Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Rate of Poisson approximation for nearest neighbor counts in large-dimensional Poisson point processes

Yi-Ching Yao

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

ARTICLE INFO

Article history: Received 29 October 2013 Received in revised form 22 May 2014 Accepted 27 May 2014 Available online 4 June 2014

MSC: primary 60D05 secondary 60G55

Keywords: Typical point Typical cell Voronoi tessellation Total variation distance

ABSTRACT

Consider two independent homogeneous Poisson point processes Π of intensity λ and Π' of intensity λ' in *d*-dimensional Euclidean space. Let $q_{k,d}$, $k = 0, 1, \ldots$, be the fraction of Π -points which are the nearest Π -neighbor of precisely $k \Pi'$ -points. It is known that as $d \to \infty$, the $q_{k,d}$ converge to the Poisson probabilities $e^{-\lambda'/\lambda} (\lambda'/\lambda)^k / k!$, $k = 0, 1, \ldots$. We derive the (sharp) rate of convergence $d^{-1/2} (4/3\sqrt{3})^d$, which is related to the asymptotic behavior of the variance of the volume of the typical cell of the Poisson–Voronoi tessellation generated by Π . An extension to the case involving more than two independent Poisson point processes is also considered.

© 2014 Elsevier B.V. All rights reserved.

In this note, we consider two independent homogeneous Poisson point processes Π of intensity λ and Π' of intensity λ' in *d*-dimensional Euclidean space \mathbb{R}^d . Let $p_{k,d}$, $k = 0, 1, \ldots$, be the fraction of Π -points which are the nearest Π -neighbor of precisely *k* other Π -points, and $q_{k,d}$, $k = 0, 1, \ldots$, the fraction of Π -points which are the nearest Π -neighbor of precisely *k* Π' -points. Here for given $\mathbf{v} \in \mathbb{R}^d$, a point $Q \in \Pi$ is called the nearest Π -neighbor of \mathbf{v} if $\|Q - \mathbf{v}\|_d < \|\mathbf{u} - \mathbf{v}\|_d$ for all $\mathbf{u} \in \Pi \setminus \{\mathbf{Q}\}$ where $\|\cdot\|_d$ denotes the Euclidean norm in \mathbb{R}^d . By ergodic-type arguments, $p_{k,d}$ and $q_{k,d}$ are well defined. In their Theorems 5 and 10, Newman et al. (1983) proved that

$$\lim_{d \to \infty} p_{k,d} = e^{-1}/k! \quad \text{and} \quad \lim_{d \to \infty} q_{k,d} = e^{-\rho} \rho^k/k!, \tag{1}$$

where $\rho = \lambda' / \lambda$. (See also Newman and Rinott, 1985.)

The limit results in (1) can also be formulated in terms of a "typical point" Q of Π , to be translated so that $Q = \mathbf{0} = (0, \ldots, 0)$, the origin in \mathbb{R}^d . We will refer to $\mathbf{0}$ as the typical point of Π . (Note that since Π is a Poisson point process, its Palm distribution at $\mathbf{0}$ is equivalent to the distribution of Π with an independently added point at $\mathbf{0}$; see e.g. Daley and Vere-Jones (2007, Proposition 13.1.VII).) Let M_d be the number of Π -points which have $\mathbf{0}$ as their nearest Π -neighbor, and $N_{\rho,d}$ the number of Π '-points which have $\mathbf{0}$ as their nearest Π -neighbor, i.e.

$$M_{d} = \#\{\mathbf{u} \in \Pi : \|\mathbf{u} - \mathbf{0}\|_{d} < \|\mathbf{u} - \mathbf{v}\|_{d} \text{ for all } \mathbf{v} \in \Pi \setminus \{\mathbf{u}\}\},$$

$$N_{\rho,d} = \#\{\mathbf{u}' \in \Pi' : \|\mathbf{u}' - \mathbf{0}\|_{d} < \|\mathbf{u}' - \mathbf{v}\|_{d} \text{ for all } \mathbf{v} \in \Pi\}$$

$$= \#(\Pi' \cap C_{d}),$$
(2)

E-mail address: yao@stat.sinica.edu.tw.

