
Toward automated denoising of single
molecular Förster resonance energy
transfer data

Hao-Chih Lee
Bo-Lin Lin
Wei-Hau Chang
I-Ping Tu

Toward automated denoising of single
molecular Förster resonance energy
transfer data

Hao-Chih Lee
Bo-Lin Lin
Wei-Hau Chang
I-Ping Tu

Downloaded from SPIE Digital Library on 07 Jul 2012 to 140.109.73.43. Terms of Use:  http://spiedl.org/terms



Toward automated denoising of single molecular Förster
resonance energy transfer data

Hao-Chih Lee,a Bo-Lin Lin,b Wei-Hau Chang,b and I-Ping Tua

aAcademia Sinica, Institute of Statistical Science, Taipei, Taiwan
bAcademia Sinica, Institute of Chemistry, Taipei, Taiwan

Abstract. A wide-field two-channel fluorescence microscope is a powerful tool as it allows for the study of
conformation dynamics of hundreds to thousands of immobilized single molecules by Förster resonance energy
transfer (FRET) signals. To date, the data reduction from amovie to a final set containing meaningful single-molecule
FRET (smFRET) traces involves human inspection and intervention at several critical steps, greatly hampering the
efficiency at the post-imaging stage. To facilitate the data reduction from smFRET movies to smFRET traces and to
address the noise-limited issues, we developed a statistical denoising system toward fully automated processing.
This data reduction system has embedded several novel approaches. First, as to background subtraction, high-order
singular value decomposition (HOSVD) method is employed to extract spatial and temporal features. Second, to
register and map the two color channels, the spots representing bleeding through the donor channel to the acceptor
channel are used. Finally, correlation analysis and likelihood ratio statistic for the change point detection (CPD) are
developed to study the two channels simultaneously, resolve FRET states, and report the dwelling time of each state.
The performance of our method has been checked using both simulation and real data. © 2012 Society of Photo-Optical

Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.011007]
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1 Introduction
The Förster resonance energy transfer (FRET) is a radiationless
process between two fluorophores, donor and acceptor, whose
intensities ratio defines transfer effeciency (E) and reports the
in-between distance fE ¼ ½1þ ðR=R0Þ6�−1g, where R0 is the
Förster distance between the donor and the acceptor. As a single
biological molecule is labeled by a FRET pair and immobi-
lized,1 its conformation dynamics associated with the function
can be recorded by using a two-channel fluorescence micro-
scope to track FRET changes for an extended period of time.2

In practice, this type of single-molecule FRET (smFRET)
microscope can be realized through a confocal configuration,3

by which one molecule is imaged at a time, or a wide-field
configuration that allows for hundreds of molecules to be simul-
taneously monitored by a pixelated detector. To achieve the
detection of single-molecule fluorescence in a wide-field config-
uration, total internal reflection (TIR) has been employed to
generate an evanescent wave to excite a thin layer near the inter-
face such that the fluorescence background from the bulk can be
greatly reduced.1,3–6

The wide-field smFRET data are embedded in movies of
N time-frame of CCD images. Each image is divided into two
half-images: one of the donor (usually Cy3, TMR, Alexa, or
Atto 555) and the other of the acceptor channel (Cy5, Alexa,
or Atto 647). To maximize the temporal resolution and achieve
the longest single-molecular time traces before photo-bleaching
occurs, one should increase the CCD frame rate as fast as

possible and keep the laser illumination power as low as pos-
sible, yielding the time trace data with poor signal-to-noise
(S=N) ratio. A wide-field smFRET microscopy can be realized
by a prism type TIR (PTIR)1 or a high-numerical aperture (NA)
objective type (OTIR) (Fig. 1).4,6 We chose the OTIR as it is
easy to build and offers an empty space on top of the sample
slide that would allow for sample manipulation from above.
Compared to PTIR, OTIR requires an additional dichroic mirror
underneath the objective to direct the excitation beam into the
objective lens and yet to prevent the reflected excitation beam
from entering the pathway of the fluorescence collection optics.
The photon collection is thus comprised in the OTIR configura-
tion despite having a high NA. We have experienced higher
fluorescence background that might come from the objective
lens or its associated elements as reported.7,8 All those condi-
tions have together yielded very noisy data so that it becomes
very challenging to studying hundreds of thousands of noisy
time traces to select meaningful ones by human efforts. To facil-
itate the data reduction from smFRET movies to smFRET traces
and address the noise-limited issues, we developed a denoising
recipe that utilizes novel statistical approaches based on the
spatial and/or temporal correlation at different steps in the
work flow. Due to these new algorithms, the work flow can
be automated.

