation measurement (p-values)

Kc-poly2 1.00 (< �a) 0.99 (< �) 0.88 (< �) 0.47 (0.02)

Kc-poly3 1.00 (< �) 1.00 (< �) 0.96 (< �) 0.67 (0.001)

Kc-RBF (γ = 0.5) 0.97 (< �) 0.92 (< �) 0.71 (< �) 0.32 (0.10)

Pearson’s corr. 0.86 (< �) 0.78 (< �) 0.61 (0.004) 0.32 (0.10)

Kendall’s corr. 0.65 (0.002) 0.57 (0.007) 0.43 (0.04) 0.20 (0.21)

Distance corr. 0.84 (< �) 0.79 (< �) 0.65 (0.002) 0.47 (0.02)

aKc-poly2, Kc-poly3, and Kc-RBF denote Kc with the polynomial kernel of degree 2 and 3, and the RBF kernel,

respectively.
bThe notation corr. and � denote correlation coefficient and 5�10-4, respectively.

https://doi.org/10.1371/journal.pone.0270270.t001
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The true time course expression of G1 and G2 (generated by Eqs (3) and (4) with c = 0.0), and a

set of simulated data (generated by Eqs (3) and (4) with c = 0.5, 1.0 and 2.0) are plotted in Fig

3, in which the dotted curves of the expression generated by c = 0.0 are two identical cosine

curves except that the range of G1 is twice that of G2.

Fig 3. The simulated expression of gene G1 and G2 generated by Eqs (3) and (4) with various values of c, where_(▲) denotes the values of G1i (G2i) and i = 0, 1,

. . ., 17.

https://doi.org/10.1371/journal.pone.0270270.g003

PLOS ONE A nonlinear correlation measure

PLOS ONE | https://doi.org/10.1371/journal.pone.0270270 June 21, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0270270.g003
https://doi.org/10.1371/journal.pone.0270270


The results are similar to those of Case 1 and are summarized in Table 2. Taking both PR

and FPR into account, when noise is low, Kc-RBF performs similarly to Pearson’s correlation

and dCor on the estimation of the nonlinear correlation in Case 2. But Kc-RBF has better per-

formance than Pearson’s correlation and dCor when noise is moderate. Similar to Case 1, Kc

with polynomial kernels and Kendall’s correlation coefficient are not suitable estimators, due

to high FPRs and small and insignificant coefficients, respectively.

Case 3.

G1i ¼ 2a cosð
ðTi � 21Þp

42
Þ þ c� ε1i; ð5Þ

G2i ¼ 2a cosð
ðTi � 21Þp

42
Þ þ 3þ c� ε2i: ð6Þ

The true time course expression of gene G1 and G2 (generated by Eqs (5) and (6) with c = 0)

and a set of simulated data (generated by Eqs (5) and (6) with c = 0.5, 1.0 and 2.0, respectively)

are plotted in Fig 4. When c = 0, these two dotted expression curves differed only by a location

shift of 3 in the y-axis, and as c assumed larger values, two less identical curves were generated.

The results are similar to those of Case 1 and 2 and are summarized in Table 3.

When the noise in data is low, Pearson’s correlation and dCor perform slightly better than

Kc-RBF (with smaller FPRs). However, when noise is moderate, Kc-RBF outperforms Pearson’s

Table 2. Comparison of the six correlation measures on the nonlinear correlation between G1 and G2, generated

by Eqs (3) and (4) with 100 replicates.

c = 0.0 0.5 1.0 2.0

a = 0 False positive rates

Kc-poly2a -- 0.30 0.29 0.34

Kc-poly3 -- 0.34 0.49 0.57

Kc-RBF (γ = 0.5) -- 0.14 0.06 0.01

Pearson’s corr.b -- 0.00 0.00 0.00

Kendall’s corr. -- 0.00 0.00 0.00

Distance corr. -- 0.00 0.00 0.00

a = 1 True Positive rates

Kc-poly2 -- 1.00 0.77 0.36

Kc-poly3 -- 1.00 0.95 0.61

Kc-RBF (γ = 0.5) -- 0.98 0.30 0.00

Pearson’s corr. -- 0.82 0.08 0.00

Kendall’s corr. -- 0.07 0.00 0.00

Distance corr. -- 0.85 0.08 0.00

Correlation measurement (p-values)

