
A New Clustering Algorithm Based on Self-Updating Process

Ting-Li Chen1, Shang-Ying Shiu1

Institute of Statistical Science, Academia Sinica1

Abstract

Many of the popular clustering methods, such as K-means
and Self-Organizing Maps, require a set of initial values
to begin the iterative process. In this paper we present
a simple and novel method that does not require such
an initial set and can avoid the problem of local min-
ima. The clustering strategy we propose is motivated by
intuition on clustering. The algorithm stands from the
viewpoint of subjects to be clustered and simulates the
process of how they perform self-clustering. At the end of
the process subjects belonged to the same cluster would
converge to the same point, which represents the cluster
location in a p-dimensional space. Our simulation study
showed promising results compared to other clustering
methods. An example on image segmentation will also
be presented.

KEY WORDS: clustering, k-means, image segmenta-
tion.

1. Introduction

Clustering analysis is a useful technique to discover
groups in the data. This technique has been widely ap-
plied to many disciplines for partitioning data into sev-
eral clusters; within each cluster subjects are considered
to resemble each other. For example, in image segmen-
tation the cluster technique is used to partition an image
into regions, each of which has its own color patterns. In
Psychiatry the cluster technique is often used to cluster
patients on the basis of their clinical and questionnaire
responses. The resulting grouping structure can provide
valuable information on identifying subtypes of a psy-
chiatric disease. In biology and medicine, clustering has
rapidly become a popular approach to understand and
identify patterns in genome data, including in microar-
ray gene expression data and in proteomics data.

A vast number of clustering algorithms have been de-
veloped in the literature. Among those the following two
types of clustering methods are most commonly used.
The first type is hierarchical clustering, which partitions
data into clusters through a series of steps that operate
on the proximity measure between subjects. The struc-
ture of data is revealed through the process of hierarchical
clustering and is presented by a tree diagram known as
dendrogram. One weakness of hierarchical clustering is
the irrevocable clustering assignments: A mistake made
at early steps can never be corrected at later steps.

In the second type of the commonly used clustering

methods, the clustering results are obtained as an opti-
mal solution that either maximizes or minimizes a crite-
rion of some kind. The k-means algorithm (McQueen,
1967) that employs the square error criterion is the most
frequently used clustering algorithm of this sort. How-
ever, such algorithms usually require an initial partition
to start the iterative process, and the number of cluster
has to be given a priori. In addition, this type of al-
gorithms suffers from the problem of trapping into local
minima (or maxima), which is a result of a poor selection
of initial partitions. There exist many methods to im-
prove the performance of the k-means algorithm, includ-
ing estimation of the number of clusters (Milligan and
Cooper, 1985, Tibshirani et al., 2001) and solving the
local minima problem (Selim and Alsultan, 1991, Tseng
and Wong, 2005).

In this paper we present a new algorithm for cluster-
ing analysis, aiming to bypass the aforementioned weak-
nesses of currently existing clustering algorithms. The
new algorithm was first inspired by the idea of iterative
generated correlation matrices (McQuitty, 1968) adopted
in the Generalized Association Plots (Chen, 2002), then
turned into a self-updating process (SUP) that is built
upon the intuition behind clustering. By introducing a
parameter that controls the degree of influence between
subjects, the number of clusters is determined accord-
ingly. Our simulation results show that the new algo-
rithm can outperform other existing clustering methods,
especially for highly noisy data.

This paper is organized as follows. Section 2 introduces
the new clustering algorithm. Section 3 presents simula-
tions that demonstrate the performance of the new algo-
rithm and show the comparison results with other clus-
tering methods. In Section 4 we provide a mathematical
proof that guarantees the convergence of our algorithm.
An illustrative example is given by an application to the
problem of image segmentation in Section 5, followed by
a discussion section presented in Section 6.

2. Algorithm

The central idea of our self-updating clustering algorithm
can be illustrated by the following example.

Suppose there are a lot of students on the playground.
A teacher asks them to form into several groups. What
will the students do? Each student will probably move
towards others who are closer, with respect to their loca-
tions at the playground or to any feature that can char-
acterize the students’ relationship. If everyone moves by
this rule, the students will gradually form into groups.



Based on the simple and intuitive concept as described
above, we propose a new clustering algorithm. Suppose
there are N subjects to be clustered. For each subject,
there are P observations (random variables) represent-
ing the subjects’ features. We can view each subject as
a data point in a P-dimensional space. Imitating the
aforementioned example, we can construct the follow-
ing mechanism to move the data points (subjects). The
movement of each subject is determined by the between-
subject proximity, which can be any measure such as the
Euclidean distance or correlations.

