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a b s t r a c t

Consider two independent homogeneous Poisson point processes Π of intensity λ and Π ′

of intensity λ′ in d-dimensional Euclidean space. Let qk,d, k = 0, 1, . . ., be the fraction of
Π-points which are the nearest Π-neighbor of precisely k Π ′-points. It is known that as
d → ∞, the qk,d converge to the Poisson probabilities e−λ′/λ(λ′/λ)k/k!, k = 0, 1, . . .. We
derive the (sharp) rate of convergence d−1/2(4/3

√
3)d, which is related to the asymptotic

behavior of the variance of the volumeof the typical cell of the Poisson–Voronoi tessellation
generated by Π . An extension to the case involving more than two independent Poisson
point processes is also considered.

© 2014 Elsevier B.V. All rights reserved.

In this note, we consider two independent homogeneous Poisson point processes Π of intensity λ and Π ′ of intensity λ′

in d-dimensional Euclidean space Rd. Let pk,d, k = 0, 1, . . . , be the fraction of Π-points which are the nearest Π-neighbor
of precisely k otherΠ-points, and qk,d, k = 0, 1, . . . , the fraction ofΠ-points which are the nearestΠ-neighbor of precisely
k Π ′-points. Here for given v ∈ Rd, a point Q ∈ Π is called the nearest Π-neighbor of v if ∥Q − v∥d < ∥u − v∥d for all
u ∈ Π \ {Q} where ∥ · ∥d denotes the Euclidean norm in Rd. By ergodic-type arguments, pk,d and qk,d are well defined. In
their Theorems 5 and 10, Newman et al. (1983) proved that

lim
d→∞

pk,d = e−1/k! and lim
d→∞

qk,d = e−ρρk/k!, (1)

where ρ = λ′/λ. (See also Newman and Rinott, 1985.)
The limit results in (1) can also be formulated in terms of a ‘‘typical point’’ Q of Π , to be translated so that Q = 0 =

(0, . . . , 0), the origin in Rd. Wewill refer to 0 as the typical point ofΠ . (Note that sinceΠ is a Poisson point process, its Palm
distribution at 0 is equivalent to the distribution ofΠ with an independently added point at 0; see e.g. Daley and Vere-Jones
(2007, Proposition 13.1.VII).) Let Md be the number of Π-points which have 0 as their nearest Π-neighbor, and Nρ,d the
number of Π ′-points which have 0 as their nearest Π-neighbor, i.e.

Md = #{u ∈ Π : ∥u − 0∥d < ∥u − v∥d for all v ∈ Π \ {u}},

Nρ,d = #{u′
∈ Π ′

: ∥u′
− 0∥d < ∥u′

− v∥d for all v ∈ Π}

= #(Π ′
∩ Cd), (2)
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where

Cd = {x ∈ Rd
: ∥x − 0∥d < ∥x − u∥d for all u ∈ Π}, (3)

the (typical) Voronoi cell centered at 0 generated by Π ∪ {0} (cf. Okabe et al., 2000). Note that L(Md), the distribution of
Md, is independent of λ and λ′, and L(Nρ,d) depends on λ and λ′ only through ρ = λ′/λ. Then (1) is equivalent to the limit
results that as d → ∞,Md and Nρ,d converge in distribution to Po(1) and Po(ρ), respectively, where Po(ρ) denotes the
Poisson distribution with mean ρ.

In the present note, we derive the rate of convergence for Nρ,d as stated below.

Theorem 1. For any given ρ0 > 0, there exists a constant c1(ρ0) > 0 such that for all 1 ≤ d < ∞ and 0 < ρ ≤ ρ0,

c1(ρ0)ρ
2 1
√
d


4

3
√
3

d

≤ dTV (L(Nρ,d), Po(ρ)) ≤ c2ρ(1 − e−ρ)
1

√
d


4

3
√
3

d

, (4)

