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In this note, we consider two independent homogeneous Poisson point processes I7 of intensity A and IT’ of intensity A
in d-dimensional Euclidean space RY. Let Pkd, k =0,1, ..., be the fraction of I7-points which are the nearest I7-neighbor
of precisely k other /7-points,and gx 4, k = 0, 1, . . ., the fraction of I7-points which are the nearest I7-neighbor of precisely
k IT'-points. Here for given v € R, a point Q € IT is called the nearest /7-neighbor of v if ||Q — V|4 < |ju — v||4 for all
u € I\ {Q} where || - ||4 denotes the Euclidean norm in R¢. By ergodic-type arguments, Pk.q and gy 4 are well defined. In
their Theorems 5 and 10, Newman et al. (1983) proved that

lim pia = e 1/k! and Jim qiq = e~ pk/k!, (1)

where p = A’/A. (See also Newman and Rinott, 1985.)

The limit results in (1) can also be formulated in terms of a “typical point” Q of IT, to be translated so that Q = 0 =
(0, ..., 0), the origin in RY. We will refer to 0 as the typical point of IT. (Note that since I7 is a Poisson point process, its Palm
distribution at 0 is equivalent to the distribution of /T with an independently added point at 0; see e.g. Daley and Vere-Jones
(2007, Proposition 13.1.VII).) Let My be the number of I7-points which have 0 as their nearest I7-neighbor, and N, 4 the
number of IT’-points which have 0 as their nearest IT-neighbor, i.e.

Mg=#{uell:|u—-0|;<|u—v|gforalve T\ {u}},

Ny #{u eIl : ||ud —0|g < |0 —v|q4forallv e IT}
#(1'NCy), (2)
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where
Ci={xeR!:|x—0|4 < |Xx—ulqforallu e IT}, (3)

the (typical) Voronoi cell centered at 0 generated by I7 U {0} (cf. Okabe et al., 2000). Note that .£(M;), the distribution of
My, is independent of A and A, and £(N,, 4) depends on A and A’ only through p = A’/A. Then (1) is equivalent to the limit
results that as d — oo, Mg and N, 4 converge in distribution to Po(1) and Po(p), respectively, where Po(p) denotes the
Poisson distribution with mean p.

In the present note, we derive the rate of convergence for N, 4 as stated below.

Theorem 1. For any given py > 0, there exists a constant c¢1(pg) > O such thatforall1 <d < ooand0 < p < py,

1/ 4\° 1/ 41\
o] (PO)PZE <3«/§> < d(£L(Ny4), Po(p)) < c20(1 — eip)ﬁ (3\/§> ) (4)

where dyy denotes the total variation distance and ¢, > 0 is a constant (independent of pg).
Proof. Without loss of generality, assume A = 1, so that p = A’/A = X'. Note that N, 4 has a mixed Poisson distribution.
By (2) and (3), the conditional distribution of N, 4 given ©q(Cy) = v is Po(A'v) = Po(pv) where 14(S) denotes the

d-dimensional Lebesgue measure (volume) of measurable S C RY. Also, E[iq(C4)] = 1/A = 1, and by Alishahi and
Sharifitabar (2008, Theorem 3.1),

var(u C —— c for a < 00,
d\‘d Y \/» [ 2 [ f =

for some constant ¢, > 0. By Barbour et al. (1992, Theorem 1.C(ii)), we have

drv (L(Np.a), Po(p)) < p~'(1 — e~")var(ppaa(Ca))

(1 e")1<4)d
= Gop(l — —\—= >
’ Vi\3v3
establishing the upper bound.