As to the estimation and removal of the background, local
subtraction5,9,10 and profile fitting11 are two commonly used
methods, both of which utilize local information around the
fluorophores. Interestingly, as we introduced a global method
based on higher-order singular value decomposition (HOSVD)
to extract spatial and temporal features in a movie for denoising
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the system errors, we found that it could estimate the non-
uniform TIR background quite well. As to mapping and regis-
tering the fluorophore coordinates in the two channels, we used
temporal correlation to locate those spots representing the donor
signals bleeding through the acceptor channel and then used
their coordinates to determine the best linear transformation
matrix. We found the transformation matrix was not adequate
because non-uniform deviations on the coordinate mapping
were observed across the whole image. To identify the pairs,
our algorithm performs a spatially exhaustive search in the
neighboring pixels of the spot coordinates predicted by the
matrix. Once the trace pair was found, we checked whether
it was a FRET trace by studying if there were donor and acceptor
anti-correlated patterns along the pair traces. For those FRET
traces, we used change point detection (CPD) to detect the status
change points and reported the dwelling time. To do so, we
derived a likelihood ratio statistic given a change point position
under a multivariate Gaussian model and used it to search all
time points in the interval between adjacent change points to
find the new change point candidates. Conventionally, the status
change points are solved by hidden Markov model (HMM),14

multivariate Gaussian HMM (MGHMM),15 or time order clus-
tering (TOC).16 In contrast to those methods, CPD is a determi-
nistic approach that does not require assigning initial values
such as state means and variance. As such, our work flow
employing the CPD algorithm could be executed without human
intervention.

This paper is organized as follows: Section 2 introduces the
analysis methods, and these methods are summarized in five
algorithms. In Sec. 3 we present our real data analysis and simu-
lation studies. This paper ends with a brief discussion.

2 Methods
The main goal of the FRET data analysis is to target the FRET
traces and detect the status change points along the trace. Our
strategy includes three steps, which are summarized in a flow
chart in Fig. 2. The first step is to denoise the system error.
We applied HOSVD to estimate the non-homogenous system
error. Traditionally, the corresponding approach is to perform
local subtraction of the intensities in the surrounding pixels
of a spot. These two approaches are shown to match quite
well on both simulated data and real data. One extra benefit
from the HOSVD approach is that the estimated system error
could give feedback to the experimenters so as to optimize
their instrument setup.

The second step is to find the paired FRET traces. In order to
make it automated, three sub-steps are executed by applying
three algorithms. They involve 1. locating the fluorophores from
the acceptor images; 2. mapping the coordinate system of the
donor images and acceptor images; 3. finding all possible fluor-
ophore paired traces.

The third step is to detect the change points along the FRET
trace pairs. Instead of detecting the change points along the
FRET trace resulting from the ratio of the acceptor to the
combination of the acceptor and donor, we treated the donor
and the acceptor traces as multivariate variables and detected
the change points along them. To detect the change points, we
adopted the multivariate Gaussian model and used the log-like-
lihood ratio as our statistics.12,13 We also checked whether those
traces are locally anti-correlated across time. The detection cri-
terion is based on the p-value. Once the threshold (given a p-
value) is determined, the computation is deterministic, involving
no random initials, which includes the state mean and variance

Fig. 1 smFRET microscopy configuration. (a) Objective TIR (OTIR): the laser is focused onto the back focal plane to generate an evanescent wave at
cover-slip interface (L: lens; DM: dichroic mirror). (b) Prism TIR (PTIR): the laser beam is shined onto the prism to generate evanescent wave at the
quartz slide-buffer interface (L: lens; LP: long-pass filter). (c) Emitted photons are separated into two channels by a dichroic system, the dual-view system
(DM: dichroic mirror, EMCCD: electron multiplication CCD). (d) Illustration of a single molecular FRET time trace.
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values or pre-specified number of states as in commonly used
methods such as HMM,14 MGHMM,15 and TOC.16

To test our algorithm, both simulation and real data were
used. The sample used to generate real data shown in Figs. 3
to 6 was a 16 bp GC-rich double strand DNA with Cy3 and
Cy5 attached at the 5’ ends modified from a design previously
described17 to allow for specific binding of a protein, of which
the details will be published in a separate paper. To compare the

performance of CPD with MGHMM (Fig. 7), the movie data
were provided by Ha’s laboratory website (http://www.cplc
.illinois.edu), and the sample is a DNA plus its binding protein.