http://dx.doi.org/10.1016/j.spl.2014.05.014 0167-7152/© 2014 Elsevier B.V. All rights reserved.

where

$$C_d = \{ \mathbf{x} \in \mathbb{R}^d : \| \mathbf{x} - \mathbf{0} \|_d < \| \mathbf{x} - \mathbf{u} \|_d \text{ for all } \mathbf{u} \in \Pi \},$$
(3)

the (typical) Voronoi cell centered at **0** generated by $\Pi \cup \{\mathbf{0}\}$ (cf. Okabe et al., 2000). Note that $\mathcal{L}(M_d)$, the distribution of M_d , is independent of λ and λ' , and $\mathcal{L}(N_{\rho,d})$ depends on λ and λ' only through $\rho = \lambda'/\lambda$. Then (1) is equivalent to the limit results that as $d \to \infty$, M_d and $N_{\rho,d}$ converge in distribution to Po(1) and $Po(\rho)$, respectively, where $Po(\rho)$ denotes the Poisson distribution with mean ρ .

In the present note, we derive the rate of convergence for $N_{\rho,d}$ as stated below.

Theorem 1. For any given $\rho_0 > 0$, there exists a constant $c_1(\rho_0) > 0$ such that for all $1 \le d < \infty$ and $0 < \rho \le \rho_0$,

$$c_1(\rho_0)\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \le d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \le c_2\rho(1 - e^{-\rho})\frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d,\tag{4}$$

where d_{TV} denotes the total variation distance and $c_2 > 0$ is a constant (independent of ρ_0).

Proof. Without loss of generality, assume $\lambda = 1$, so that $\rho = \lambda'/\lambda = \lambda'$. Note that $N_{\rho,d}$ has a mixed Poisson distribution. By (2) and (3), the conditional distribution of $N_{\rho,d}$ given $\mu_d(C_d) = v$ is $Po(\lambda'v) = Po(\rho v)$ where $\mu_d(S)$ denotes the *d*-dimensional Lebesgue measure (volume) of measurable $S \subset \mathbb{R}^d$. Also, $\mathbb{E}[\mu_d(C_d)] = 1/\lambda = 1$, and by Alishahi and Sharifitabar (2008, Theorem 3.1),

$$\operatorname{var}(\mu_d(C_d)) \leq \frac{c_2}{\lambda^2} \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d = c_2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \quad \text{for all } 1 \leq d < \infty,$$

for some constant $c_2 > 0$. By Barbour et al. (1992, Theorem 1.C(ii)), we have

$$d_{TV}(\mathcal{L}(N_{\rho,d}), \operatorname{Po}(\rho)) \leq \rho^{-1}(1 - e^{-\rho})\operatorname{var}(\rho\mu_d(C_d))$$
$$\leq c_2\rho(1 - e^{-\rho})\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^d,$$

establishing the upper bound.

To derive the lower bound, fix a (large) u > 0 and consider the ball of volume u centered at **0**, denoted by $B = B_{u,d}$. Applying Lemma 1 below with $\alpha_1 = \rho \mu_d(C_d \cap B) \le \rho u$, $\alpha_2 = \rho \mu_d(C_d \setminus B)$, $\beta_1 = E[\alpha_1] = \rho E[\mu_d(C_d \cap B)] \le \rho u$, $\beta_2 = E[\alpha_2] = \rho E[\mu_d(C_d \setminus B)] = \rho - \beta_1$, we have

$$\begin{split} d_{\mathrm{TV}}(\mathcal{L}(N_{\rho,d}), \mathsf{Po}(\rho)) &\geq P(N_{\rho,d} = 0) - e^{-\rho} \\ &= \mathrm{E}[e^{-\rho\mu_d(C_d)}] - e^{-\rho} \\ &= \mathrm{E}\{e^{-\alpha_1 - \alpha_2} - e^{-\beta_1 - \beta_2}\} \\ &\geq \mathrm{E}\{e^{-\beta_1 - \beta_2}[h_1(\rho u)(\alpha_1 - \beta_1)^2 - (\alpha_1 - \beta_1)] - e^{-\alpha_1 - \beta_2}(\alpha_2 - \beta_2)\} \\ &= e^{-\rho}h_1(\rho u)\mathrm{var}(\alpha_1) - e^{-\beta_2}\mathrm{E}[e^{-\alpha_1}(\alpha_2 - \beta_2)] \\ &\geq e^{-\rho}h_1(\rho u)\mathrm{var}(\rho\mu_d(C_d \cap B)) \\ &\geq e^{-\rho}h_1(\rho u)\rho^2 c \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d, \end{split}$$

