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Detection of Somatic Mutations in
Exome Sequencing of Tumor-only
Samples
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Published online: 21 November 2017 Due to lack of normal samples in clinical diagnosis and to reduce costs, detection of small-scale
mutations from tumor-only samples is required but remains relatively unexplored. We developed an
algorithm (GATKcan) augmenting GATK with two statistics and machine learning to detect mutations

in cancer. The averaged performance of GATKcan in ten experiments outperformed GATK in detecting
mutations of randomly sampled 231 from 241 TCGA endometrial tumors (EC). In external validations,
GATKcan outperformed GATK in TCGA breast cancer (BC), ovarian cancer (OC) and melanoma tumors,
in terms of Matthews correlation coefficient (MCC) and precision, where MCC takes both sensitivity and
specificity into account. Further, GATKcan reduced high fractions of false positives detected by GATK. In
mutation detection of somatic variants, classified commonly by VarScan 2 and MuTect from the called
variants in BC, OC and melanoma, ranked by adjusted MCC (adjusted precision) GATKcan was the top 1,
followed by MuTect, VarScan 2 and GATK. Importantly, GATKcan enables detection of mutations when
alternate alleles exist in normal samples. These results suggest that GATKcan trained by a canceris

able to detect mutations in future patients with the same type of cancer and is likely applicable to other
cancers with similar mutations.

Advances in both next generation sequencing (NGS) technologies and computational tools have transformed
biological and medical research over the past few years. In particular, calling somatic mutations from DNA
sequencing data of tumor samples has become essential for characterizing cancer genomes and clinical genome
typing"?. Exome-sequencing (exome-seq) has enabled rapid detection of mutations that altered protein functions
. across hundreds of patients. However, identifying small-scale mutations consisting of somatic single nucleotide
© variations (SNVs) and insertions and deletions (indels) of exome-seq data is challenging, because sequencing
coverage is non-uniform across target regions and among samples, the genomes of primary tumors are genetically
heterogeneous, and so on’. Several algorithms have been developed to tackle these challenges, and they can be
classified into two groups: (1) calling variants in tumor and normal samples separately, then identifying
tumor-specific variants by a simple subtraction method, e.g., GATK* and (2) analyzing tumor-normal samples
simultaneously by heuristic methods or statistical models, e.g., Strelka®, VarScan 2* and MuTect®. The algorithms
in the second category can detect small-scale mutations with enhanced accuracy. In particular, MuTect focuses
on detecting low-allele-frequency somatic mutations, which are often missed by existing methods, in exome-seq
data requiring only a few supporting reads. VarScan 2 outperformed MuTect and other tools for variants with
allele frequency >0.35, while MuTect outperformed the other five algorithms for identifying mutations with allele
frequency < 0.35, as shown by simulated data’. The algorithms in the second category can be applied only when
tumor-normal paired samples are available. However, most of the exome-seq data from clinical diagnosis and
formalin-fixed, paraffin-embedded samples are tumor-only. As artifacts of called variants generated either from
next-generation sequencing machines (accuracy limited to one error in 100 or 1000 bases) or from variant-calling
algorithms remain inevitable, and validation of variants is costly (US$5-10 per variant in Taiwan), developing an
algorithm to accurately detect somatic mutations of exome-seq from tumor-only samples is of interest. Moreover,
detecting mutations with high accuracy may provide clues to identify driver genes in cancer®', which may reveal
the mechanism of carcinogenesis.
GATK is good at discovering all potential variants across diverse sequencing technologies and exper-
imental designs. GATK trained by known polymorphic sites performs well in capturing true single nucleotide
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OC (Exome-seq,

EC (Exome-seq) ‘WUGSC) OC (Exome-seq, BI)
No. of samples 248 79 136
Sequencing technology ;l(l)tl)ronina GAIlx or Hiseq. RIEF;;; OGAHX or Ilumina GAIIx
Coverage per sample at least 20x at least 20x at least 20x
Read architecture 100 bp paired end 100bp paired end 76 bp paired end
Target area whole exome whole exome whole exome
Data set source TCGA Research TCGA Research TCGA Research

Network Network Network
Aligner BWA BWA Picard

BC (Exome-seq) Cutaneous Melanoma (Exome-seq)
No. of samples 503 342
Sequencing technology Tllumina Hiseq. 2000 Ilumina HiSeq. 2000
Coverage per sample ~20x ~82x
Read architecture 100 bp paired end 76 bp paired end
Target area whole exome whole exome
Data set source TCGA Research TCGA Research

Network Network
Aligner BWA BWA/Picard

Table 1. Exome-seq datasets summary.