The algorithm can be written as follows.

1. X
(0)
1 , X

(0)
2 , · · · , X

(0)
N ∈ Rp to be clustered.

2. At time t + 1, every point is updated according to

X
(t+1)
i =

N∑
j=1

f(X(t)
i , X

(t)
j ) ·X(t)

j

N∑
j=1

f(X(t)
i , X

(t)
j )

. (1)

3. Repeat 2) until every point converges.

f is a statistic that measures the between-subject prox-
imity. For the simulated examples and the application to
be presented later, we propose to use

f(u, v) =
{

exp[− d
λ ] d ≤ r

0 d > r.
(2)

where r and λ are fixed constants, and d is the Euclidean
distance from u to v.

3. Simulation

In this section we conduct two simulation examples. The
first example demonstrates the role of r in (2) to deter-
mine the number of clusters in the data. The second
example simulates highly noisy data to compare the per-
formance of our new algorithm with that of the k-means
algorithms using results of hierarchical clustering as the
initial partition.

Example 1.

For each μi ∈ {(0,0), (2,0), (1,1), (6,0), (8,0), (7,1),
(3,3), (5,3) and (4,4)}, we sample 20 points from bivariate
normal distributions BV N(μi, I2/25) with zero correla-
tion. The data is shown in Figure 1. If we choose r = 0.6
and λ = 1, the new algorithm moved the 180 simulated
data points into nine groups. If we choose r = 2 and
λ = 1, the data points moved into three groups.

Note that, when using the k-means algorithm, you have
to assign the number of clusters. In our algorithm, we do
not have to estimate the number of clusters. In fact,
we do not know how many clusters will be produced by
this algorithm. What we control here is the r, and that
represents how different you allow elements in the same

−1 0 1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

Figure 1: 3 groups, each has 3 subgroups

cluster to be. If you have an idea on what a cluster should
look like in your data, you probably know how to choose
r. And we think that this is a more natural way to cluster
data, instead of determining the number of clusters first.

Example 2.

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

Figure 2: 3 groups with noises

The second example is proposed by Tseng and Wong
(2005), in which standard normal distributions centered
at (-6,0), (6,0) and (0 6) were sampled fifty times, respec-
tively. Each sampled point is restricted to be within two
standard deviations to its center. The noises were sam-
pled uniformly from [-12, 12] × [-6, 12], but not within
three standard deviations to any of the three centers. In
Figure 2, points of three clusters are displayed with cir-
cles, squares and triangles. Points with symbol star rep-
resent noises.

Tseng and Wong proposed a method to overcome the
local minimum problem of K-means. Suppose k is the



number of clusters. They first apply hierarchical cluster-
ing to get k × p clusters for some p. Then they choose
k-largest clusters among them to determine the initial
value of the K-means centers.

We compare our algorithm using r = 4 and λ = 1 to
their method by conducting 100,0000 runs of simulations
for each of the four different scenarios: 10, 50, 100 and
150 points of noises, respectively. In every run of the
simulation, if any point is not clustered correctly, we label
this run of simulation as a “mistake”. Table 3 presents
the number of mistakes in 100,000 runs of simulations. It
shows that our proposed algorithm outperformed other
methods by never making a single mistake.

50*3 50*3 50*3 50*3
+10 +50 +100 +150

no initial 8166 1790 2165 3723
p=1 3218 2315 1496 3183Single
p=3 5 3128 1556 1532

Km
Linkage

p=6 1 107 73 933
p=1 285 1450 1994 3713Complete
p=3 34 0 0 347Linkage
p=6 4458 154 12 216

SUP 0 0 0 0

Table 1: Mistakes in 100,000 runs of simulations

Local minimum problem is a weakness of K-means, and
it is due to a poor selection of initial values. Even with
some clever techniques that try to overcome this problem,
it can not be fully solved. Our proposed algorithm does
not need an initial value so that it can avoid the local
minima problem.

4. Convergence

One may ask whether our algorithm will converge. In
this section, we will prove the convergence of SUP with
the proximity measure (2).

Definition 1. The convex hull C(X) for a set of
points X in a vector space V is the minimal convex set
containing X.