where dTV denotes the total variation distance and c2 > 0 is a constant (independent of ρ0).
Proof. Without loss of generality, assume λ = 1, so that ρ = λ′/λ = λ′. Note that Nρ,d has a mixed Poisson distribution.
By (2) and (3), the conditional distribution of Nρ,d given µd(Cd) = v is Po(λ′v) = Po(ρv) where µd(S) denotes the
d-dimensional Lebesgue measure (volume) of measurable S ⊂ Rd. Also, E[µd(Cd)] = 1/λ = 1, and by Alishahi and
Sharifitabar (2008, Theorem 3.1),

var(µd(Cd)) ≤
c2
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for all 1 ≤ d < ∞,

for some constant c2 > 0. By Barbour et al. (1992, Theorem 1.C(ii)), we have

dTV (L(Nρ,d), Po(ρ)) ≤ ρ−1(1 − e−ρ)var(ρµd(Cd))

≤ c2ρ(1 − e−ρ)
1

√
d


4

3
√
3

d

,

establishing the upper bound.
To derive the lower bound, fix a (large) u > 0 and consider the ball of volume u centered at 0, denoted by B = Bu,d.

Applying Lemma 1 below with α1 = ρµd(Cd ∩ B) ≤ ρu, α2 = ρµd(Cd \ B), β1 = E[α1] = ρE[µd(Cd ∩ B)] ≤ ρu, β2 =

E[α2] = ρE[µd(Cd \ B)] = ρ − β1, we have

dTV (L(Nρ,d), Po(ρ)) ≥ P(Nρ,d = 0) − e−ρ

= E[e−ρµd(Cd)] − e−ρ

= E{e−α1−α2 − e−β1−β2}

≥ E{e−β1−β2 [h1(ρu)(α1 − β1)
2
− (α1 − β1)] − e−α1−β2(α2 − β2)}

= e−ρh1(ρu)var(α1) − e−β2E[e−α1(α2 − β2)]

≥ e−ρh1(ρu)var(ρµd(Cd ∩ B))

≥ e−ρh1(ρu)ρ2c
1
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d

,

where the last two inequalities follow from Lemma 2 (with S1 = B and S2 = Rd
\ B) and Lemma 3 (with u ≥ u0 and c > 0

and u0 < ∞ appearing in the statement of Lemma 3). Noting that h1 is nonincreasing, we have for all 1 ≤ d < ∞ and
0 < ρ ≤ ρ0,

dTV (L(Nρ,d), Po(ρ)) ≥ ce−ρ0h1(ρ0u)ρ2 1
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,

where c1(ρ0) = ce−ρ0h1(ρ0u). The proof is complete. �

Remark 1. The lower and upper bounds in (4) may be expressed as

inf
1≤d<∞,0<ρ≤ρ0

dTV (L(Nρ,d), Po(ρ))
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Since Nρ,d has a mixed Poisson distribution, we may apply Barbour et al. (1992, Theorem 3.F) to obtain a lower bound
for dTV (L(Nρ,d), Po(ρ)), which, however, involves the third and fourth moments of µd(Cd). As no good estimates of these
higher-order moments are available, we make use of Lemmas 1–3 to derive the lower bound in (4) which only involves the
second moment of µd(Cd ∩ Bu,d).

Lemma 1. For u > 0, 0 ≤ α1, β1 ≤ u, and α2, β2 ∈ R, we have

e−α1−α2 − e−β1−β2 ≥ e−β1−β2 [h1(u)(α1 − β1)
2
− (α1 − β1)] − e−α1−β2(α2 − β2),

where h1(u) := inf0<|x|≤u(e−x
− 1 + x)/x2 > 0.