polymorphisms (SNPs), but may produce false positives in detecting somatic mutations in exome-seq of tumor-only
samples (a pilot study of endometrial tumors in Taiwan; unpublished data). Here, we developed an algorithm based
on GATK*!! and partial reported mutations of endometrial cancer (EC) in The Cancer Genome Atlas (TCGA)?,
and named it GATK for cancer (GATKcan). Specifically, we incorporated two statistics to filter false mutations
and detect true mutations from called variants, in addition to four statistics in hard filtering of GATK. Next, we
trained the thresholds of the six statistics using partial randomly sampled TCGA endometrial tumors and machine
learning. To evaluate the stability of GATKcan’s performance, we repeated the training procedure ten times and
compared the averaged performance of GATKcan in detecting mutations of the remaining 231 TCGA endometrial
tumors to that of GATK. We further compare GATKcan to GATK, VarScan 2 and MuTect in predicting somatic
variants, classified commonly by VarScan 2 and MuTect, from the called variants. Moreover, the four algorithms
were compared using exome-seq data of 215 ovarian tumors, 503 breast cancer tumors and 342 samples in mela-
noma of TCGA?!*, Detecting small-scale mutations when alternative alleles in normal samples exist has been a
bottleneck in the area. Because GATKcan does not require normal samples, this problem is circumvented using
our approach.

Results

For this study, we incorporated exome-seq of EC tumors (~95% non-Asian) from TCGA?, which was part of 373
endometrial carcinomas consisting of genomic, transcriptomic and proteomic profiling?. This integrated charac-
terization provided key molecular insights into tumor classification. We first applied HaplotypeCaller to yield
variant calls, that HaplotypeCaller compared with a reference genome (hg19) to sift variants. Specifically, a total
of 64,295 variants (base quality > 10 and MQ > 20) were called by GATK from exome-seq of 241 samples (focus-
ing on ~800 cancer genes (~1GB per sample)); seven of the 248 files were damaged after downloading. The list of
cancer genes studied is shown in Supplementary Table S1. Of these called variants, 64,183 were classified as point
mutations and 112 were indels by GATK. Calling variants of each sample took GATK ~2 h using a multi-core
cluster (2 Xeon 2.67 GHz CPUs and 24GB RAM). The details of the datasets are shown in Table 1.

GATK is very good at uncovering potential variants and filtered machine artifacts of DNA sequencing data.
HaplotypeCaller of GATK is very useful for calling single nucleotide polymorphisms (SNPs) and indels of DNA
sequencing data from diseased-only samples and paired samples. After applying HaplotypeCaller to call variants,
we excluded known SNPs in the HapMap3 and the 1000 Genomes Project'® to result in potential somatic variants
in tumors. Note that we did not use dbSNP, because it contained some verified somatic mutations which were
of interest to us. We then inputted these variants to hard filtering of GATK, using the following five statistics to
identify somatic mutations; HaplotypeScore was excluded because it had been taken into account during the
calling process.

o QualByDepth (QD): this is the quality of the variant divided by the unfiltered depth of non-reference samples.

o FisherStrand (FS): Phred-scaled P value of Fisher’s exact test to detect strand bias (the variant being seen on
only the forward or only the reverse strand) in the reads.

o RMSMappingQuality (MQ): this is the root mean square of the mapping quality of the reads across all
samples.

o MappingQualityRankSumTest (MQRankSum): this is the z-approximation from the Mann-Whitney rank
sum test for mapping qualities on reads with reference (REF) bases versus those with alternate (ALT) alleles.
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Mann-Whitney Training
Repeat | o dNM FS MQ | MQRankSum QD test (P value) TPR | cFPR
A. The thresholds of GATKcan for detection of single nucleotide variations
1 0.5 | 991.1 46.1 50.0 —7.85 0.11 0.010 98.6 10.7
2 0.5 | 988.1 43.6 49.5 —7.90 0.12 0.010 98.1 10.7
3 0.5 | 990.5 45.8 39.2 —10.10 0.05 0.010 99.3 14.3
4 0.3 985.6 49.3 48.2 —10.14 0.08 0.010 98.6 12.2
5 0.3 984.3 51.8 48.0 —10.37 0.09 0.009 98.9 11.6
6 04 | 9815 50.9 50.0 —9.59 0.09 0.010 98.7 10.8
7 04 | 989.3 45.7 39.9 —8.97 0.05 0.082 99.3 14.0
8 0.3 982.3 55.2 50.0 —8.36 0.18 0.010 99.6 11.9
9 0.5 | 9879 47.0 49.9 —10.22 0.11 0.010 98.2 10.5
10 0.5 | 989.1 45.6 39.9 —9.58 0.04 0.010 99.2 14.3
B. The thresholds of GATKcan for detection of indels
Repeat | o | dNM | FS | QD N{:“st“(l}'\"’:]‘;';;’y — Tmm‘:iPR
1 0.5 | 7534 86.3 0.3 0.055 100.0 0.0
2 0.5 | 405.0 133.3 0.4 0.090 100.0 0.0
3 0.3 581.6 91.6 0.3 0.055 100.0 0.0
4 0.5 | 3952 136.6 0.8 0.064 100.0 0.0
5 0.5 | 658.8 102.7 0.4 0.013 100.0 0.0
6 0.6 | 464.0 121.0 0.2 0.037 100.0 0.0
7 0.3 397.6 95.1 0.2 0.027 100.0 0.0
8 0.3 619.2 99.1 0.4 0.046 100.0 0.0
9 0.5 | 566.9 135.7 0.5 0.100 100.0 0.0
10 0.5 | 633.6 139.9 0.8 0.003 100.0 0.0