Lemma 1. Let C
(t)
1 be the convex hull of

{X(t)
1 , X

(t)
2 , · · · , X

(t)
N }. Then

C
(0)
1 ⊇ C

(1)
1 ⊇ · · · ⊇ C

(t)
1 ⊇ · · · .

Proof. Since

X
(t+1)
i =

N∑
j=1

f(X(t)
i , X

(t)
j ) · X(t)

j

N∑
j=1

f(X(t)
i , X

(t)
j )

,

X
(t+1)
i is a weighted average of X

(t)
j for j = 1, · · · , N .

Therefore,
X

(t+1)
i ∈ C

(t)
1 .

Since the above is true for each i. We have

C
(t)
1 ⊇ C({X(t+1)

1 , X
(t+1)
2 , · · · , X

(t+1)
N }) = C

(t+1)
1 .

The convex hull of any finite set of points in Rp is
a polytope. Therefore, each C

(t)
1 is a polytope. Each

vertex of C
(t)
1 must contain at least one X

(t)
i for some i,

otherwise the polytope should be smaller. Let C1 be the
limit of C

(t)
1 :

C1 ≡ lim
t→∞C

(t)
1 =

∞⋂
t=0

C
(t)
1 .

We claim the following.

Lemma 2. For each vertex v1,i of C1, there exists at
least one j, such that

lim
t→∞X

(t)
j = v1,i. (3)

Proof. Since
C1 = lim

t→∞C
(t)
1 ,

there exists i (exchange vertex indices if necessary), such
that

lim
t→∞ v

(t)
1,i = v1,i.

Since ∀t,
v
(t)
1,i = X

(t)
k

for at least one k, there exists j, such that

X
(t)
j = v

(t)
1,i

for infinite many t. Therefore, there exists tn → ∞, such
that

X
(tn)
j = v

(tn)
1,i ,

which leads to
lim

n→∞X
(tn)
j = v1,i.

If X
(t)
j = v

(t)
1,i except for any finite t, the equation (3) is

established. Otherwise, there exists j′ 	= j and sn → ∞,
such that

X
(sn)
j′ = v

(sn)
1,i .

Without loss of generosity, assume that v
(t)
1,i = X

(t)
j or

X
(t)
j′ for all t > T . From equation (1), if X

(s)
j = X

(s)
j′

for some s, X
(t)
j = X

(t)
j′ for all t > s. Therefore, for

any s > 0, there exist t > s, such that v
(t)
1,i = X

(t)
j and

v
(t+1)
1,i = X

(t+1)
j′ . Furthermore, we can choose s large

enough, so that C
(s)
1 is close enough to C1. Precisely, for

any ε, there exists s, such that

|v(s)
1,k − v1,k| < ε ∀k.



From the definition of f in (2), f is smaller than 1 unless
the subjects are the same, which means each subject is
most similar to itself. Since X

(t+1)
j′ is the weighted aver-

age of X
(t)
k , X

(t)
j′ can not be too far from v1,i, otherwise,

X
(t+1)
j′ will not be at v

(t+1)
1,k , which is not inside the C1.

v
(t)
1,k is also not inside the the C1, and is within ε to v1,i.

Therefore, X
(t)
j′ has to be within ε to v1,i that X

(t+1)
j′

can be at v
(t+1)
1,k . Since ε can be chosen arbitrary small,

now we let ε small enough that all the projections, except

k = j, j′, from X
(t)
k to

−−−−−→
X

(t)
j′ X

(t)
j fall into the negative side.

This means that all other subjects are closer to X
(t)
j′ than

X
(t)
j , and they have effects to pull both towards the con-

vex hull. Since X
(t)
j′ is closer to other subjects, the values

of f ’s are larger. Recall that

X
(t+1)
j =

N∑
k=1

f(X(t)
j , X

(t)
k ) · X(t)

k

N∑
j=1

f(X(t)
j , X

(t)
k )

.

f(X(t)
j , X

(t)
k ) < f(X(t)

j′ , X
(t)
k ) for k 	= j, j′. Since

f(X(t)
j′ , X

(t)
j ) < 1, the effect from itself is larger than

that from the other subject. This means that X
(t+1)
j′ is

closer to X
(t)
j′ and that X

(t+1)
j is closer to X

(t)
j if ignoring

the effects from other subjects. Combining the fact that
the effects from other subjects to pull X

(t+1)
j′ towards the

convex hull are larger, X
(t+1)
j′ can not replace X

(t+1)
j as a

new vertex. This contradicts to the assumption. There-
fore, v

(t)
1,i = X

(t)
j for some j and for all t large enough.