where the last two inequalities follow from Lemma 2 (with $S_1 = B$ and $S_2 = \mathbb{R}^d \setminus B$) and Lemma 3 (with $u \ge u_0$ and c > 0and $u_0 < \infty$ appearing in the statement of Lemma 3). Noting that h_1 is nonincreasing, we have for all $1 \le d < \infty$ and $0 < \rho \le \rho_0$,

$$d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \ge ce^{-\rho_0}h_1(\rho_0 u)\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d$$
$$= c_1(\rho_0)\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d,$$

where $c_1(\rho_0) = ce^{-\rho_0}h_1(\rho_0 u)$. The proof is complete. \Box

Remark 1. The lower and upper bounds in (4) may be expressed as

$$\inf_{\substack{1 \le d < \infty, 0 < \rho \le \rho_0}} d_{TV}(\mathcal{L}(N_{\rho,d}), \operatorname{Po}(\rho)) \middle/ \left[\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}} \right)^d \right] > 0,$$
$$\sup_{\substack{1 \le d < \infty, \rho > 0}} d_{TV}(\mathcal{L}(N_{\rho,d}), \operatorname{Po}(\rho)) \middle/ \left[\rho(1 - e^{-\rho}) \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}} \right)^d \right] < \infty.$$

Since $N_{\rho,d}$ has a mixed Poisson distribution, we may apply Barbour et al. (1992, Theorem 3.F) to obtain a lower bound for $d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho))$, which, however, involves the third and fourth moments of $\mu_d(C_d)$. As no good estimates of these higher-order moments are available, we make use of Lemmas 1–3 to derive the lower bound in (4) which only involves the second moment of $\mu_d(C_d \cap B_{u,d})$.

Lemma 1. For $u > 0, 0 \le \alpha_1, \beta_1 \le u$, and $\alpha_2, \beta_2 \in \mathbb{R}$, we have

$$-\alpha_1 - \alpha_2 - e^{-\beta_1 - \beta_2} \ge e^{-\beta_1 - \beta_2} [h_1(u)(\alpha_1 - \beta_1)^2 - (\alpha_1 - \beta_1)] - e^{-\alpha_1 - \beta_2}(\alpha_2 - \beta_2),$$

where $h_1(u) := \inf_{0 < |x| \le u} (e^{-x} - 1 + x)/x^2 > 0.$

Proof. Since $e^{-x} \ge 1 - x$ for $x \in \mathbb{R}$, we have

е

$$\begin{aligned} e^{-\alpha_1 - \alpha_2} - e^{-\beta_1 - \beta_2} &= e^{-\beta_2} [e^{-\alpha_1} e^{-(\alpha_2 - \beta_2)} - e^{-\beta_1}] \\ &\geq e^{-\beta_2} [e^{-\alpha_1} (1 - (\alpha_2 - \beta_2)) - e^{-\beta_1}] \\ &= e^{-\beta_1 - \beta_2} [e^{-(\alpha_1 - \beta_1)} - 1] - e^{-\alpha_1 - \beta_2} (\alpha_2 - \beta_2) \\ &\geq e^{-\beta_1 - \beta_2} [h_1(u)(\alpha_1 - \beta_1)^2 - (\alpha_1 - \beta_1)] - e^{-\alpha_1 - \beta_2} (\alpha_2 - \beta_2), \end{aligned}$$

where the last inequality follows from the definition of $h_1(u)$ and $|\alpha_1 - \beta_1| \le u$, completing the proof. \Box

Lemma 2. For two measurable subsets S_1 and S_2 of \mathbb{R}^d , let $\alpha_1 = \rho \mu_d(C_d \cap S_1), \alpha_2 = \rho \mu_d(C_d \cap S_2)$ and $\beta_2 = \mathbb{E}[\alpha_2] = \rho \mathbb{E}[\mu_d(C_d \cap S_2)]$. Then $\mathbb{E}[e^{-\alpha_1}(\alpha_2 - \beta_2)] \leq 0$, i.e. $e^{-\alpha_1}$ and α_2 are nonpositively correlated.