Table 2. (A) The six thresholds of GATKcan trained by randomly sampled 10 TCGA EC tumors and
performances of GATKcan in the ten training experiments. (B) The four thresholds of GATKcan trained by
~10% of 539 reported indels and 112 artifacts (from 241 TCGA EC tumors), and performances of GATKcan in
the ten training experiments.

o ReadPosRankSum Test (ReadPosRankSum): the z-approximation from the Mann-Whitney rank sum test'®
for the distance from the end of the read for reads with the alternate allele. If the alternate allele is only seen
near the ends of reads, this is indicative of error.

Hard filtering classifies a called variant with QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < —12.5 or
ReadPosRankSum < —8.0 (QD < 2.0, FS > 200.0 and ReadPosRankSum < —20.0) to be an artifact, and otherwise
to be a SNP (an indel). To see whether all five statistics were useful for identifying somatic mutations, we con-
ducted a pilot study by applying hard filtering with the aforementioned default thresholds*!! to 241 EC tumors
from TCGA. The artifacts filtered by ReadPosRankSum were a subset of those filtered by FS, so we only incorpo-
rated QD, FS, MQ and MQRankSum into our method.

The proposed method—GATK for cancer (GATKcan). Because validation of somatic mutation is costly,
we introduced two more statistics to filter false mutations and identify true mutations from called variants, in
addition to the above four statistics of hard filtering. Further, we were able to assess Level 1 exome-seq data of 241
endometrial tumors from TCGA, thus we trained the thresholds of the six statistics using known mutations of
partial TCGA EC, reported mutations in 19 TCGA cancer types and applied GATKcan to detect somatic muta-
tions of the remaining EC tumors. Further, we also applied GATKcan to detect mutations in similar carcinoma
(ovarian cancer and breast cancer) and a tumor of a different carcinoma (melanoma; squamous cell).

For a called variant, if the differences in the number of reads from 5’ and 3’ deviate from those of its corre-
sponding REF a lot, then it is likely to be a false mutation. We assume that mutation sites for some tumors of a
cancer are the same. For each called variant, we incorporated the Mann-Whitney statistic to test whether its dif-
ferences in the number of reads from both strains have the same distribution as those of the corresponding REF
across tumors; ideally the latter have median zero. If the hypothesis is rejected, then we predict this variant as a
false mutation. Moreover, somatic mutation rate is rare (~2.8 x 10~ per base'?), thus the probability of an adjacent
mutation existing within the neighborhood of a true mutation is very small. The intermutation distance (IMD) is
defined as the distance from one mutation to the next one'®. The IMDs calculated from cancer genes of 248 EC, 510
BC, 316 OC and 346 melanoma tumors are huge, and their median are ~17.5, 25.3, 2.7 and 3.4 Mb, respectively.
Therefore, for a given variant if the genomic distance from its nearest reported mutation is small but >0 (=0), then
we can classify it as a false (true) mutation. We also incorporated this distance (called dNM) and determined its
threshold by a machine learning approach. Therefore, in addition to QD, FS, MQ and MQRankSum (QD and FS)
for detecting point mutations (indels), we incorporated the following two statistics into our algorithm GATKcan.
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\ | GATK | | GATKcan
A.
TPRS (s.e.) I ko 99.0 (1.0)
Training
cFPR (s.e.) — | - Fooeee 11.9(1.3)
TPR (s.e.) 88.2(0.6) | - ko 96.1 (1.9)
Test cFPR (s.e.) 65.2(0.1) | ----- Foooen 12.2(1.6)
precision (s.e.) 12.6 (0.4) | ----- Fmoee 46.0 (3.2)
MCC (s.e.) 14.5(0.5) | ----- Foemn 61.8 (2.0)
B.
TPRS (s.e.) — | o 98.8 (0.5)
Training
cFPR (s.e.) — | - Fooeen 12.1(1.6)
TPR (s.e.) 88.1(1.3) | - ko 96.1 (2.1)
Test cFPR (s.e.) 64.9(0.4) | ----- Foooes 12.3(1.6)
precision (s.e.) 12.6 (0.9) | ----- Hoo- 45.6 (2.9)
MCC (s.e.) 14.6 (1.0) | ----- Fooe 61.4(1.8)