Kc-poly2 1.00 (< � a) 0.99 (< �) 0.81 (< �) 0.38 (0.06)

Kc-poly3 1.00 (< �) 1.00 (< �) 0.88 (< �) 0.49 (0.02)

Kc-RBF (γ = 0.5) 1.00 (< �) 0.92 (< �) 0.55 (0.01) 0.18 (0.24)

Pearson’s corr. 1.00 (< �) 0.77 (< �) 0.47 (0.03) 0.20 (0.21)

Kendall’s corr. 1.00 (< �) 0.57 (0.01) 0.33 (0.09) 0.13 (0.30)

Distance corr. 1.00 (< �) 0.79 (< �) 0.55 (0.01) 0.41 (0.05)

aKc-poly2, Kc-poly3, and Kc-RBF denote Kc with the polynomial kernel of degree 2 and 3, and the RBF kernel,

respectively.
bThe notation corr. and � denote correlation coefficient and 5�10-4, respectively.

https://doi.org/10.1371/journal.pone.0270270.t002
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correlation and dCor on the estimation of the nonlinear correlation in Case 3. And similar to

Case 1 and 2, Kc with polynomial kernels and Kendall’s correlation are not suitable estimators,

due to high FPRs and small and insignificant coefficients, respectively, when noise is low to

moderate in data.

Fig 4. The simulated expression of gene G1 and G2 generated by Eqs (5) and (6) with various values of c, where_(▲) denotes the values of G1i (G2i) and i = 0, 1,

. . ., 17.

https://doi.org/10.1371/journal.pone.0270270.g004
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Applications

In this section, we first applied the proposed kernelization correlation procedure to identify

genes whose expression patterns across time were similar or complementary to IL17A, which

played an important role in the early differentiation of Th17 cells in humans. Through this

procedure, the genes significantly correlated to IL17A were inferred to be involved in the early

differentiation of Th17 cells. This is a simple but efficient way to identify genes associated with

the differentiation of Th17 cells. Next, we applied Kc to estimate the nonlinear correlation of

cell cycle genes in yeast.

Application 1. The expression of IL17A is commonly used to assess the Th17 polarization

efficiency [16]. Previously, transcriptional factors Rorc and Stat3 were revealed to be the key

regulators at the early stage of Th17 differentiation in murine and humans [22]. Aijo and col-

leagues profiled gene expression in the early phase of Th17 differentiation to understand the

process of differentiation and how the differentiation signal propagates through various path-

ways. The knowledge they gained is very useful for uncovering markers of differentiation of

Th17 cell populations.

In this application, we applied Kc to the RNA-seq data of the early phase of Th17 cell differ-

entiation and T-cell activation (Th0) cells [8]. There are three replicates for each gene profiled

from Th0 and Th17 cells at 0, 12, 24, 48 and 72 h, in which the differences in differentiation

efficiency among the replicates have been adjusted; see Section 3.2 [8].

Table 3. Comparison of the six correlation measures on the nonlinear correlation between genes G1 and G2, gen-

erated by Eqs (5) and (6) with 100 replicates.

c = 0.0 0.5 1.0 2.0

a = 0 False positive rates

Kc-poly2a -- 0.20 0.19 0.23

Kc-poly3 -- 0.26 0.40 0.49

Kc-RBF (γ = 0.5) -- 0.11 0.07 0.01

Pearson’s corr.b -- 0.00 0.00 0.00

Kendall’s corr. -- 0.00 0.00 0.00

Distance corr. -- 0.00 0.00 0.00

a = 1 True Positive rates

Kc-poly2 -- 1.00 0.94 0.42

Kc-poly3 -- 1.00 0.99 0.75

Kc-RBF (γ = 0.5) -- 1.00 0.76 0.10

Pearson’s corr. -- 1.00 0.39 0.02

Kendall’s corr. -- 0.49 0.02 0.00

Distance corr. -- 1.00 0.54 0.05

Correlation measurement (p-values)

Kc-poly2 1.00 (< � a) 1.00 (< �) 0.92 (< �) 0.48 (0.02)