To derive the lower bound, fix a (large) u > 0 and consider the ball of volume u centered at 0, denoted by B = B, 4.
Applying Lemma 1 below with a1 = puq(Cq N B) < pu, az = puq(Cy \ B), B1 = Ela1] = pE[ra(Ca NB)] < pu, B2 =
E[az] = pE[pa(Ca \ B)] = p — B1, we have

drv(L(Np.q), Po(p)) = P(Npa =0) —e™”

A

E[efpud(cd)] —e P

= E{e™*17%2 — e P *132}

Efe " P2[hy(pu) (o1 — B1)* — (a1 — BD)] — €1 P2 (o — Ba)}
e~ hi(puyvar(ar) — e P2E[e™ (a2 — B)]

e "hi(pu)var(puqa(Cy N B))

ey (pu)pe—= (4)d
Va\3v3/) '’

where the last two inequalities follow from Lemma 2 (with S; = Band S, = R? \ B) and Lemma 3 (withu > ugandc > 0
and up < oo appearing in the statement of Lemma 3). Noting that h; is nonincreasing, we have forall 1 < d < oo and
0 <p =< po

v

v

v

1 4 \4
drv (LN, ), Po(p)) > ce_pohl(pou),ozﬁ (37@)

_ 21<4>"
—C1(,00);0\/a 35)

where ¢ (09) = ce”h;(pou). The proof is complete. O

Remark 1. The lower and upper bounds in (4) may be expressed as

. , 1 [ 4\
1§d<0<13r,10f<0500 dW(GC(Np'd)’PO(p))/[p ﬁ (3«/§> i| "0

1/ 4\
2, et o o0 () | <o
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Since N, 4 has a mixed Poisson distribution, we may apply Barbour et al. (1992, Theorem 3.F) to obtain a lower bound
for drv (L(N,,4), Po(p)), which, however, involves the third and fourth moments of 14(Cy). As no good estimates of these
higher-order moments are available, we make use of Lemmas 1-3 to derive the lower bound in (4) which only involves the
second moment of j44(Cy4 N By q).

Lemma 1. Foru > 0,0 < a1, B1 < u, and o, B, € R, we have
e 172 — e 1P > PR [hy (u)(ar — B1)? — (@1 — B)] — e P2 (a — Bo),
where hy(u) = info-x<u(e™ — 14 x)/x* > 0.
Proof. Sincee ™ > 1 — x for x € R, we have
o170 _ o P1F2 — gPr[p~@1=(@~F2) _ oF1]
e P2[e1 (1= (0 — o) —e ]
= e 1mPfem =P _q] — 71 P2 (ay — By)
e PP W) (e — B1)* — (1 — )] — e P2 (@ — Bo),
where the last inequality follows from the definition of h;(u) and |y — 81| < u, completing the proof. O

A%

v

Lemma 2. For two measurable subsets S; and S, of R, let a7 = pua(Cy N S1), a2 = ppa(Cs N'Sy) and B, = E[ay] =
PE[tg(C4 N Sy)]. Then E[e™*1 (ay — B2)] < 0, i.e. e~*1 and «, are nonpositively correlated.

Proof. For any integrable random variables X and Y with E|XY| < oo,
E[(X — EX)(Y — EY)] = E[X(Y — EY)] = E[(X — EX)Y].

Noting that o, = p fsz 1¢, (x)dx where 1¢, denotes the indicator function of Cy, we have
E[e™* (a2 — B2)] = E[(e™*! — E[e” D]