Proof. For any integrable random variables *X* and *Y* with $E|XY| < \infty$,

$$E[(X - EX)(Y - EY)] = E[X(Y - EY)] = E[(X - EX)Y].$$

Noting that $\alpha_2 = \rho \int_{S_2} \mathbf{1}_{C_d}(\mathbf{x}) d\mathbf{x}$ where $\mathbf{1}_{C_d}$ denotes the indicator function of C_d , we have

$$E[e^{-\alpha_{1}}(\alpha_{2} - \beta_{2})] = E[(e^{-\alpha_{1}} - E[e^{-\alpha_{1}}])\alpha_{2}]$$

$$= E\left[(e^{-\alpha_{1}} - E[e^{-\alpha_{1}}])\rho \int_{S_{2}} \mathbf{1}_{C_{d}}(\mathbf{x})d\mathbf{x}\right]$$

$$= \rho \int_{S_{2}} E[(e^{-\alpha_{1}} - E[e^{-\alpha_{1}}])\mathbf{1}_{C_{d}}(\mathbf{x})]d\mathbf{x}$$

$$= \rho \int_{S_{2}} P(\mathbf{x} \in C_{d})E[e^{-\alpha_{1}} - E[e^{-\alpha_{1}}] \mid \mathbf{x} \in C_{d}]d\mathbf{x}$$

$$= \rho \int_{S_{2}} P(\Pi \cap B(\mathbf{x}) = \emptyset)\{E[e^{-\alpha_{1}} \mid \Pi \cap B(\mathbf{x}) = \emptyset] - E[e^{-\alpha_{1}}]\}d\mathbf{x}$$
(5)

where the last equality follows from the fact that $\mathbf{x} \in C_d$ if and only if $\Pi \cap B(\mathbf{x}) = \emptyset$, with $B(\mathbf{x}) := \{\mathbf{y} \in \mathbb{R}^d : \|\mathbf{y}-\mathbf{x}\|_d \le \|\mathbf{x}\|_d\}$ (the ball of radius $\|\mathbf{x}\|_d$ centered at \mathbf{x}). We claim that the conditional distribution of $\mu_d(C_d \cap S_1)$ given $\Pi \cap B(\mathbf{x}) = \emptyset$ is stochastically larger than the (unconditional) distribution of $\mu_d(C_d \cap S_1)$. To show this, we make use of the following simple coupling argument. Note by the independence properties of the Poisson process that the conditional distribution of $\mu_d(C_d \cap S_1)$ given $\Pi \cap B(\mathbf{x}) = \emptyset$ is the same as the (unconditional) distribution of $\mu_d(C^* \cap S_1)$ where C^* denotes the Voronoi cell centered at $\mathbf{0}$ generated by ($\Pi \setminus B(\mathbf{x}) \cup \{\mathbf{0}\}$. Since C_d and C^* are defined on the same probability space, we have $C_d \subset C^*$ for every realization of Π , so that $\mu_d(C_d \cap S_1) \le \mu_d(C^* \cap S_1)$ with probability 1. It follows that the (unconditional) distribution of $\mu_d(C_d \cap S_1)$ is stochastically smaller than the conditional distribution of $\mu_d(C_d \cap S_1)$ given $\Pi \cap B(\mathbf{x}) = \emptyset$. Since $e^{-\alpha_1} = f(\mu_d(C_d \cap S_1))$ with $f(x) = e^{-\rho x}$ (a decreasing function), we have

$$\mathbb{E}[e^{-\alpha_1} \mid \Pi \cap B(\mathbf{x}) = \emptyset] \le \mathbb{E}[e^{-\alpha_1}],$$

which together with (5) implies that $E[e^{-\alpha_1}(\alpha_2 - \beta_2)] \leq 0$. The proof is complete. \Box