Kc-poly3 1.00 (< �) 1.00 (< �) 0.98 (< �) 0.72 (< �)

Kc-RBF (γ = 0.5) 1.00 (< �) 0.97 (< �) 0.78 (< �) 0.37 (0.07)

Pearson’s corr. 1.00 (< �) 0.90 (< �) 0.68 (0.001) 0.35 (0.08)

Kendall’s corr. 1.00 (< �) 0.70 (0.001) 0.49 (0.02) 0.23 (0.18)

Distance corr. 1.00 (< �) 0.90 (< �) 0.71 (< �) 0.47 (0.02)

aKc-poly2, Kc-poly3, and Kc-RBF denote Kc with the polynomial kernel of degree 2 and 3, and the RBF kernel,

respectively.
bThe notation corr. and � denote correlation coefficient and 5�10-4, respectively.

https://doi.org/10.1371/journal.pone.0270270.t003
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The time-course expression of IL17A and RORC (ISG20, RAB3, and TIAM1) in Fig 1 (Fig

7) of [8], respectively, show that IL17A has a positive correlation with RORC, ISG20, and

RAB3, but it has a negative correlation with TIAM1. These correlations are consistent with the

expression (in normalized read counts) of these genes in Th17 cells. Moreover, the CoS test

was applied (with 1,000 repeats) to test for the nonlinearity of the four IL17A gene pairs, which

were all significant with P equal to 0.014 and 0.000 (rounded to the third digit) for the latter

three pairs, respectively. This result justifies that the nonlinear correlations of these pairs exist.

We applied Kc-RBF (with the default γ value) to estimate the nonlinear correlation of simi-

lar-patterned (complementary-patterned) gene pairs, e.g., IL17A-ISG20 (IL17A-TIAM1) pro-

filed in Th17 cells [8]. Because the normalized data of these genes in replicate 1 differed much

from those of replicate 2 and 3, we set replicate 1 data aside and computed Kc using replicate 2

and 3 data. For genes whose expression of Th0 cells was highly similar to that of Th17 cells,

they were not involved in the differentiation of Th17 cells. Thus, to exclude genes irrelevant to

immune differentiation, we first computed Kc of MAP1B, RORC, KIF11, IGS20, RAB3 and

TIAM1 with themselves in Th17 cells and Th0 cells, e.g., correlation of the expression of

MAP1B in Th17 and the expression of MAP1B in Th0 cells. Since self-correlation is similar-

patterned, we used Kc-RBF (γ = 0.5), and obtained an averaged self-correlation of MAP1B
(KIF11) equal to 0.998 (0.996) with P< 0.001, using normalized read counts (via DESeq). This

result is consistent with the expression of MAP1B (KIF11) in Th0 cells being highly similar to

that in Th17 cells (S4 Fig, [8]). Consequently, MAP1B and KIF11 are likely to be false positives

(not involved in immune differentiation) and should be excluded.

Next, we applied Kc-RBF to compute the correlation of IL17A with each of TIAM1, ISG20,

RAB3 and RORC in Th17 cells. For similar-patterned gene pairs, the default value of γ (0.5) was

used. For negatively correlated gene pairs such as IL17A-TIAM1, we first used replicate 2 (repli-

cate 3) gene expression to train γ, then applied the trained Kc to estimate the nonlinear correla-

tion for replicate 3 (replicate 2) data and averaged the two values of Kc. The cross-validation

formula to train γ was CV ¼ arg
g

min 1

2

X2

i¼1

ðKciðgÞ � KcðgÞÞ
2
;where KcðgÞ ¼

1

2

X2

i¼1

KciðgÞ; and

the trained γ = 7.5 for IL17A-TIAM1. The averaged Kc value of IL17A-TIAM1, IL17A-ISG20,

IL17A-RAB3 and IL17A-RORC are -0.21, 0.83, 0.90 and 0.84, respectively and the correspond-

ing p-values using t-test are 0.002, 0.020, 0.006 and 0.017, which are all significant at α = 0.05.

These four genes have significant Kc with IL17A, thus these are classified as involved in immune

differentiation.