2.1 System Error Denoising

One particular feature of the smFRET experiment is that the
fluorescent molecules are immobilized. Thus, we proposed a
local model: let ði0; j0Þ be the center of a fluorophore, then
the signal can be modeled as

ILi0;j0ði; j; kÞ ¼ Fps
i0;j0ði; jÞ · gi0;j0ðkÞ;

× for 1 ≤ i ≤ I; 1 ≤ j ≤ J; 1 ≤ k ≤ K; (1)

where Fps
i0;j0ð·; ·Þ is the unimodal point spread function

centered at ði0; j0Þ while gi0;j0ð·Þ describes the signal emitted
by the fluorophore on the time trace. Since there are many
fluorophores, we have the global model:

IGði; j; kÞ ¼ Bði; j; kÞ þ
XM
l¼1

ILil;jlði; j; kÞ þ NGði; j; kÞ; (2)

where B models the system error and NG describes the
random noise. IGð·; ·; ·Þ is multi-arrayed data with global
structure Bð·; ·; ·Þ and many local structures ILil;jlð·; ·Þ. We
tried to decompose the structures by HOSVD:18

IGði; j; kÞ ¼Pm;n;l am;n;lf x;mðiÞf y;nðjÞf z;lðkÞ, where each f ·;·

Fig. 2 The flow-chart of automated denoising (ADN).

Fig. 3 One typical image frame and its estimated system error. (a) Raw image. (b) System error estimated by HOSVD. (c) Image after removing system
error. (d) Time component. Original pixel values are rescaled into [0,1]. Plots at the left and under images (a), (b), and (c) show the 256th column and
128th row of each image. It is clear that the envelop trend of the 128th row in (a) is pretty much taken away after denoising as shown in (c). The width of
side panels is limited to 0.4 to magnify the envelop trend. The time-component in (d) shows the temporal decay of the intensities.
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represents one linear mixture on one mode of the array and
each product term of f x;·f y;·f z;· represents one component.
a·;·;· refers to the projected size of the data on the correspond-
ing component. The solution to this decomposition problem
can be obtained by the alternating least square algorithm,19,20

described in Algorithm 1. It may be helpful to link this model
with the commonly used SVD (singular value decomposi-
tion), which can be viewed as a two-order version of this
model.

Most data analysis would model signal components with
larger variance (eigenvalue) and noise with smaller variance;
however, this is not so in our case. In real data analysis, we
found the first component with the largest eigenvalue describes
the system error Bð·; ·; ·Þ very well. The data structure indicates
that this result would not be a surprise. Each signal IL·;·ð·; ·; ·Þ,
localized within 5 by 5 pixels, would unlikely produce large
variance. On the other hand, the system error, representing
global information, can contribute a large portion of the total

variance. The phenomenon that the first component captures
the global information has also been reported on an integrative
analysis of DNA microarray set combining different studies.21

To be specific, we used a1;1;1f x;1ðiÞf y;1ðjÞf z;1ðkÞ to estimate
Bði; j; kÞ and delete it from the data as a denoising process.
We further developed Algorithm 2 to smooth this term in
order to avoid the possible mixture of the signals. Fig. 3 pro-
vides a typical example.

We also designed simulation experiments to check the
performance of this algorithm. The result is very supportive.
We compared this algorithm with the concurrent local back-
ground subtraction method. This part is reported in
section 3.1.

2.2 Extract FRET Traces

2.2.1 Locate fluorophores

The fluorophores we are interested in have two characters: they
are immobilized, and they last for a period of time. Therefore,
the corresponding pixel values are supposed to be comparatively
high over a range of spatial index and over a period of time. The
image with the system error denoised is transformed to a binary
image, depending on whether the pixel value exceeds a given
threshold. The threshold is set to be the overall mean plus only
one standard deviation to avoid missing the candidate fluoro-
phore cluster. Subsequently, the clusters with the value of
one are searched throughout the spatial index and the time
frame index as well. The detailed procedure is stated in
Algorithm 3.

2.2.2 Image registration (map the coordinate systems)

Traditionally, the mapping of coordinates relies on imaging a
calibration slide made of fluorescence beads of broad spectrum
before collecting the data from the experimental slides as a daily
practice.5,6 The fluorescence spots in the donor channel and their
leakage pairs in the acceptor channel are used for the registration
of the two coordinate systems by solving a transformation
matrix. Alternatively, we took an approach that used the leakage
spots found in the experimental images to determine the
mapping between the two channels so that the work on the fluo-
rescence beads could be omitted. Leakage spots refer to those
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Fig. 5 Correlated leakage pairs throughout the half CCD image. As the two channels are superimposed, the apparent linear relationship between
leakage pairs can be observed in the center of the field but not outside the central region.