Then
lim

t→∞X
(t)
j = lim

t→∞ v
(t)
1,i = v1,i.

In Lemma 2, we have proven that some subjects con-
verge under our algorithm. Next, we will prove that other
subjects also converge in similiar arguments.

Now we consider the convex hulls of subects except
those that already converge to the vertices of C1. Let Ω1

be the set of subjects converging to the vertices of C1.
Define C

(t)
2 be the convex hull of {X(t)

i }i/∈Ω1 . Now we
do not have C

(t)
2 ⊇ C

(t+1)
2 like the result in the Lemma

1. Some subjects may move outside the currect convex
hull due to the effect from subjects in Ω1. Therefore, the
volume of the convex hull may indeed increase. However,
since all subjects in Ω1 converge eventually, their effects
to subjects not in Ω1 go down to zero. Again, let C2 be
the limit of C

(t)
2 :

C2 ≡ lim
t→∞C

(t)
2 .

Apply the same arguments in Lemma 2, we have at least
one subject converge to each vertex of C2. Then we can

run similar steps again for C3, C4, · · · untill all subjects
converge. This proves the following theorem:

Theorem 1. The clustering algorithm proposed in Sec-
tion 2 converges, if the f in Equation (1) satisfies:

1. f(u,v) depends only on ‖u − v‖, the distance from u
to v.

2. 0 ≤ f(u, v) ≤ 1, and f(u,v)=1 only when u=v.

3. f(u,v) is decreasing with respect to ‖u− v‖.

5. Application

We chose one test image from “The Berkeley Segmenta-
tion Dtaset”. The image is displayed on Figure-3.

Figure 3: test image

Each pixel of the image is viewed as a subject, and
the image will be segmented according to how pixels are
clustered. For each pixel, we have information on its posi-
tion and color intensity, which are important statistics for
clustering. We use the YUV (Y stands for the luma com-
ponent and U and V are the chrominance components)
information instead of RGB for the intensity. Along with
the x and y coordinates, each pixel has five variables.
Since the variation on x and y are larger, we scale down
both by a factor of 3.

Now we apply our proposed algorithm for clustering.
Recall that the function we proposed to measure proxim-
ities are

f =
{

exp[− d
λ
] d ≤ r

0 d > r.

In this application, we chose λ = 15 and r = 5. The
distance d here is the sum of the difference in each di-
mension, instead of Euclidean distance. The result is
presented in Figure-4, which shows that we can have a
nice segmentation result directly from our algorithm.

6. Conlusion

We proposed a new clustering algorithm. It is very simple
and intuitive, while effective. By this algorithm, subjects
move gradually toward to ones similar to themselves it-
eratively. It works straight forward and fluently without



Figure 4: test image

the risk of trapping into local minima, which the suc-
cess of most clustering algorithms like K-Means largely
depends on.

Unlike algorithms like K-Means, ours do not determine
a fixed number of clusters first. According to how differ-
ent subjects in the same cluster are allowed, the algorithm
determines the number of clusters through the processes.
We do think that this is a more natural way to cluster
data.

We apply our algorithm directly on image segmen-
tation and obtain good results. Better results are ex-
pected by combining this algorithm and other segmenta-
tion techniques.

REFERENCES

Chen, C. H. (2002), Generalized Association Plots: Information
Visualization via Iteratively Generated Correlation Matrices.
Statistica Sinica 12, 7-29.

McQueen, J. (1967), Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probabil-
ity, 291-297

McQuitty, L. L. (1968), Multiple clusters, types, and dimensions
from iterative intercolumnar correlational analysis. Multivari-
ate Behavioral Research 3, 465-477.

Milligan, G. W. and Cooper, M. .C. (1985), An examination of
procedures for determining the number of clusters in a data
set. Psychometrika, 50, 159-179.

Selim SZ, Alsultan K. (1991), A simulated annealing algorithm for
the clustering problem. Pattern Recognition. 24(10): 1003-
1008.

Tibshirani, R., Walther, G., and Hastie, T. (2001), Estimating the
number of clusters in a data set via the gap statistic. Journal
of the Royal Statistical Society: Series B. 63(2), 411-423.

Tseng, G.C. and Wong, W.H. (2005), Tight clustering: a
resampling-based approach for identifying stable and tight pat-

terns in data. Biometrics, 61, 10-16.