Comparison of Kc to DyNB, timepoint-wise analysis using DESeq and dCor. Aijo and col-

leagues showed that DyNB [8] was able to uncover the nonlinear correlation of IL17A with

ISG20, RAB3 and TIAM1, which DESeq [20] from timepoint-wise analysis failed to uncover;

mRNA expression of IL17A and RORC also exhibited similar patterns across time (Fig 1(B)

and 1(D) in [8]). Further, timepoint-wise analysis (DESeq) detected two false positives, KIF11
and MAP1B. We note that timepoint-wise analysis did not take into account correlations

between time points and the whole pattern of time-course gene expression. Therefore, both Kc

and DyNB could detect the aforementioned nonlinear temporal correlation of the above four

pairs, but not DESeq. We further compared the nonlinear correlation measure dCor to Kc.

DCor estimated the correlation of IL17A-IGS20 and IL17A-RORC correctly (at the level of

0.05), but failed to quantify IL17A-RAB3 and IL17A-TIAM1. As IL17A-TIAM1 exhibited a

complementary pattern (Fig 7(C) in [8]), their correlation should be negative; we refer to

Table 4 for details.

Application 2. In this application, we applied Pearson’s correlation, Kc and dCor [11] to

estimate the nonlinear correlations of six gene pairs, which were involved in the cell cycle of S.
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cerevisiae [9]. These pairs are RNR1-SWE1, RNR1-RAD51, SWE1-RAD51, HST3-RAD51,

HST3-RNR1, and HST3-SWE1, where the former three pairs have similar patterns, but the lat-

ter three exhibit complementary patterns. We first tested whether the nonlinear correlations

exist in these pairs by the CoS test [12]. The P value of CoS (with 1,000 repeats) for these pairs

was equal to 0.000, 0.000, 0.004, 0.000, 0.002, and 0.003, respectively, which demonstrated non-

linearity existed in these pairs. Next, we applied Kc-RBF (with the default γ = 0.5) to estimate

the nonlinear correlation of gene pairs with similar patterns, similar to Application 1. We

treated data of the two cell cycles in the experiments, namely time t = 1-9 and 10-18 (two bio-

logical repeats), as two replicates. The Pearson’s correlation, dCor and Kc computed by the rep-

licates for (RNR1-SWE1, RNR1-RAD51 and SWE1-RAD51) were (0.82, 0.92 and 0.72), (0.85,

0.91 and 0.78) and (0.91, 0.99 and 0.91), respectively. All of these were significant at the 0.10

level; see Table 5 for details. For gene pairs with anti-similar patterns, we used replicate 1 (rep-

licate 2) to train γ of the RBF kernel and applied the trained Kc to estimate the nonlinear corre-

lation for replicate 2 (replicate 1). The objective function to be optimized is as follows.

CV ¼ arg
g

min
1

2

X2

i¼1

ðKciðgÞ � KcðgÞÞ
2
;where KcðgÞ ¼

1

2

X2

i¼1

KciðgÞ;

and Kci is the value of Kc in biological repeat i.
As shown in the S1 Dataset in which γ was trained, the values of the objective function with

γ =1.0, 1.0, and 0.7 did not differ much from the associated global minimum of HST3-RAD51,

RNR1-HST3, and HST3-SWE1, respectively; the differences were< 8×10-5, thus we used Kc-

RBF with these trained γ values. The estimated correlation of RNR1-HST3, HST3-RAD51 and

HST3-SWE1 by Pearson’s correlation (r), dCor and Kc are summarized in the lower half of

Table 5. Pearson’s r, dCor, and Kc-RBF estimated for the pairs of similar and complementary patterned cell cycle genes in yeast.

mean (se) p-value Pearson’s r dCor Kc-RBFa

Similar patterned

RNR1-SWE1 0.82 (0.06) 0.048 0.85 (0.01) 0.003 0.91 (0.07)0.050

RNR1-RAD51 0.92 (0.04)0.024 0.91 (0.06) 0.014 0.99 (0.004) 0.003

SWE1-RAD51 0.72 (0.11) 0.094 0.78 (0.15) 0.043 0.91 (0.04) 0.031

Complementary patterned

HST3-RNR1 -0.55 (0.16) 0.129 0.72 (0.01) 0.003 -0.85 (0.01) 0.006

HST3-RAD51 -0.50 (0.23) 0.203 0.65 (0.06) 0.022 -0.87 (0.004) 0.002

HST3-SWE1 -0.49 (0.26) 0.224 0.67 (0.01) 0.003 -0.75 (0.11) 0.066

aThe default γ = 0.5 was used in the RBF kernel for the similar patterned pairs. The trained γ = 1.0 (γ = 0.7) was used in the RBF kernel for HST3-RNR1 and