Journal of Biomedical Optics 011007-4 January 2012 • Vol. 17(1)

Lee et al.: Towards automated denoising of single molecular Förster resonance energy transfer data...

Downloaded from SPIE Digital Library on 07 Jul 2012 to 140.109.73.43. Terms of Use:  http://spiedl.org/terms



donor-only fluorophores carrying abnormal intensities so that
they bleed through into the acceptor channel. As a result, the
values of those leakage pixels increase or decrease simulta-
neously in both channels. Having a spot located in the acceptor
channel by the previous sub-step, we looked for its leakage pair
in the donor channel by searching in the neighborhood of the
corresponding spot coordinates. (Note that a simple translation
relationship between the acceptor and the donor coordinate
systems represents a good approximation to begin with when
the two channels are aligned roughly parallel to each other.)
When a set of leakage pairs was found, we applied least squared

error method to determine the transformation matrix. This algo-
rithm is briefly described in Algorithm 4.

2.2.3 Search fluorophore paired traces

Given the acceptor fluorophores and the coordinate transforma-
tion matrix, we applied Algorithm 3 again to search all possible
donor fluorophores on the corresponding locations. In this part,
the traditional method searches the candidate spots with good
S=N at the corresponding locations in the donor channel by aver-
aging the initial, say, 10 time frames. With this regard, we adopt
a temporally exhaustive search along the time trajectory to
include all possible fluorophores. The necessity comes from
considering the following scenario in which the traditional
approach will likely miss a donor spot while the greedy search
will not: the FRET occurs for a period longer than 10 time
frames in the beginning, such that no fluorophore would be
detected in the donor channel based on the initial average.

2.3 Change Point Detection

2.3.1 Check if FRET occurs

Given a fluorophore trace pair, we check if there exists any real
FRET event by anti-correlations. One means to do so is to
calculate the correlation over the whole trace pair, which can
be easily automated. However, this approach would sometimes
generate an artifact when a time trace carries a dark state period
and/or a long range of random noise. Instead, the human inspec-
tion approach usually focuses on the local anti-correlation
around the candidate change point. To mimic human inspection,
we applied a change point method to locate the possible change
points and calculated the local correlations around them for
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Fig. 6 FRET detection in experimental data. Blue triangles indicate the
candidates of FRET events. Means of each interval ½ci; ciþ1� are marked
by a solid line.
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Fig. 7 FRET histogram of real data. There are 7073 and 8475 traces used for the DNA-only group and the DNAþ protein group, respectively.
(a) Histogram generated from unprocessed raw data. (b) Time traces are processed by two-state MGHMM, and the histogram is plotted using the
mean values of each state. (c) Time traces are processed by our CPD method.
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checking if FRET occurs. Our approach at this step can greatly
shrink the size of the candidate set.

2.3.2 Detecting change points

Change point detection is a statistical method to detect different
states in a sequential data set. A very brief introduction on CPD
is presented in the Appendix. For the theoretical background,
please refer to Siegmund12 and Chen and Gupta.13 Previously,
Watkins and Yang22 applied a likelihood ratio test to locate the
intensity jumps as the change point based on individual photon
arrival times in a single molecule trace extracted from one chan-
nel. In contrast, the CPD used here is based on multivariate
Gaussian model that allows us to simultaneously analyze the
paired intensity traces.23 Fig. 6 is a typical example. The tuning
parameter for this approach is the significant size (the threshold
for p-value). Reasonable p-value is in the range between 0.1 and
0.01∶.1 (more flexible) or 0.05 (marginal) or 0.01 (for the sake
of multiple testing). The computation is deterministic, such that
it involves neither random initials nor a pre-specified number
of states as those commonly used methods like HMM,14

MGHMM,15 or TOC.16 which not only saves the computation
time but also minimizes human intervention.

Algorithm 1: Alternating least square algorithm19.
Given initial vectors f 0x , f 0y , f 0t . Denote f x;i as i’th element of
vector f x.
input Iði; j; kÞ {# input movies of smFRET data}
for p ¼ 0;1; : : :P do {# repeat P iterations}
for i ¼ 1; : : : I do

f pþ1
x;i ¼Pj;k Iði; j; kÞf py;j f pt;k

for j ¼ 1; : : : J do
f pþ1
y;j ¼Pi;k Iði; j; kÞf px;i f pt;k

for k ¼ 1; : : :K do

f pþ1
t;k ¼Pi;j Iði; j; kÞf px;i f py;j

normalize so that kf pþ1
x k2 ¼ kf pþ1

y k2 ¼ kf pþ1
t k2 ¼ 1

output f Px , f
p
y and f pt

Algorithm 2: Background estimation
input Iði; j; kÞ, f x, f y.
f x and f y are outputs of Alogrithm 1.
f̃ x, f̃ y are degree two local polynomial regressions of f x, f y with
span 0.2.
f̃ t;k ¼

P
i;j Iði; j; kÞf̃ x;i f̃ y;j.

output ðBHOSVDÞi;j;k ¼ f̃ x;i f̃ y;j.