Remark 2. It is shown in Yao (2010) that for any measurable subsets S_1 and S_2 of \mathbb{R}^d , $\mu_d(C_d \cap S_1)$ and $\mu_d(C_d \cap S_2)$ are nonnegatively correlated. We can use the same argument as in the proof of Lemma 2 to show more generally that for any nondecreasing function $f : \mathbb{R} \to \mathbb{R}$, $f(\mu_d(C_d \cap S_1))$ and $\mu_d(C_d \cap S_2)$ are nonnegatively correlated provided that $E[[f(\mu_d(C_d \cap S_1))]] < \infty$ and $E[[f(\mu_d(C_d \cap S_1))] \mu_d(C_d \cap S_2)] < \infty$.

Lemma 3. Assume $\lambda = 1$ (the intensity of Π). Then there exist constants c > 0 and $u_0 < \infty$ such that for all $u \ge u_0$ and $1 \le d < \infty$,

$$\operatorname{var}(\mu_d(C_d \cap B_{u,d})) \geq c \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d,$$

where $B_{u,d} \subset \mathbb{R}^d$ denotes the ball of volume *u* centered at **0**.

Proof. We need several results in Alishahi and Sharifitabar (2008, Sections 3 and 4). By Alishahi and Sharifitabar (2008, Remark 3.2), there exists a constant c' > 0 such that

$$\operatorname{var}(\mu_d(C_d)) \ge c' \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \quad \text{for all } 1 \le d < \infty.$$
(6)

Define $R_d(u) = \mu_d^{d-1}(C_d \cap \partial B_{u,d})/\mu_d^{d-1}(\partial B_{u,d})$ where μ_d^{d-1} denotes the (d-1)-dimensional Hausdorff measure (surface area) in \mathbb{R}^d and $\partial B_{u,d}$ denotes the boundary of $B_{u,d}$ (which is a (d-1)-dimensional sphere). By Alishahi and Sharifitabar (2008, Lemmas 4.1 and 4.2),

$$\mu_d(C_d \setminus B_{u,d}) = \mu_d(C_d) - \mu_d(C_d \cap B_{u,d}) = \int_u^\infty R_d(v)dv,$$
$$\mathsf{E}[R_d(v)] = e^{-v}, \quad \text{and} \quad \mathsf{E}[\mu_d(C_d \setminus B_{u,d})] = \int_u^\infty e^{-v}dv,$$

so that

$$\operatorname{var}(\mu_{d}(C_{d} \setminus B_{u,d})) = \mathbb{E}\left[\int_{u}^{\infty} (R_{d}(v) - e^{-v})dv\right]^{2}$$

$$\leq \mathbb{E}\left[\int_{u}^{\infty} v^{2}(R_{d}(v) - e^{-v})^{2}dv\int_{u}^{\infty} v^{-2}dv\right]$$

$$= u^{-1}\int_{u}^{\infty} v^{2}\operatorname{var}(R_{d}(v))dv$$

$$\leq u^{-1}\int_{u}^{\infty} c''v^{3}e^{-v}\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d}dv$$

$$= c''\left(u^{-1}\int_{u}^{\infty} v^{3}e^{-v}dv\right)\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d}$$
(7)

where the Cauchy–Schwarz inequality is applied to the inner (dv) integral to yield the first inequality and the second inequality follows from the fact that

$$\operatorname{var}(R_d(v)) \le c'' v e^{-v} \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \quad \text{for all } 1 \le d < \infty$$

for some constant c'' > 0 (cf. Alishahi and Sharifitabar, 2008, p. 929). Since $\mu_d(C_d \cap B_{u,d}) + \mu_d(C_d \setminus B_{u,d}) = \mu_d(C_d)$, it follows from Minkowski's inequality, (6) and (7) that for all $1 \le d < \infty$,

$$\sqrt{\operatorname{var}(\mu_d(C_d \cap B_{u,d}))} \ge \sqrt{\operatorname{var}(\mu_d(C_d))} - \sqrt{\operatorname{var}(\mu_d(C_d \setminus B_{u,d}))} \\ \ge \left\{ (c')^{1/2} - \left(c''u^{-1} \int_u^\infty v^3 e^{-v} dv \right)^{1/2} \right\} \left\{ \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}} \right)^d \right\}^{1/2}.$$