HST3-RAD51 (HST3-SWE1).

https://doi.org/10.1371/journal.pone.0270270.t005

Table 4. DCor and Kc-RBF estimated for the four gene pairs of IL17A, which played an important role in the

early differentiation of Th17 cells in humans.

mean (se) p-value dCor Kc-RBFa

IL17A-TIAM1 0.65 (0.09) 0.032 -0.21 (0.001) 0.002

IL17A-ISG20 0.61 (0.10) 0.035 0.83 (0.04) 0.020

IL17A-RAB3 0.66 (0.24) 0.081 0.90 (0.01) 0.006

IL17A-RORC 0.68 (0.15) 0.048 0.84 (0.03) 0.017

aThe trained γ = 7.5 (γ = 0.5) was used in the RBF kernel for IL17A-TIAM1 (the remaining three pairs).

https://doi.org/10.1371/journal.pone.0270270.t004
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Table 5. Note that this training of the γ value is essential for complementary patterned

variables.

At the 0.10 significance level, Kc of HST3-RNR1, HST3-RAD51, and HST3-SWE1 were all

significant, but none of the Pearson’s correlation coefficients was significant, nor did dCor

result in negative signs of the complementary patterns correctly. In particular, both Pearson’s

correlation and dCor did not reflect the complementary pattern of HST3-RAD51 as shown in

Fig 1A.

A rule of thumb for kernel selection of Kc

The simulation study shows that when the noise of data is low to moderate, taking both TPR

and FPR into account (e.g., using the likelihood ratio for a positive test TPR/FPR), Kc-RBF is

better than Kc-poly2, and Kc-poly3 performs the worst. Furthermore, Application 1 and 2

show that Kc -RBF with a trained γ value (Kc-RBF with γ = 0.5) is able to detect negative (posi-

tive) correlations adequately, but Kc-poly2 fails to detect IL17A-TIAM1 (-0.0002 with

P = 0.500) and IL17A-RORC (-0.0002 with P = 0.500). Therefore, we suggest using Kc-RBF

(with γ = 0.5) for positively correlated variables, and Kc -RBF (with a trained γ value) for nega-

tively correlated variables.

Discussion

We have proposed the kernelized correlation Kc, which has been shown able to detect a non-

linear correlation of two variables (across time) as shown in the simulation study and two

applications. To the best of our knowledge, this nonlinear measure is the first to quantify nega-

tively correlated pairwise variables by a negative value, and it can also be applied to data explo-

ration, variable selection, and others. Nevertheless, it cannot be applied to measure

correlations of paired variables in static experiments, e.g., gene A in the control and experi-

mental groups. The advantages of Kc lie in that it is simple and distribution-free. This tool will

enable non-computational researchers to identify nonlinear correlations in biomedical data

which may have important applications, such as identifying genes involved in the differentia-

tion of human T helper cells.

For similar patterned pairwise variables, using the default γ value of the RBF kernel is suffi-

cient. For complementary patterned pairwise variables, a CV-trained value of γ is required

similar to other bandwidth-based methods; nevertheless, this training step is fairly simple

using the cross-validation formula, and the code is also provided at http://staff.stat.sinica.edu.

tw/gshieh/KC/Kc.html.

As demonstrated in the Result section, the proposed Kc was able to quantify nonlinear asso-

ciations in the simulated cases that had been designed with some degree of nonlinear correla-

tion, in contrast to Pearson’s and Kendall’s correlations, which did not detect significant

correlation when the data were nonlinear. In Application 1, Kc-RBF was shown to identify the

negative correlation of IL17A-TIAM1 and the remaining three gene pairs with positive correla-

tions, as well as the sophisticated DyNB [3], while DESeq failed in these pairs and dCor only

identified IL17A-ISG20 and IL17A-RORC correctly. In Application 2, Kc was shown to detect

negative nonlinear correlations of the three gene pairs involved in yeast cell cycle regulation,

while both Pearson’s correlation and dCor failed in all these pairs.