Table 3. The averaged performances of GATK and GATKcan in detecting mutations from (A) ~61,507 variants

of randomly sampled 231 endometrial tumors in ten repeats, and (B) ~52,291 variants of randomly sampled 197
endometrial tumors in ten repeats, checked against the 184,824 reported mutations in EC of TCGA. $The unit of
all performance measures and their s.e’s are %. *Denotes the P value of the two sample t-test <1077,

1. Mann-Whitney test, and
2. dNM: a genomic distance of a called variant from its nearest true mutation.

Note that when a dNM equaled to zero, namely this variant coincided with a reported mutation in 19 TCGA
cancer types, we predicted it as a true mutation and did not filter it further. Note that ANM and these trained
thresholds enabled GATKcan to identify true mutations, in addition to filter false mutations.

Because this study was originally motivated by an analysis of ten EC tumors in Taiwan (results not shown),
when we gained access to exome-seq data of TCGA endometrial tumors, it was reasonable to train the thresholds
of the statistics in GATKcan using these EC tumors, instead of using the fixed cutoffs of hard filtering. To compare
with training using Taiwanese ECs and to reduce training time, we used (~2788 called variants of) ten randomly
selected TCGA EC tumors for training. Specifically, we trained the thresholds of the six statistics of GATKcan
using the reported mutations and false mutations (false positives) of the called variants in randomly sampled
2, 3,2 and 3 EC tumors of stage I-IV, respectively (namely adopting a stratified sampling scheme). The 64,295
called variants did not contain any reported indel, thus we used ~9% of 539 reported indels (from all reported
mutations) and 112 false mutations (from the called variants) to train the four cutoffs of GATKcan for detection
of indels; see Methods for further details of the training procedure. To assess stability of GATKcan’s performances,
we repeated the training procedure ten times and obtained ten sets of trained thresholds in Table 2.

For each cancer under study, we focused on a few hundreds of cancer genes, whose DNAs consisted of refer-
ence (non-mutated) sites and called variants. Excluding the reported SNPs and germline mutations in EXAC", we
defined a true mutation as a true positive (TP) and a false mutation in called variants as a true negative (TN). The
true positive rate (TPR, namely sensitivity) is defined as the ratio of the identified TPs to the total number of TPs
(reported by TCGA). Similarly, precision is the ratio of the identified TPs to all predicted mutations, false positive
rate (FPR, namely 1 — specificity) is the ratio of the predicted mutations to all REF sites of cancer genes in all tum-
ors under test, and conditional FPR (cFPR) is the ratio of predicted mutations to all TNs in the called variants.
Note that cFPR is of interest in clinical diagnoses, in addition to TPR. Because there is only ~10% true mutations
in the EC tumors, we further adopted Matthews correlation coefficient (MCC). MCC is a balanced measure
which takes into account true and false positives (negatives), and

TPs x TNs — FPs x FNs

MCC = ,
/(TPs + FPs)(TPs + FNs)(TNs + FPs)(TNs + ENs)

where FPs and FNs denote false positives and false negatives, respectively. Next, we compared GATKcan to hard
filtering (denoted by GATK henceforth) in detection of mutations of the remaining 231 tumors in ten repeats. The
averaged TPR (cFPR) of GATK and GATKcan (trained by ten tumors) for detecting mutations of the 61,507
called variants are ~88.2% (~65.1%) and ~96.1% (~12.2%), respectively. Further, the averaged MCC (precision)
of GATK and GATKcan are ~15% (~13%) and ~62% (46%), respectively. Let Mb denote megabase. The FPR of
GATK and GATKcan (with the first set of cutoffs) was ~313 Mb ' and ~189 Mb , respectively which were com-
puted over randomly selected 10% of ~6.04 x 10° reference sites in cancer genes of 241 EC tumors. The detailed
results of the ten repeats are shown in Supplementary Table S2.

To investigate the performance of GATKcan on more training samples, we further trained GATKcan using
the called variants in ~18% (44 randomly selected) of 241 TCGA EC tumors. GATKcan trained by 44 tumors per-
formed similarly to GATKcan trained by 10 tumors, which may be due to the six statistics captures the patterns of
TPs and TNs well and training by ~2788 variants (of ten samples) been sufficient; the results are shown in Table 3
and the cutoffs in Table S2.
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Figure 1. The averaged performance of GATK and GATKcan listed by allelic fractions when applied to exome-
seq of 231 randomly sampled endometrial tumors in the ten repeats, where Fig. 1(a) and (b) illustrate TPR and
conditional FPR of the two algorithms, respectively.