So for all (large) *u* satisfying $c' > c'' u^{-1} \int_{u}^{\infty} v^3 e^{-v} dv$, we have

$$\operatorname{var}(\mu_d(C_d \cap B_{u,d})) \ge h_2(u) \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \quad \text{for all } 1 \le d < \infty,$$

where $h_2(u) = [(c')^{1/2} - (c''u^{-1}\int_u^{\infty} v^3 e^{-v} dv)^{1/2}]^2$. Observing that $h_2(u) \to c' > 0$ as $u \to \infty$, the proof is complete. \Box

Remark 3. According to Alishahi and Sharifitabar (2008, Remark 3.1), the constant c_2 in (4) may be taken to be 5. Since $1 - e^{-\rho} \le \rho$, (4) may be rewritten as

$$c_1(\rho_0)\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \le d_{TV}(\mathcal{L}(N_{\rho,d}), \operatorname{Po}(\rho)) \le c_2\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d$$

for all $1 \le d < \infty$ and $0 < \rho \le \rho_0$. This indicates that $\rho^2 d^{-1/2} (4/3\sqrt{3})^d$ is the rate of Poisson approximation for small ρ and large d.

Remark 4. Theorem 1 indicates that the rate of Poisson approximation for $N_{\rho,d}$ is closely related to the asymptotic behavior of $var(\mu_d(C_d))$ as $d \to \infty$. While Newman et al. (1983) showed that M_d converges in distribution to Po(1), it remains an open problem to determine the rate of convergence for M_d . More generally, let $M_{d,k}$ be the number of Π -points which have

0 (the typical point of Π) as their *k*th nearest Π -neighbor, and $N_{\rho,d,k}$ the number of Π' -points which have **0** as their *k*th nearest Π -neighbor, $k = 1, 2, \dots$ Note that $M_{d,1} = M_d$ and $N_{\rho,d,1} = N_{\rho,d}$. It is shown in Yao and Simons (1996, Theorem 1) and Yao (2010, Remark 11) that for all k, as $d \to \infty$, $M_{d,k}$ and $N_{\rho,d,k}$ converge in distribution to Po(1) and $Po(\rho)$, respectively. It will also be of interest to determine the rates of convergence for k > 2.

Remark 5. Consider m + 1 independent homogeneous Poisson point processes in \mathbb{R}^d , Π of intensity λ , Π_i of intensity λ_i , i = 11, ..., m. Again referring to **0** as the typical point of Π , let $N_{a,d}^i$ be the number of Π_i -points which have **0** as their nearest Π -neighbor, i = 1, ..., m, where $\rho = (\rho_1, ..., \rho_m) = (\lambda_1/\lambda, ..., \lambda_m/\lambda)$. Let $\Pi' = \bigcup_{i=1}^m \Pi_i$ and $N_{\rho_{total}, d} = \sum_{i=1}^m N_{\rho, d}^i$, where $\rho_{total} = \sum_{i=1}^{m} \rho_i$. Then Π' is a homogeneous Poisson point process of intensity $\sum_{i=1}^{m} \lambda_i$, independent of Π , and $N_{\rho_{total},d}$ is the number of Π' -points which have **0** as their nearest Π -neighbor. By (4), we have

$$c_{1}(\rho_{0})\rho_{total}^{2}\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d} \leq d_{TV}(\mathcal{L}(N_{\rho_{total},d}), \operatorname{Po}(\rho_{total}))$$
$$\leq c_{2}\rho_{total}(1-e^{-\rho_{total}})\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d}$$
(8)