Our method is a general approach to detecting nonlinear correlations. The property of dis-

tribution-free makes Kc applicable to a wide variety of problems. Although we only applied it

to gene expression data in this study, this method can be applied to other types of omic data,

e.g., proteomics and metabolomics. Taken together, this nonlinear correlation approach is use-

ful for the estimation of the nonlinearity of biological associations. In future research, a natural
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extension would be to develop a multivariate version of Kc. The derivation of measures for

nonlinear correlation in functional data is another promising topic.

Supporting information

S1 File. Training the parameter gamma in the RBF kernel of Application 1 and 2.

(DOCX)

S2 File. The R code of kernelized correlation Kc.

(RMD)

S1 Dataset. Dataset of Application 1.

(ZIP)

S2 Dataset. Dataset of Application 2.

(CSV)

Acknowledgments

We are grateful to the academic editor and two anonymous reviewers for the constructive

comments. We thank Chen-Ming Chiou and Su-Yun Huang for their helpful discussions. We

are indebted to Jia-Hua Tsai, Yu-Ping Tseng, and Ce-Bo Yang for the computational work.

Author Contributions

Conceptualization: Grace S. Shieh.

Formal analysis: Suneel Babu Chatla.

Funding acquisition: Grace S. Shieh.

Investigation: Li-Shan Huang, Grace S. Shieh.

Methodology: Yogesh M. Tripathi, Yuan-Chin I. Chang.

Software: Li-Shan Huang.

Supervision: Li-Shan Huang, Grace S. Shieh.

Validation: Grace S. Shieh.

Writing – original draft: Yogesh M. Tripathi, Grace S. Shieh.

Writing – review & editing: Li-Shan Huang, Grace S. Shieh.

References

1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a

complementary DNA microarray. Science. 1995; 270(5235):467–70. https://doi.org/10.1126/science.

270.5235.467 PMID: 7569999

2. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW. Significance analysis of time course microarray

experiments. Proceedings of the National Academy of Sciences. 2005; 102(36):12837–42. https://doi.

org/10.1073/pnas.0504609102 PMID: 16141318

3. McKenzie AT, Katsyv I, Song W-M, Wang M, Zhang B. DGCA: a comprehensive R package for differ-

ential gene correlation analysis. BMC systems biology. 2016; 10(1):1–25. https://doi.org/10.1186/

s12918-016-0349-1 PMID: 27846853

4. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially

expressed mRNA and mRNA-protein correlations in a xenograft model system. Scientific reports. 2015;

5(1):1–9.

PLOS ONE A nonlinear correlation measure

PLOS ONE | https://doi.org/10.1371/journal.pone.0270270 June 21, 2022 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270270.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270270.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270270.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270270.s004
https://doi.org/10.1126/science.270.5235.467
https://doi.org/10.1126/science.270.5235.467
http://www.ncbi.nlm.nih.gov/pubmed/7569999
https://doi.org/10.1073/pnas.0504609102
https://doi.org/10.1073/pnas.0504609102
http://www.ncbi.nlm.nih.gov/pubmed/16141318
https://doi.org/10.1186/s12918-016-0349-1
https://doi.org/10.1186/s12918-016-0349-1
http://www.ncbi.nlm.nih.gov/pubmed/27846853
https://doi.org/10.1371/journal.pone.0270270


5. Diggle PJ, Heagerty P, Liang K-Y, Zeger S. Analysis of longitudinal data: Oxford university press;

2002.

6. Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A community effort to assess

and improve drug sensitivity prediction algorithms. Nature biotechnology. 2014; 32(12):1202–12.

https://doi.org/10.1038/nbt.2877 PMID: 24880487

7. Tuomela S, Salo V, Tripathi SK, Chen Z, Laurila K, Gupta B, et al. Identification of early gene expression

changes during human Th17 cell differentiation. Blood, The Journal of the American Society of Hema-

tology. 2012; 119(23):e151–e60. https://doi.org/10.1182/blood-2012-01-407528 PMID: 22544700
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