Algorithm 3: Localization of fluorophore
Let Dlði0; j0Þ ¼ fði; jÞgji − i0j ≤ l; jj − j0j ≤ lg be the square index
centered at ðl0; j0Þwith edge size 2l þ 1 and jAj be the size of the
set A.
input Iði; j; kÞ. Denote the k’th frame of I by Ik.
μk ¼ meanðIkÞ; σi ¼ stdðIkÞ.
for k ¼ 1; : : : ;K do
get Ek ¼ ½ði; jÞjIði; j; kÞ> μkþσk�. {# select high-intensity pixels}

for i0; j0 in Ek do
if jD1ði0; j0Þ ∩ Ekj < 5, eliminate ði0; j0Þ from Ek. {# keep aggre-
gated high-intensity pixels}
E ¼∪K−W

r¼1 ∩0≤l<w Erþl for some chosen W {# keep sustained and
aggregated high-intensity pixels}
for i0, j0 in E do
Ai0 ;j0 ðkÞ ¼ argmax½Iði; j; kÞjði; jÞ ∈ D2ði0; j0Þ�
Cði0; j0Þ ¼ modekðAi0 ;j0 ðkÞÞ
if Cði0; j0Þ ≠ ði0; j0Þ, eliminate ði0; j0Þ from E.
output E. {# select a local maximum as a representative}

Algorithm 4: Coordinate transformation for two channels
Denote the time trace in donator and acceptor channels at ði; jÞ
point by IDði; j; kÞ and IAði; j; kÞ, respectively.
input IAk into Algorithm 3 with E as its output. {# get the coordi-
nate indices for acceptor fluorophores}
Let EA and ED be two empty sets.
for i0, j0 in E do
for ðr; sÞ ∈ D4ði0; j0Þ do

ρr;s ¼ correlation coefficient of IAði0; j0; ·Þ and IDðr; s; ·Þ.
ðr�; s�Þ ¼ argmaxr;sρr;s.
if ρr� ;s� > 0.8, {# search the possible leakage pairs around

ði0; j0Þ}
ði; jÞ → EA, ðr�; s�Þ → ED {# register the donor and acceptor

coordinates for leakage pairs}
use least square method to find Awhich map the index ðr�; s�Þ ∈
ED to its corresponding index ði0; j0Þ ∈ EA.
output the transformation matrix A.

Algorithm 5: Change point detection.
Initially, let the set of change points C be f1; Ng. Denote
ðXD; XAÞ as bi-variate traces of donor, and acceptor Sr is defined
in the Appendix.
repeat
Sort C ¼ fc1; c2; : : : ; cng such that c1 < c2 < : : : < cn.

for i ¼ 1; : : : ; n do
r� ¼ argmaxr∈ðci ;ciþ1ÞSr
if Sr� > threshold ðciþ1; ciÞ and minðr� − ci; ciþ1 − r�Þ > 5
r� → C {# find the possible change point in interval ðci; ciþ1Þ and
update the change point set C.
until no more r� is significant in each interval
for i ¼ 1; : : : ; n do
ρi ¼ correlation coefficient of ðXD;j; XA;jÞ,ci − 20 ≤ j≤ ciþ20.
if there exists an i such that ρi < −0.5,}
then label ðXD; XAÞ as a FRET candidate. {# check an anti-

correlated pattern around change points}
Collect mean values and dwelling time in each interval
½ci; ci þ 1� for all FRET candidate to plot a histogram.