TPR'S (s.e.) 98.8(0.0) | 98.6(0.6) | ----- L— 94.3(0.1) | 99.6(0.0)
cFPR' (s.e.) 81.0(0.4) 57(04) | ----- Foen 37.9(0.5) 60.5 (0.7)
231 samples
precision’ (s.e.) 54.7 (0.3) 94.4(0.3) | ----- Femeen 71.1(0.2) 61.9(0.2)
MCC' (s.e.) 29.4(0.4) 92.9(0.5) | ----- Fooooe 59.5(0.4) 48.9 (0.5)
TPR (s.e.) 98.8 (0.3) 98.5(1.0) | ----- Foeen 94.1 (1.0) 99.6 (0.1)
CFPR! (s.e.) 80.2(23) | 61(09) | - Eoo 36.8(5.2) | 59.6(4.5)
197 samples
precision’ (s.e.) 55.0(0.7) 94.2 (0.6) 71.9(2.1) 62.4(0.9)
MCC (s.e.) 30.3(1.5) | 92.5(0.3) 60.3(3.5) | 49.5(3.1)

Table 4. The averaged performances of GATK, GATKcan (trained by ten & 44 EC tumors), VarScan 2

and MuTect in detecting mutations from ~2,102 (~1,741) somatic variants of 231 (197) randomly sampled
endometrial tumors in ten repeats, checked against the TCGA reported mutations. "Adjusted performance
measures. SThe unit of all performance measures and their s.e’s are %. *The P value of the two sample t-test
between GATKcan and MuTect < 107%.

Although GATK can identify small-scale mutations reasonably well for tumor-only samples, it is known to be
limited to mutations with median to high allelic fractions**°, where allelic fraction was defined as the ratio of the
variant reads to the total reads at a given site. Thus, it is of interest to compare GATK and GATKcan in identifying
mutations of EC by allelic fractions. This may provide insights into which cases both methods can be applied
adequately.

Figure 1 demonstrates that averaged over 10 repeats, GATKcan identifies true mutations well with allelic frac-
tions > 0.2, while GATK requires allelic fractions > 0.3 to perform well. The TPR of GATKcan is close to those of
GATK for variants with allelic fractions in (0.2, 1.0], but TPR of GATKcan is 22% and 70% higher than that of
GATK for variants with allelic fraction in (0, 0.1] and (0.1, 0.2], respectively (Fig. 1a). For all variants with allelic
factions in (0, 1.0], GATKcan is more powerful to detect artifacts, because of 6% to 79% lower cFPR than GATK
(Fig. 1b).

Further, we compared GATK and GATKcan to VarScan 2 and MuTect; the latter two outperformed the
remaining five tools in detecting small-scale mutations with allele frequency >0.35 and <0.35, respectively in
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TPR® 85.1 70.6 (0.3) | 70.7(0.2) — —

cFPR 551 | 32(02) | 3.4(02) — —
precision 53 443 (1.2) | 43.4(1.6) — —
MCC 11.2 53.9(0.7) 53.4(1.0) — —

TPR'® 99.3 | 99.5(0.3) | 99.5(0.3) 99.3 98.6
cFPRT 68.5 3.2(1.0) 4.7 (0.3) 27.0 10.9
precision” | 40.7 93.8(1.8) | 90.9(0.5) 63.5 81.0
MCC' 35.0 94.9 (1.3) 92.7(0.2) 67.5 83.9

Table 5. The performance of GATK and GATKcan in detecting mutations of 50,799 variants from exome-seq
of 503 TCGA BC tumors. Next, the four algorithms identified mutations from 458 somatic variants, on which
TPR', cFPRY, precision” and MCC' were computed. $The unit of all performance measures and their s.e’s are %.

TPR® 85.2 89.1(1.1) | 89.7(0.7) — —
cFPR 704 | 5.0(02) | 5.1(0.3) — —
precision 2.9 30.5(1.1) | 30.1(1.4) — —

MCC 50 | 50.4(1.2) | 50.2(1.4) — —
TPR'S 982 | 98.2(0.0) | 98.2(0.0) | 100.0 100.0
cFPRY 869 | 4.1(1.2) | 3.9(0.8) 345 238
precision' | 342 | 91.7(21) | 920(14) | 625 65.9
Mcct 179 | 925(1.7) | 927(1.1) | 640 70.9

Table 6. The averaged performance of GATK and GATKcan in detecting mutations of 27,167 called variants
(of 432 genes) from exome-seq of 215 TCGA OC tumors, checked against the reported mutations by TCGA.
Next, the four algorithms identified mutations from 178 somatic variants, on which TPRY, cFPR', precision' and
MCCT were computed. $The unit of all performance measures and their s.e’s are %.