Proof. Since e−x
≥ 1 − x for x ∈ R, we have

e−α1−α2 − e−β1−β2 = e−β2 [e−α1e−(α2−β2) − e−β1 ]

≥ e−β2 [e−α1(1 − (α2 − β2)) − e−β1 ]

= e−β1−β2 [e−(α1−β1) − 1] − e−α1−β2(α2 − β2)

≥ e−β1−β2 [h1(u)(α1 − β1)
2
− (α1 − β1)] − e−α1−β2(α2 − β2),

where the last inequality follows from the definition of h1(u) and |α1 − β1| ≤ u, completing the proof. �

Lemma 2. For two measurable subsets S1 and S2 of Rd, let α1 = ρµd(Cd ∩ S1), α2 = ρµd(Cd ∩ S2) and β2 = E[α2] =

ρE[µd(Cd ∩ S2)]. Then E[e−α1(α2 − β2)] ≤ 0, i.e. e−α1 and α2 are nonpositively correlated.
Proof. For any integrable random variables X and Y with E|XY | < ∞,

E[(X − EX)(Y − EY )] = E[X(Y − EY )] = E[(X − EX)Y ].

Noting that α2 = ρ

S2

1Cd(x)dxwhere 1Cd denotes the indicator function of Cd, we have

E[e−α1(α2 − β2)] = E[(e−α1 − E[e−α1 ])α2]

= E

(e−α1 − E[e−α1 ])ρ


S2

1Cd(x)dx


= ρ


S2

E[(e−α1 − E[e−α1 ])1Cd(x)]dx

= ρ


S2

P(x ∈ Cd)E[e−α1 − E[e−α1 ] | x ∈ Cd]dx

= ρ


S2

P(Π ∩ B(x) = ∅){E[e−α1 | Π ∩ B(x) = ∅] − E[e−α1 ]}dx (5)

where the last equality follows from the fact that x ∈ Cd if and only ifΠ ∩B(x) = ∅, with B(x) := {y ∈ Rd
: ∥y−x∥d ≤ ∥x∥d}

(the ball of radius ∥x∥d centered at x). We claim that the conditional distribution of µd(Cd ∩ S1) given Π ∩ B(x) = ∅

is stochastically larger than the (unconditional) distribution of µd(Cd ∩ S1). To show this, we make use of the following
simple coupling argument. Note by the independence properties of the Poisson process that the conditional distribution
of µd(Cd ∩ S1) given Π ∩ B(x) = ∅ is the same as the (unconditional) distribution of µd(C∗

∩ S1) where C∗ denotes the
Voronoi cell centered at 0 generated by (Π \B(x))∪{0}. Since Cd and C∗ are defined on the same probability space, we have
Cd ⊂ C∗ for every realization of Π , so that µd(Cd ∩ S1) ≤ µd(C∗

∩ S1) with probability 1. It follows that the (unconditional)
distribution of µd(Cd ∩ S1) is stochastically smaller than the conditional distribution of µd(Cd ∩ S1) given Π ∩ B(x) = ∅.
Since e−α1 = f (µd(Cd ∩ S1)) with f (x) = e−ρx (a decreasing function), we have

E[e−α1 | Π ∩ B(x) = ∅] ≤ E[e−α1 ],

which together with (5) implies that E[e−α1(α2 − β2)] ≤ 0. The proof is complete. �

Remark 2. It is shown in Yao (2010) that for any measurable subsets S1 and S2 of Rd, µd(Cd ∩ S1) and µd(Cd ∩ S2) are
nonnegatively correlated. We can use the same argument as in the proof of Lemma 2 to show more generally that for
any nondecreasing function f : R → R, f (µd(Cd ∩ S1)) and µd(Cd ∩ S2) are nonnegatively correlated provided that
E[|f (µd(Cd ∩ S1))|] < ∞ and E[|f (µd(Cd ∩ S1))|µd(Cd ∩ S2)] < ∞.

Lemma 3. Assume λ = 1 (the intensity of Π). Then there exist constants c > 0 and u0 < ∞ such that for all u ≥ u0 and
1 ≤ d < ∞,

var(µd(Cd ∩ Bu,d)) ≥ c
1

√
d


4

3
√
3

d

,

where Bu,d ⊂ Rd denotes the ball of volume u centered at 0.
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Proof. We need several results in Alishahi and Sharifitabar (2008, Sections 3 and 4). By Alishahi and Sharifitabar (2008,
Remark 3.2), there exists a constant c ′ > 0 such that

var(µd(Cd)) ≥ c ′
1

√
d


4

3
√
3

d

for all 1 ≤ d < ∞. (6)