3 Real Data Analysis and Simulations

3.1 Results of Background Subtraction

To investigate the performance of HOSVD in estimating the sys-
tem error, we simulated the data according to model 2. Poisson
random variables Xi;j;k are generated with conditional mean:
Bði; jÞ þP100

l¼1 1000 · Fps
il;jlði; jÞgil;jlðkÞ, 1 ≤ i ≤ 256, 1 ≤ j

≤ 512 and 1 ≤ k ≤ 40. We generated the system error Bði; jÞ,
simulating real data; thus, we fitted a bi-variate function
Bði; jÞ on a real image as

Bði; jÞ ¼ 349.8 þ 185.6ĵ − 158.5î − 1104.6ĵ2

þ 929.2î ĵþ976.4î2 þ 2229.5ĵ3 − 1213.7îĵ2

− 785î2 ĵ − 1490.7î3 − 1350.3ĵ4 þ 454.3îĵ3

þ 530.6î2 ĵ2 þ 117.2î3 ĵþ 675.5î4;

with ðî; ĵÞ ¼ ði=256; j=512Þ. We also set Fps
il;jl to be the stan-

dard Gaussian distribution centered at the uniformly distrib-
uted random indices ðil; jlÞ. The minimum distance between
ðil; jlÞ is set to be greater than 6. Finally, gil;jlðkÞ ∈ f0; 1g is a
step function with dwelling time distributed as an exponen-
tial random variable in each state. Precisely, 100 fluoro-
phores intensity were simulated with mean 1000 and the
system error with mean 400. The performance of our
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algorithm is evaluated by maximum error and the mean
squared error between B and BHOSVD at ðil; jlÞ. We compared
our algorithm with the commonly used local subtraction5

(l × l LS, 2lþ 1 refers to the size of the background) at
ði0; j0Þ, which can be specified as

BLSði0; j0; kjlÞ

¼
 X

i;j∈Dlði0;j0Þ
Iði; j; kÞ −

X
i;j∈Dl−1ði0;j0Þ

Iði; j; kÞ
!
=8l:

Dlði0; j0Þ is defined in Algorithm 3. The result is shown in
Table 1. With 100 replications of simulation, the maximum
error obtained by coupling Algorithms 1 and 2 was evaluated
to be 13.6� 1.6. As contrasted with the signal intensity of
1000, this indicated an error of about 1.3%.

We further compared the performance between HOSVD and
LS on real data sets. In this comparison, the size of system error
is unknown. We applied both methods to estimate system error
underlying 134 manually selected time traces. Fig. 4 shows a
linear relationship between estimated values of HOSVD and
LS, indicating compatibility between the two methods. Particu-
larly, the estimated system error by HOSVD is most consistent
with those from 7 × 7 LS whereas 3 × 3 LS usually overesti-
mates the system error. Choosing the size l in local subtraction
method is an art: larger l may reduce the point spread function
impact but would have the risk of entering another fluorophore’s
influence circle.

3.2 Results of Searching FRET Trace Pairs

Fig. 5 shows an image example of the leakage pairs to demon-
strate its feasibility on mapping the coordinates. Fig. 6 gives an
example of the searched FRET trace pair. Generally, all the

single-molecule FRET analysis methods have the first three
sub-steps in common: target fluorophores, perform image regis-
tration, and search for the trace pairs. Thus, we set up a task to
check the performance of searching the FRET trace pairs from
all the fluorophore trace pairs. There were 4421 trace pairs from
an experiment data set consisting of 14 movies passing through
our algorithm. We let an experimenter who is experienced and
rigorous with regards to manual selection screen the FRET
traces. The manual selection is based on a more stringent criteria
listed as follows:

1. the traces exhibit single-step photo-bleaching

2. the average fluorescence intensity along the trace is
constant

3. the traces have a normal signal strength

4. the acceptor channel is fluorescent

Thus, the experimenter selected only 79 FRET trace pairs out of
the pool of 4421 (a typical example of such unambiguous FRET
traces is shown in Fig. 6). On the other hand, by using the FRET
screening step in our algorithm, more than 80% of the 4421 trace
pairs were efficiently eliminated, yielding a subset of 583 can-
didate FRET trace pairs. Seventy-seven among the 79 manually
chosen ones were preserved in the subset of 583. We checked
those two traces that were selected manually but not by our algo-
rithm to find they could be omitted as their anti-correlations, -0.4
and -0.2, were not significant. This result, summarized in
Table 2, demonstrates that our algorithm can shrink the candi-
date set by a factor of approximately 8.

3.3 Results of Change Point Detection

To compare the performance of our CPD method with that of
MGHMM, we simulated a three-state system. While CPD needs
the threshold for p-value, MGHHM requires inputs of random
initials and the number of states. To be specific, let ðXD;XAÞ
follow a bi-variate three-state Markov model with parameters
as follows:

1. Initial distribution π ¼ ð1=3; 1=3; 1=3Þ:
2. Transition probability matrix

A ¼
 
0.99 0.005 0.005

0.005 0.99 0.005

0.005 0.005 0.99

!
:

3. Observation distributions of ðXD;XAÞ are two-dimen-
sional Poisson distributions with (800,200), (500,500),
and (520,480) as the mean values for the three states.

