This code is a cluster version (to be converted to PC version in the near future)

Please unzip GASA.zip first
· “Application 1” is for inferring networks using simulated data. If you need to use real gene expression data to predict networks, please refer to the section on “Application 2”.

· If you need to change the number of nodes used by GASA in the cluster, please refer to the notes on changing the parameter “Number of SA nodes”.
GASA Application 1 (Simulated data)
Under the directory GASA\application1\New\GASA_Code\, for the four python .py files with file names starting with “GeneNet”, please change lines 848~849 to the user name and password of the account you are going to run GASA.
If you are not able to use the code, you might need to change the automatic login procedure written in lines 379 to 401 in these four python codes.
There are the following files and directory in the directory GASA\application1\new:
· GASA_Code: source and binary codes for running GASA.

· Two MATLAB codes (Generate_Simulated_Data.m與Generate_Simulated_GASA.m) and workspace (Data_Simulated.mat)

· Generate_Simulated_Data.m: For generating simulated gene expression and smoothing
· Generate_Simulated_GASA.m: For generating scripts and codes for GASA jobs.
How to run:
1. First load Data_Simulated.mat to MATLAB workspace

Run Generate_Simulated_GASA(f, g, repeats), where “f” and “g” are the noise-free expression data for factos and genes, and “repeats” indicates the number of repeats for the experiment.
2. Example:

Generate_Simulated_GASA(f, g, 2);

SNR = 4
3. Job directories named “Case_01”, “Case_02”, etc, will be generated, which can be uploaded directly to the cluster using SFTP.

4. In the cluster machine, change the current directory to where each job directory was uploaded.
5. run “sh GA.sh”. The script will automatically execute the following versions of GASA: AIC, AIC_woPower, BIC, BIC_woPower.

6. Copy the results from the last few lines in GeneNet_TrueModel_xxx.py.Log to MATLAB, then use the MATLAB script Check_GASA_Results to check the final result (you need to first load Check_Result.mat to the MATLAB workspace first).
Notes：

1. Set the number of factors with the parameter N_FACTOR in the python code.

2. Set the number of max incoming links with the parameter MAXLINKS in the python code.

3. You can change the number of cluster node used by GASA with the parameter total_SA_nodes_number in the python code.
4. Simulated_Data_Name.txt contains gene names, starting with factors and followed by genes. The number of factors is determined by the parameter N_FACTOR.
5. Simulated_Data.txt contains the expression data of genes in Simulated_Data_Name.txt (row = gene, column = time point). Simulated_Data.txtt is the transposed matrix of Simulated_Data.txt and used as the actual input to GASA.
6. If you encountered unexpected termination of jobs, please delete the files and restart the procedure.
GASA Application 2
Under the directory GASA\application2\GASA_Code\, for the four python .py files with file names starting with “GeneNet”, please change lines 848~849 to the user name and password of the account you are going to run GASA.

If you are not able to use the code, you might need to change the automatic login procedure written in lines 379 to 401 in these four python codes.
In the directory GASA\application2, there is a subdirectory GASA_Code that contains the source codes required to execute GASA. Generate_GASA.m is the MATLAB code used to generate new GASA jobs.
How to run
1. First load the MATLAB workspace containing lists of TFs and target genes, and gene expression data (e.g. Data_032210.mat).
· If you are not inferring networks of yeast or want to use a different gene expression data, you need to change the object “Data” in the MATLAB workspace.

· If you want to change the target genes in the predicted network, please change the object “Target”.
· All TFs are listed in the object “All_TF”.
2. Run Generate_GASA(Data, Target , All_TF) in MATLAB.
3. Example:

Generate_GASA(Data, Target, All_TF);

[1] AIC / [2] BIC ? 1

(Choose AIC
[1] Power / [2] wo Power ? 2
(Choose without power law
Max Incoming Links = 4

(Max incoming link = 4
Max Candidate TFs = 6

(A maximum of six candidate TFs
Max True Links (fixed T/F) [0, Random] = 0 (Fix the number of true TFs (If you select 0 then the number is generated randomly)

Consider targets that have more then ? known TFs [0, skip]:
(Consider only targets with the number of known regulating TFs within a range. This option can be used to filter targets with too few or too many known interactions.
Upper Bound: 0

(Upper bound of the number of TFs
Lower Bound: 0

(Lower bound of the number of TFs
4. Upload all created data to the cluster via SFTP.
5. On the cluster machine, change to the directory where the data are uploaded.
6. Run “qsub GA.sh”.
7. For finished prediction, please first check the files XXX.names.txt under the directories named by <Gene name>_<# true regulators>_<# false regulators>. In these files, true regulators are listed first, followed by false regulators. The target itself is listed in the last line and can be ignored. Predicted regulations can be checked by scanning the last lines (representing weights Wij) of GeneNet_xxxx.py.Log. For true TF-target regulations, non-zero weights represent true positives, while zero-weights represent false negatives. For false TF-target regulations, zero weights represent true negatives, while non-zero weights represent false negatives.
Notes：

1. The parameters N_FACTOR and MAXLINKS are set automatically in the Python code.
2. You can change the number of cluster node used by GASA with the parameter total_SA_nodes_number in the python code.

3. Please remember to upload the generated script GA.sh with the rest of the files to the cluster.