Wang et al. (2013)7, where 10 pairs of simulated whole exome-seq samples with coverage of 100x were generated.
In general, detection of low allele frequency mutations requires sufficient coverage, while exome-seq of ECs from
TCGA had coverage of 20x only; therefore, it is of interest to compare the four algorithms.

In each of the 10 repeats, on average GATK and GATKcan detected mutations from 61,507 (~52,291) variants
of 231 (197) tumors. Of these variants, VarScan 2 and MuTect (both default settings) classified ~2,102 (~1,741)
as common somatic variants. Of these somatic variants, the high confidence mutations classified by VarScan 2
(MuTect with high-confidence mode) were treated as somatic mutations predicted by VarScan 2 (MuTect). We
checked the predictions against the mutations reported by TCGA research network, and computed adjusted TPR
and adjusted cFPR, which was the number of predicted true mutations (the predicted mutations) over the total
true mutations (the total false mutations) of the somatic variants, in addition to adjusted precision (MCC). Of
the ten experiments, the averaged adjusted TPR of GATK, GATKcan (both using tumor-only samples), VarScan
2 and MuTect were 98.8%, 98.6%, 99.6% and 94.3%, respectively, while their averaged adjusted cFPR were 81.0%,
5.7%, 60.5% and 37.9%, respectively. Ranked by adjusted MCC and adjusted precision, GATKcan was the top 1,
followed by MuTect, VarScan 2 and GATK; some detailed results are shown in Table 4. The performances of the
four algorithms on ~1,741 somatic variants (shown in Table 4) were similar to those on ~2,102 somatic variants;
all results of the ten repeats are shown in Supplementary Table S2. On average, it took GATK and GATKcan
(VarScan 2) ~6.7 h (25.8 h with 71% of jobs run in high memory cluster (2 Xeon 2.5 GHz CPUs and 384GB RAM)
and 29% jobs run in a multi-core cluster) to detect mutations in 231 (paired) samples in each repeat.

External Validations on Three TCGA cancers. Because (1) the tumorigenesis of most cancer types are
similar; (2) cancer genes bearing mutations in EC are similar to other cancer types>'>!4, e.g., TP53, PIK3CA and
KRAS; and (3) some mutational signatures of cancers are similar'®, we wondered how well GATKcan trained by
partial TCGA EC tumors can be applied to other cancer types. Thus, we applied GATKcan, GATK, VanScan 2 and
MuTect to TCGA Breast Cancer, Ovarian Cancer and Cutaneous Melanoma datasets, as three validation sets in
this section. The lists of cancer genes studied are shown in Supplementary Table S1.

Application to TCGA breast cancer data. As the first external validation, we applied GATK, GATKcan,
VarScan 2 and MuTect to 507 breast cancer (BC) tumors with 429 blood derived normal and 74 normal tissues'3;
of the 507 samples, four.bam files were damaged after downloading. The whole exome-seq of 503 tumor-normal
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GATKcan (s.e.)
trained by
GATK | 10 tumors | 44 tumors | Mutect | VarScan2

TPR® 89.9 98.7(0.4) | 98.9(0.3) — —
cFPR 64.1 | 4.4(03) | 4.6(0.2) — —
precision 27.6 85.9(0.9) | 85.3(0.6) — —
MCC 229 89.8(0.7) | 89.5(0.5) — —

TPR'S 985 | 99.2(0.3) | 99.2(0.3) | 99.4 99.3
cFPR 766 | 88(1.2) | 87(L1) 57.0 47.9
precision’ | 80.3 | 97.3(03) | 97.3(03) | 847 86.8
MCCH 373 | 924(0.3) | 92.5(0.2) | 584 653

Table 7. The averaged performance of GATK and GATKcan in detecting mutations of 33,053 variants (of
498 genes) from exome-seq of 342 TCGA melanoma tumors. Next, the four algorithms identified mutations
from 1,784 somatic variants, on which TPR, cFPRY, precision” and MCC" were computed. $The unit of all
performance measures and their s.e’s are %.

pairs (~11 GB/sample) was analyzed. For GATKcan, we used the ten sets of thresholds trained by 10 and 44 ran-
domly sampled TCGA EC tumors, respectively. Specifically, a total of 50,799 variants (base quality > 10 and MQ
> 20) were called by GATK from exome-seq, focusing on 488 cancer genes queried from COSMIC, of the 503 BC
tumors.