Table 1 Errors in background estimation. The simulation setup is
in Section 3.1. Note that the sever maximum error in 5 × 5 LS
occurs when averaging over a region containing other fluorophores.
Since fluorophores locate at least 6 pixels apart, the 3 × 3 LS is free
from this concern.

Maximum error Root mean square error

Algorithm 1 only 36.0� 4.9 15.6� 1.1

Algorithms 1 and 2 13.6� 1.6 5.1� 0.5

3 × 3 LS 19.5� 1.6 5.7� 0.1

5 × 5 LS 57.4� 24:3 8.3� 3.3

Table 2 Results of selecting FRET trace pairs. There are 14 movies in this data set. The upper row shows the ratio of manually selected targets
to the candidate pairs for each movie. The lower row shows the ratio of targets to those pairs selected by our algorithms.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

targets
total traces

10
172

5
204

11
361

8
285

11
268

4
323

3
400

2
335

2
344

7
329

5
335

1
331

3
392

7
342

selected targets
selected traces

10
40

5
29

10
52

8
36

10
44

4
28

3
35

2
41

2
52

7
50

5
44

1
28

3
55

7
49
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Their corresponding standard deviations are (28.3,
14.1), (22.4, 22.4) and (22.8, 21.9).

In other words, we simulated a situation in which two compact
conformations exist plus an unfolded state with distinct FRET
efficiencies 0.5, 0.48, and 0.2, respectively. Furthermore, this
transition matrix A would allow the dwelling time to be distrib-
uted as a geometric random variable with mean 100 units. We
would like to test whether or not these algorithms can distin-
guish these two conformers. Figs. 8(a) and 8(b) display some
typical histograms based on 100 simulated time traces. Note
that two populations of different FRET efficiency are distin-
guishable by both approaches. Surprisingly, as the difference
was made smaller by letting the two FRET efficiencies be
0.5 and 0.49, our algorithm appeared to perform better with
respect to the resolution [Figs. 8(c) and 8(d)]. The resolution
of CPD is increased because it provides more efficient de
noising by taking the average of the intensities over the dwelling
time. The reason MGHMM fails in this case is because the like-
lihood does not gain as much as the paid penalty associated with
introducing one more state.

We also studied the performance of our CPD algorithm by
employing a real smFRET model data set provided by TJ Ha’s
group at UIUC (http://www.cplc.illinois.edu/). The data con-
tains movies taken from two donor-acceptor labeled DNA sam-
ples. One is the DNA-only control, and the other is treated with a
protein that can induce the change in FRET efficiency. A total of
15,548 raw time traces were processed by the UIUC’s package
to select the FRET traces.5 Those traces were further studied by
the MGHMM and the CPD method for comparisons. Fig. 7
displays the histogram results generated by the two methods.
MGHMM and CPD both enhance the resolution in the histo-
grams while CPD seems to give slightly sharper modes, consis-
tent with the results obtained from the simulation data (Fig. 8).
In summary, the comparison of the performance suggests that
our CPD approach can be either better than or as good as
the MGHMM in terms of removing the random noise. Most
importantly, to perform MGHMM usually requires many tries

to escape the trap of local minimum whereas there is no
such need for the CPD approach.

4 Discussion
The development of our algorithms has involved implementation
of several novel ideas. First, we utilized the knowledge on the
smFRET system to model the data and applied HOSVD to
clean the system error effectively. Second, we adapted to the
leakage spots for registration of the donor-acceptor mapping
coordinates. Finally, we employed the characteristic of coinci-
dental change of the donor and acceptor traces to implement
the multivariate change point analysis to detect the smFRET
events. By using these approaches, automatic computing has
replaced human manual efforts, largely if not completely, includ-
ing the fluorescence bead slide setting,5,9–11 human inspection on
choosing FRET traces, and parameter assignment for the micro-
status change detection. Nevertheless, the full automation in the
current version of our package falters at the step of selecting
meaningful FRET traces because we have implemented only
an anti-correlation rule using a less stringent condition in
order not to miss any interesting traces. Furthermore, by module
segmentation, our algorithm package allows for combination
with other software packages. The sharpness of the CPD
methods depends on the dwelling time in each state. When
the dwelling time is too short, we may not see a clear boundary
between states. Thus, our package also includes an option for
MGHMM analysis, which applies a model selection criterion
to set the boundary. For those interested in the details of various
analysis methods for smFRET time trajectories14,24,25 and their
comparisons, we recommend a comprehensive article by Bianco
and Walter,26 which appeared while we were preparing this
article.