Define Rd(u) = µd−1
d (Cd ∩ ∂Bu,d)/µ

d−1
d (∂Bu,d) where µd−1

d denotes the (d − 1)-dimensional Hausdorff measure (surface
area) in Rd and ∂Bu,d denotes the boundary of Bu,d (which is a (d − 1)-dimensional sphere). By Alishahi and Sharifitabar
(2008, Lemmas 4.1 and 4.2),

µd(Cd \ Bu,d) = µd(Cd) − µd(Cd ∩ Bu,d) =


∞

u
Rd(v)dv,

E[Rd(v)] = e−v, and E[µd(Cd \ Bu,d)] =
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so that
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where the Cauchy–Schwarz inequality is applied to the inner (dv) integral to yield the first inequality and the second
inequality follows from the fact that

var(Rd(v)) ≤ c ′′ve−v 1
√
d


4

3
√
3

d

for all 1 ≤ d < ∞

for some constant c ′′ > 0 (cf. Alishahi and Sharifitabar, 2008, p. 929). Sinceµd(Cd ∩Bu,d)+µd(Cd \Bu,d) = µd(Cd), it follows
from Minkowski’s inequality, (6) and (7) that for all 1 ≤ d < ∞,

var(µd(Cd ∩ Bu,d)) ≥
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So for all (large) u satisfying c ′ > c ′′u−1


∞

u v3e−vdv, we have

var(µd(Cd ∩ Bu,d)) ≥ h2(u)
1
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for all 1 ≤ d < ∞,

where h2(u) = [(c ′)1/2 − (c ′′u−1


∞

u v3e−vdv)1/2]2. Observing that h2(u) → c ′ > 0 as u → ∞, the proof is complete. �

Remark 3. According to Alishahi and Sharifitabar (2008, Remark 3.1), the constant c2 in (4) may be taken to be 5. Since
1 − e−ρ

≤ ρ, (4) may be rewritten as

c1(ρ0)ρ
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≤ dTV (L(Nρ,d), Po(ρ)) ≤ c2ρ2 1
√
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
4
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for all 1 ≤ d < ∞ and 0 < ρ ≤ ρ0. This indicates that ρ2d−1/2(4/3
√
3)d is the rate of Poisson approximation for small ρ

and large d.

Remark 4. Theorem 1 indicates that the rate of Poisson approximation for Nρ,d is closely related to the asymptotic behavior
of var(µd(Cd)) as d → ∞. While Newman et al. (1983) showed that Md converges in distribution to Po(1), it remains an
open problem to determine the rate of convergence forMd. More generally, letMd,k be the number of Π-points which have
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0 (the typical point of Π ) as their kth nearest Π-neighbor, and Nρ,d,k the number of Π ′-points which have 0 as their kth
nearest Π-neighbor, k = 1, 2, . . .. Note thatMd,1 = Md and Nρ,d,1 = Nρ,d. It is shown in Yao and Simons (1996, Theorem 1)
and Yao (2010, Remark 11) that for all k, as d → ∞,Md,k andNρ,d,k converge in distribution to Po(1) and Po(ρ), respectively.
It will also be of interest to determine the rates of convergence for k ≥ 2.

Remark 5. Considerm+1 independent homogeneous Poisson point processes inRd, Π of intensityλ, Πi of intensityλi, i =

1, . . . ,m. Again referring to 0 as the typical point of Π , let N i
ρ,d be the number of Πi-points which have 0 as their nearest

Π-neighbor, i = 1, . . . ,m, whereρ = (ρ1, . . . , ρm) = (λ1/λ, . . . , λm/λ). LetΠ ′
= ∪

m
i=1 Πi andNρtotal,d =

m
i=1 N

i
ρ,d, where

ρtotal =
m

i=1 ρi. Then Π ′ is a homogeneous Poisson point process of intensity
m

i=1 λi, independent of Π , and Nρtotal,d is the
number of Π ′-points which have 0 as their nearest Π-neighbor. By (4), we have

c1(ρ0)ρ
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≤ dTV (L(Nρtotal,d), Po(ρtotal))