The TPR (cFPR) of GATK and GATKcan (trained by ten and 44 tumors) for detecting mutations of the called
variants are ~85% (~55%), ~71% (~3%) and ~71% (~3%), respectively, while the FPR of GATK and GATKcan
(trained by ten tumors) are ~184 Mb ' and ~94 Mb !, respectively in detecting randomly selected 10% of ~8.49 x 10°
reference sites in the cancer genes of 503 tumors. Of the 50,799 variants, VarScan 2 and MuTect classified only 458 as
common somatic variants. The adjusted TPR (adjusted cFPR) of GATK, GATKcan (trained by ten and 44 tumors),
VarScan 2 and MuTect on the 458 somatic variants are ~99.3% (~68.5%), ~99.5% (~3.2%), ~99.5% (~4.7%), ~99.3%
(~27%) and ~98.6% (~10.9%), respectively. Ranked by adjusted MCC and adjusted precision, GATKcan was the top
1, followed by MuTect, VarScan 2 and GATK; some detailed results are in Table 5. We note that the adjusted precision
(MCC) of GATKcan (trained by 44 tumors) is slightly lower than those of GATKcan (trained by 10 tumors), which
may be because the mutations in BC have different characteristics from those in EC. The results of GATKcan using
ten sets of cutoffs are shown in Supplementary Table S3.

Application to TCGA ovarian cancer data. We further applied GATK, GATKcan and VarScan 2 to 215
ovarian cancer (OC) tumors after excluding 21 non-downloadable and damaged files'>. The whole exome-seq of
215 tumor-normal pairs, whose size was ~14 GB (WUGSC) and ~27 GB (broad Institute) per sample, were ana-
lyzed. Specifically, a total of 27,167 variants (base quality > 10 and MQ > 20) were called by GATK from
exome-seq, focusing on 432 cancer genes queried from COSMIC, of 215 OC tumors. Of the called variants,
19,182 and 7,984 (~29.4%) were point mutations and indels, respectively.

Checked against the 14,904 reported mutations of OC by TCGA, the TPR (cFPR) of GATK and GATKcan
(trained by ten and 44 tumors) for detecting mutations from 27,167 called variants were about 85.2% (70.3%),
89.1% (1.1%) and 89.7% (0.7%), respectively, while the FPR of GATK and GATKcan were ~126 Mb'and ~85 Mb
in detecting randomly selected 10% of ~2.97 x 10® reference sites of the cancer genes in 215 tumors, respectively.
Of the called variants, VarScan 2 and MuTect classified only 178 common somatic variants, for which the adjusted
TPR (adjusted cFPR) of GATK, GATKcan (trained by ten and 44 tumors), VarScan 2 and MuTect are 98.2%
(86.9%), 98.2% (4.1%), 98.2% (3.9%), 100.0% (34.5%) and 100.0% (23.8%), respectively. Ranked by adjusted MCC
and adjusted precision, GATKcan was the top 1, followed by MuTect, VarScan 2 and GATK; some detailed results
are shown in Table 6. The results of GATKcan using ten sets of cutoffs are shown in Supplementary Table S4.

Application to TCGA cutaneous melanoma data. Finally, to see whether GATKcan can be applied to a
cancer with different histology from EC (adenocarcinoma), we applied GATK, GATKcan and VarScan 2 to cutane-
ous melanoma (squamous cancer). In total, whole exome-seq of 342 tumors with 340 blood derived normal and 2
normal tissues'* were analyzed (~9 GB/sample). For GATKcan, we used the 10 sets of thresholds trained by ten and
44 randomly sampled EC tumors of TCGA, respectively. Focusing on 498 cancer genes queried from COSMIC,
GATK called a total of 33,053 variants (base quality > 10 and MQ > 20) from exome-seq of these tumor samples.

The TPR (cFPR) of GATK and GATKcan (trained by ten and 44 tumors) for detecting mutations of the called
variants are about 89.9% (64.1%), 98.7% (4.4%) and 98.9% (4.6%), respectively. The FPR of GATK and GATKcan
(trained by ten tumors) are ~101 Mb " and ~64 Mb ', respectively in detecting randomly selected 10% of
~4.69 x 10° reference sites in the cancer genes in 342 tumors. Of the 33,053 variants, VarScan 2 and MuTect
classified 1,784 variants as common somatic variants, for which the adjusted TPR (adjusted cFPR) of GATK,
GATKcan (trained by ten and 44 tumors), VarScan 2 and MuTect are about 98.5% (76.6%), 99.2% (8.8%), 99.2%
(8.7%), 99.4% (57.0%) and 99.3% (47.9%), respectively. Ranked by adjusted MCC and adjusted precision,
GATKcan was the top 1, followed by MuTect, VarScan 2 and GATK; some detailed results are shown in Table 7.
The results of GATKcan using ten sets of cutoffs are shown in Supplementary Table S5.
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Discussion