Awide-field TIR equipped with a CCD has made it possible
for collecting single-molecule FRET data in a high throughput
manner. Recently, the smFRET method has been applied to
various biological processes to reveal dynamic behaviors.
These processes include catalytic RNA,10,27 polymerase-nucleic
interactions,28,29 ribosome translation,30,31 spliceosome
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Fig. 8 FRET histogram of simulation data. Parameters of the simulation are in section 3.2, with the FRET efficiencies (0.5, 0.48) in (a), (b) and (0.5, 0.49)
in (c), (d). Green, blue, and red lines show the histogram of raw data, MGHMM, and CPD respectively.
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assembly,32,33 vesicle fusion,34 and the intrinsic protein disorder
involved in the process.35 In addition to revealing the dynamics
of biological molecules, smFRET can be employed to study the
structure of biological molecules. However, most researchers in
this field find it difficult to relate FRET efficiency to a physical
distance. Since the anisotropy of the fluorophores’ dipoles can
be characterized5 and the quantum efficiency of the two chan-
nels can be calibrated,36 it is now possible to convert smFRET
to absolute distance. By obtaining a set of distances between
different sites of a biological complex through a large number
of smFRET measurements and triangle analysis, the partial
structure of the complex might be determined.17,37,38 As the
TIR solution, the dual-view splitter, and the high-sensitivity
CCD are available from the market nowadays, it would be
easy for an experimenter to set up a wide-field smFRET and
generate a large volume of data. Interestingly, very often the
time trace from a wide-field smFRET experiment is compared
to that from the single ion-channel technique.39 However, unlike
the single ion-channel recording, from which a time trace is
reported in real-time, the time traces from wide-field smFRET
experiment are obtained through post-imaging data processing.
Therefore, to turn the wide-field smFRET microscope into a
friendly tool with real-time data analysis potential, it is crucial
to improve its data processing efficiency dramatically so that an
experimenter can see the time traces immediately at the end of
an experimental session to have a clue about what to do for the
next. In order to facilitate the post-imaging processing for the
smFRET movie data in an online manner, we have created a
highly efficient analytical package that combines a series of
algorithms that allow for full automation of the work flow of
the smFRET data processing.

Appendix: Change Point Detection
This section serves as a very brief introduction of change point
detection. At first, a hypothesis test is constructed as

H0: xi ∼ Nðμ;CÞ; 1 ≤ i ≤ N: H1: xi ∼ Nðμ1;CÞ;
1 ≤ i ≤ r and xi ∼ Nðμ2;CÞ; r þ 1 ≤ i ≤ N;

where xi; μ; μi ∈ Rp, and C ∈ Rp×p is an unknown symmetric
and positive definite matrix. Here, p ¼ 2 in this case. By
likelihood ratio test, the statistic Sr can be derived:

Sr ¼ T2
r=ðN − 2þ T2

r Þ;

where r refers to a candidate of a change point and

T2
r ¼

rðN − rÞ
N

XN
1

ðxi − x̄NÞTS−1ðxi − x̄NÞ;

and

S ¼
P

r
i¼1ðxi− x̄rÞðxi− x̄rÞT þ

P
N
i¼rþ1ðxi− x̄N−rÞðxi− x̄N−rÞT

N − 2
:

Because r is unknown, maxr Sr is our test statistic for the
hypothesis. The critical value to reject the null hypothesis
can be calculated by a p-value approximation, once the signifi-
cance size is determined. The approximation has been obtained
by Srivastava and Worsley23 as follows:

PðmaxrSr > cÞ ≤
XN−1
r¼1

PðSr > cÞ −
XN−2
r¼1

PðSr > c; Srþ1 > cÞ

≈ 1 − Gp;vðcÞ − q1
XN−2
r¼1

tr þ q2
XN−2
r¼1

t3r ;

where

tr ¼
�
1 −

�
r

N − r
N − r − 1

r þ 1

�
1=2
�
;

q1 ¼ gp;vðcÞf2cð1 − cÞ=πg1=2ΓððN − 2Þ=2Þ=ΓððN − 1Þ=2Þ;

q2 ¼ q1½ðp2 − 1Þ=cþ ðv2 − 1Þ=ð1 − cÞ
− ðpþ vÞðpþ v − 1Þ�=ð12ðpþ vÞÞ;

v ¼ N − p − 1; Gp;v and gp;v are cdf and pdf of

Betaðp=2; v=2Þ; respectively:

This part is summarized in Algorithm 5.
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