≤ c2ρtotal(1 − e−ρtotal)
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d

(8)

for all 1 ≤ d < ∞ and 0 < ρtotal ≤ ρ0. Since each Π ′-point is a Πi-point with probability ρi/ρtotal, the conditional
distribution of (N1

ρ,d, . . . ,N
m
ρ,d) given Nρtotal,d = n is multinomial with parameters n, ρi/ρtotal, i = 1, . . . ,m. Denote by

Z1
ρ , . . . , Zm

ρ ,m independent Poisson random variables with respective means ρ1, . . . , ρm. Let Zρtotal = Z1
ρ + · · · + Zm

ρ ,
which is Po(ρtotal). Since the conditional distribution of (Z1

ρ , . . . , Zm
ρ ) given Zρtotal = n is also multinomial with parameters

n, ρi/ρtotal, i = 1, . . . ,m, it follows that

P(N i
ρ,d = ji, i = 1, . . . ,m) − P(Z i

ρ = ji, i = 1, . . . ,m)

= [P(Nρtotal,d = n) − P(Zρtotal = n)]


n
j1 · · · jm


ρ
j1
1 · · · ρ

jm
m

ρn
total

for all (j1, . . . , jm) ∈ An = {(ℓ1, . . . , ℓm) : ℓi ≥ 0, ℓ1 + · · · + ℓm = n}, implying that
(j1,...,jm)∈An

|P(N i
ρ,d = ji, i = 1, . . . ,m) − P(Z i

ρ = ji, i = 1, . . . ,m)| = |P(Nρtotal,d = n) − P(Zρtotal = n)|.

So,

dTV (L(N1
ρ,d, . . . ,N

m
ρ,d), L(Z1

ρ , . . . , Zm
ρ )) = dTV (L(Nρtotal,d), L(Zρtotal)),

which together with (8) yields the following corollary.

Corollary 1. For any ρ0 > 0, there exists a constant c1(ρ0) > 0 such that

c1(ρ0)ρ
2
total
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d


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≤ dTV (L(N1
ρ,d, . . . ,N

m
ρ,d), Po(ρ1) × · · · × Po(ρm))

≤ c2ρtotal(1 − e−ρtotal)
1

√
d


4

3
√
3

d

,

for all 1 ≤ d < ∞ and 0 < ρtotal ≤ ρ0.

Acknowledgment

The author gratefully acknowledges support from the National Science Council of Taiwan under grant NSC 102-2118-M-
001-006.

References

Alishahi, K., Sharifitabar, M., 2008. Volume degeneracy of the typical cell and the chord length distribution for Poisson–Voronoi tessellations in high
dimensions. Adv. Appl. Probab. 40, 919–938.

Barbour, A.D., Holst, L., Janson, S., 1992. Poisson Approximation. Clarendon Press, Oxford.
Daley, D.J., Vere-Jones, D., 2007. An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, second ed. Springer, New York.
Newman, C.M., Rinott, Y., 1985. Nearest neighbors and Voronoi volumes in high-dimensional point processes with various distance functions. Adv. Appl.

Probab. 17, 794–809.
Newman, C.M., Rinott, Y., Tversky, A., 1983. Nearest neighbors and Voronoi regions in certain point processes. Adv. Appl. Probab. 15, 726–751.
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, second ed. JohnWiley, Chichester.
Yao, Y.-C., 2010. On variances of partial volumes of the typical cell of a Poisson–Voronoi tessellation and large-dimensional volume degeneracy. Adv. Appl.

Probab. 42, 359–370.
Yao, Y.-C., Simons, G., 1996. A large-dimensional independent and identically distributed property for nearest neighbor counts in Poisson processes. Ann.

Appl. Probab. 6, 561–571.

http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref1
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref2
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref3
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref4
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref5
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref6
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref7
http://refhub.elsevier.com/S0167-7152(14)00190-4/sbref8

	Rate of Poisson approximation for nearest neighbor counts in large-dimensional Poisson point processes
	Acknowledgment
	References