for all $1 \le d < \infty$ and $0 < \rho_{total} \le \rho_0$. Since each Π' -point is a Π_i -point with probability ρ_i / ρ_{total} , the conditional distribution of $(N_{\rho,d}^1, \ldots, N_{\rho,d}^m)$ given $N_{\rho_{total},d} = n$ is multinomial with parameters $n, \rho_i/\rho_{total}, i = 1, \ldots, m$. Denote by $Z_{\rho}^{1}, \ldots, Z_{\rho}^{m}, m$ independent Poisson random variables with respective means $\rho_{1}, \ldots, \rho_{m}$. Let $Z_{\rho_{total}} = Z_{\rho}^{1} + \cdots + Z_{\rho}^{m}$, which is $Po(\rho_{total})$. Since the conditional distribution of $(Z_{\rho}^1, \ldots, Z_{\rho}^m)$ given $Z_{\rho_{total}} = n$ is also multinomial with parameters $n, \rho_i / \rho_{total}, i = 1, \dots, m$, it follows that

$$P(N_{\rho,d}^{i} = j_{i}, i = 1, ..., m) - P(Z_{\rho}^{i} = j_{i}, i = 1, ..., m)$$

= $[P(N_{\rho_{total},d} = n) - P(Z_{\rho_{total}} = n)] {n \choose j_{1} \cdots j_{m}} \frac{\rho_{1}^{j_{1}} \cdots \rho_{m}^{j_{m}}}{\rho_{total}^{n}}$

for all $(i_1, ..., i_m) \in A_n = \{(\ell_1, ..., \ell_m) : \ell_i \ge 0, \ell_1 + \dots + \ell_m = n\}$, implying that

$$\sum_{j_1,\dots,j_m)\in A_n} |P(N_{\rho,d}^i = j_i, i = 1,\dots,m) - P(Z_{\rho}^i = j_i, i = 1,\dots,m)| = |P(N_{\rho_{total},d} = n) - P(Z_{\rho_{total}} = n)|$$

So,

 $d_{TV}(\mathcal{L}(N_{\rho,d}^{1},\ldots,N_{\rho,d}^{m}),\mathcal{L}(Z_{\rho}^{1},\ldots,Z_{\rho}^{m}))=d_{TV}(\mathcal{L}(N_{\rho_{total},d}),\mathcal{L}(Z_{\rho_{total}})),$

which together with (8) yields the following corollary.

Corollary 1. For any $\rho_0 > 0$, there exists a constant $c_1(\rho_0) > 0$ such that

$$\begin{split} c_1(\rho_0)\rho_{total}^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d &\leq d_{TV}(\mathscr{L}(N_{\rho,d}^1,\ldots,N_{\rho,d}^m), \operatorname{Po}(\rho_1)\times\cdots\times\operatorname{Po}(\rho_m)) \\ &\leq c_2\rho_{total}(1-e^{-\rho_{total}})\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^d, \end{split}$$

for all $1 \leq d < \infty$ and $0 < \rho_{total} \leq \rho_0$.

Acknowledgment

The author gratefully acknowledges support from the National Science Council of Taiwan under grant NSC 102-2118-M-001-006.

References

Alishahi, K., Sharifitabar, M., 2008. Volume degeneracy of the typical cell and the chord length distribution for Poisson-Voronoi tessellations in high dimensions. Adv. Appl. Probab. 40, 919-938.

Barbour, A.D., Holst, L., Janson, S., 1992. Poisson Approximation. Clarendon Press, Oxford. Daley, D.J., Vere-Jones, D., 2007. An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, second ed. Springer, New York. Newman, C.M., Rinott, Y., 1985. Nearest neighbors and Voronoi volumes in high-dimensional point processes with various distance functions. Adv. Appl. Probab. 17, 794-809.

Newman, C.M., Rinott, Y., Tversky, A., 1983. Nearest neighbors and Voronoi regions in certain point processes. Adv. Appl. Probab. 15, 726–751.

Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, second ed. John Wiley, Chichester. Yao, Y.-C., 2010. On variances of partial volumes of the typical cell of a Poisson-Voronoi tessellation and large-dimensional volume degeneracy. Adv. Appl. Probab. 42, 359-370.

Yao, Y.-C., Simons, G., 1996. A large-dimensional independent and identically distributed property for nearest neighbor counts in Poisson processes. Ann. Appl. Probab. 6, 561-571.