E |:(e_‘"1 - E[e_al])p/ 1Cd(x)dx]
$2

— ) / E[(e™' — E[e™*1])1¢, (x)]dx

S2

= p/ P(x € Cg)E[e™ ™ — E[e™*1] | x € (y4ldx
52

= ,o/ P(IT N B(x) = P){E[e™*' | IT N B(x) = @] — E[e"*']}dx (5)
52

where the last equality follows from the fact thatx € C; if and only if ITNB(x) = @, with B(X) == {y € R? : |ly—x|l4 < [|X[la}
(the ball of radius ||x||g centered at x). We claim that the conditional distribution of uy(Cy N Sy) given IT N B(x) = @
is stochastically larger than the (unconditional) distribution of ©4(Cy N S1). To show this, we make use of the following
simple coupling argument. Note by the independence properties of the Poisson process that the conditional distribution
of uq(Cq4 N Sy) given IT N B(x) = ¢ is the same as the (unconditional) distribution of ©q(C* N S;) where C* denotes the
Voronoi cell centered at 0 generated by (/7 \ B(x)) U {0}. Since C; and C* are defined on the same probability space, we have
Cq C C* for every realization of I7, so that uq(Cy N Sy) < wqa(C* N Sy) with probability 1. It follows that the (unconditional)
distribution of wq(Cy N Sy) is stochastically smaller than the conditional distribution of ©4(Cq N S¢) given IT N B(X) = @.
Since ™1 = f(uq(Cqy N S1)) with f (x) = e~#* (a decreasing function), we have

E[e™! | IT N B(x) = #] < E[e™*'],
which together with (5) implies that E[e™*1 (o — B2)] < 0. The proof is complete. O
Remark 2. It is shown in Yao (2010) that for any measurable subsets S; and S, of RY, uq(C4 N Sy) and pug(Cq N'S,) are
nonnegatively correlated. We can use the same argument as in the proof of Lemma 2 to show more generally that for

any nondecreasing function f : R — R, f(uq(Cq N S1)) and ug(Cy N S,) are nonnegatively correlated provided that
E[1f (na(Ca N S1))|] < oo and E[|f (11q(Ca N S1))[1a(Ca N S2)] < o0.

Lemma 3. Assume A = 1 (the intensity of IT). Then there exist constants ¢ > 0 and uy < oo such that for all u > ug and
1<d< oo

1 4\
var(ug(Cy N Bya)) > Cﬁ <3\/§) ,

where B, ¢ C RY denotes the ball of volume u centered at 0.



146 Y.-C. Yao / Statistics and Probability Letters 92 (2014) 143-147

Proof. We need several results in Alishahi and Sharifitabar (2008, Sections 3 and 4). By Alishahi and Sharifitabar (2008,
Remark 3.2), there exists a constant ¢’ > 0 such that

d
var(uq(Cy)) > c’% (%) forall1 < d < co. (6)

Define Ry(u) = ,ug_](Cd N 3Bu,d)/ug_1(83u,d) where Mg_l denotes the (d — 1)-dimensional Hausdorff measure (surface
area) in R? and 0B, 4 denotes the boundary of B, 4 (which is a (d — 1)-dimensional sphere). By Alishahi and Sharifitabar
(2008, Lemmas 4.1 and 4.2),

1d(Cq \ Bug) = a(Cq) — ma(Ca N Byg) = / Ry(v)dv,

E[Re(v)] =€, and E[uq(Ca\Bya)l= / e 'dv,

00 2
E [/ (Rg(v) — e‘”)dv]
E [/00 v (Rg(v) — e7V)dv /00 v_zdvj|
=u! f ” v2var(Ry(v))dv
[ee) d
oo (e

= (u‘l foo v3e‘"dv> 1 (4)d (7)
. Vd \3v3

where the Cauchy-Schwarz inequality is applied to the inner (dv) integral to yield the first inequality and the second
inequality follows from the fact that

so that

var(ud (Cd \ Bu.d))

IA

IA

1/ 4\
var(Ry(v)) < c’ve™ ' — ( ) foralll1 <d < o0

Vi \33

for some constant ¢” > 0 (cf. Alishahi and Sharifitabar, 2008, p. 929). Since (£4(C4 N By.q) + 1£a(Ca \ Bu.g) = 14(Cy), it follows
from Minkowski’s inequality, (6) and (7) that forall 1 < d < oo,

VVar(1a(Cg N Bya)) > v/var(ug(Cq)) — v/var(ug(Ca \ By.a))

> 1(H'? - (C/'uf1 /OO v3e“dv>1/2 1 <4>d "
- u Vd\3v3 '