Detection of mutations in exome-seq of tumor-only samples is useful for clinical diagnoses, as they can serve
as a base for classifying cancer patients via molecular signatures and suggesting precision medicines. In addi-
tion to four statistics of GATK, GATKcan incorporated Mann-Whitney statistic and dNM to detect mutations,
and we trained the cutoffs of GATKcan using reported mutations of ten randomly sampled TCGA endometrial
tumors and reported mutations of 19 TCGA cancer types in each of ten experiments. The averaged performance
of GATKcan was better than GATK in detecting mutations of the remaining 231 endometrial tumors. Further,
GATKcan with such thresholds outperformed GATK in detecting mutations of 27,167 to 50,799 called variants
in TCGA BC, OC and melanoma tumors in terms of MCC and precision, where MCC takes both sensitivity and
specificity into account. Importantly, GATKcan reduced high fractions (about 23%, 52%, 65% and 60%) of false
positives detected by GATK in the four cancers, whereas validation is costly (US$5-10 per variant in Taiwan).

Ranked by adjusted MCC and adjusted precision, GATKcan was top 1, followed by MuTect, VarScan 2
and GATK in mutation detection of somatic variants classified commonly by VarScan 2 and MuTect from the
called variants of BC, OC and melanoma. Note that GATKcan does not require normal samples, thus it reduces
sequencing costs to half. Further, it enables detection of mutations when alternate alleles exist in normal samples,
which remains a bottleneck in the area.

To investigate the performance of GATKcan on more training samples, we further trained GATKcan using
called variants in 44 random samples of 241 TCGA EC in each of ten experiments. GATKcan trained by 44 tum-
ors performed similarly to GATKcan trained by ten tumors, which may be because GATKcan captures patterns
of true positives and negatives well and ~2788 called variants in ten tumors are sufficient for training. Tables 5-7
show that GATKcan trained by EC yields better prediction results in melanoma and OC than in BC, which sug-
gests that the mutations of EC are more similar to those in melanoma and OC than to those in BC. Thus, if we
know from cancer biology that cancer A is similar to a cancer to be detected, then training GATKcan by cancer
A will be effective. These results suggest that GATKcan trained by a cancer is able to detect mutations in future
patients with the same type of cancer and is likely applicable to other cancers whose mutations are similar. In
addition to sequence-based clinical diagnoses, GATKcan is expected to have a large number of applications such
as in the Precision Medicine Initiative for Oncology recently launched in the US.

In the future, the reported mutations in all types of cancers?' of ICGC will be integrated with the mutations
in TCGA as true mutations to check against. Then a pipeline based on GATKcan (for called variants in known
mutation sites) and Variant Effect Predictor? (for variants in sites with unknown mutation status®®) will be built
to detect somatic mutations of exome-seq of tumor-only samples. Finally, GATKcan may be improved further
in identifying true mutations of tumors, e.g., by training GATKcan with partial reported mutations of all other
cancers in TCGA and adding other statistics to capture characteristics of true mutations. We leave these topics
for future research.

Methods

Training the cutoffs of the statistics in GATKcan. To train the six thresholds of GATKcan for detection
of point mutations, the reported mutations of 241 endometrial tumors of TCGA were regarded as true mutations,
and we randomly sampled 10 tumors (stratified by stage; 2, 3, 2 and 3 for stage I-IV), from which the called vari-
ants were inputted to the optimization algorithm particle swarm optimization®*. Ten randomly sampled tumors
were used for training, because CPU time was proportional to the number of variants inputted. The six cutoffs
were optimized in the sense that they maximized the fitness function a(1-cFPR) + (1 — «)TPR, with « varying
from 0 (0.1) to 1 using 10-fold. For a given c, the training set consisted of the true mutations and artifacts from
90% of the ten endometrial tumors, and the called variants of the remaining tumor made up the test set of the
training (also called cross-validation). This step was iterated through each tumor being set as the test set, then we
selected an « value to obtain the six thresholds for GATKcan. In each training, we used 4,000 seed points and 500
generations to run PSO, and partitioned the ranges of dNM, FS, MQ, MQRankSum, QD and P value of Mann-
Whitney test into 1000, 60, 50, 100, 20 and 6 segments, respectively. In the training of dNM, we also used the
reported mutations of 19 cancer types of TCGA; some details are in Supplementary Note 1. Similarly, to train the
four cutoffs of GATKcan for detection of indels, we randomly sampled 50 of all 539 reported indels and 10 arti-
facts from the 64,295 called variants, respectively, because the called variants contained no true indels; the
remaining 489 reported indels and 102 false indels constituted the test set. Then, the rest training procedure fol-
lowed that of the six cutoffs of GATKcan. PSO is a well-known optimization method; for details of the method
and computer complexity, please see Section 2.3.5 of Chuang et al. (2008)*. On average, each training procedure
of GATKcan took ~15h (~5h) for the six (four) cutofts, and was conducted by a high memory computing cluster
(256GB RAM, limited to 11 cores and each with Xeon CPU 2.5 GHz).
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