So for all (large) u satisfying ¢’ > ¢"u~" [ v®e~"dv, we have

1 4\
var(pg(Cy N Byq)) > hz(u)ﬁ (3\@) forall1 <d < oo,

where hy (1) = [(¢))'/? = (c"u™! [ v3e~"dv)"/*]2. Observing that hy(u) — ¢’ > 0 asu — oo, the proof is complete. [J
Remark 3. According to Alishahi and Sharifitabar (2008, Remark 3.1), the constant ¢, in (4) may be taken to be 5. Since
1— e ” < p,(4) may be rewritten as
( )21<4>d<d (L(Np.a), Po(p)) < 21(4>d
Glpo)p"—=\—F7=) = a),Po(p)) <cp*— | —=
N Ja\3v3 Vi 2 a\33

forall1 <d < coand 0 < p < py. This indicates that p>d—"/2(4/3+/3) is the rate of Poisson approximation for small p
and large d.

Remark 4. Theorem 1 indicates that the rate of Poisson approximation for N, 4 is closely related to the asymptotic behavior
of var(uq(Cy)) as d — oo. While Newman et al. (1983) showed that My converges in distribution to Po(1), it remains an
open problem to determine the rate of convergence for My. More generally, let M x be the number of /7-points which have
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0 (the typical point of IT) as their kth nearest /7-neighbor, and N, 4 the number of IT’-points which have 0 as their kth
nearest IT-neighbor, k = 1, 2, .. .. Note that My ; = Mgand N, 41 = N, 4. It is shown in Yao and Simons (1996, Theorem 1)
and Yao (2010, Remark 11) that for all k,asd — oo, Mg and N, q x converge in distribution to Po(1) and Po(p), respectively.
It will also be of interest to determine the rates of convergence for k > 2.

Remark 5. Consider m+1independent homogeneous Poisson point processes in RY, IT of intensity A, I7; of intensity A;, i =
1, ..., m. Again referring to 0 as the typical point of IT, let N}),d be the number of IT;-points which have 0 as their nearest

M-neighbor,i = 1,...,m,where p = (p1, ..., pm) = (A1/A, ..., Am/A).Let [T" = U IT;and N, ,.a = > iy N;,d,where
Protal = Z:’;] pi. Then IT’ is a homogeneous Poisson point process of intensity ZL Ai, independent of I7, and N, 4 is the

number of IT’-points which have 0 as their nearest IT-neighbor. By (4), we have

1 4\
C1 (,00)/0[20[01% (3\@) = dTv(eC(Npmm,,d% Po(potar))

d
=< Czptotal(l - 67/0[0[’1’)i (i) (8)
B Vd \3v3
forall1 < d < coand 0 < pip < po. Since each I1’-point is a I1;-point with probability p;/prca, the conditional
distribution of (N;qd, o, N,’,’fd) given N, .« = n is multinomial with parameters n, p;/ o, i = 1, ..., m. Denote by
Zl}, ..., Zy', m independent Poisson random variables with respective means p, ..., pm. Let Z, ,, = Zl} + -+ 2z
which is Po( o). Since the conditional distribution of (Z}1, ... ,Zg’) given Z, . = nis also multinomial with parameters
n, Pi/ Peotal, 1 = 1, . .., m, it follows that
P(N, g =jii=1,....m)—PZ,=ji.i=1,....,m)
1 jm
n ol
= [P(Nptotahd = n) - P(Zﬂtoml = n)] ( . ) 1117”1
JiJm pmml

forall (i, ...,jm) € Ay ={(ty, ..., &) : £ > 0, £y + - - - + £y, = n}, implying that
Y PNy =hni=1,..m) = PZy=jii=1,....m)| = P(Npyga =1) = PZp, = N).

(15-+-Jm)€EAn
So,
Ay (LNy gr - NJ) LZy, - Z)) = iy (LN prd)s L)

which together with (8) yields the following corollary.

Corollary 1. For any py > 0, there exists a constant c1(pg) > 0 such that

1 4\
o (po)péml% (ﬁ) < drv(oC(N,},d, - Nplg), Po(p1) x -+ x Po(pm))

d
—Ptotal 1 4
C2Protal(1 — € )ﬁ m s

IA

foralll <d < ooand 0 < Pt < po.
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