Rate of Poisson approximation for nearest neighbor counts in large-dimensional Poisson point processes

Yi-Ching Yao
Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

A R TICLE INFO

Article history:

Received 29 October 2013
Received in revised form 22 May 2014
Accepted 27 May 2014
Available online 4 June 2014

MSC:

primary 60D05
secondary 60G55
Keywords:
Typical point
Typical cell
Voronoi tessellation
Total variation distance

Abstract

Consider two independent homogeneous Poisson point processes Π of intensity λ and Π^{\prime} of intensity λ^{\prime} in d-dimensional Euclidean space. Let $q_{k, d}, k=0,1, \ldots$, be the fraction of Π-points which are the nearest Π-neighbor of precisely $k \Pi^{\prime}$-points. It is known that as $d \rightarrow \infty$, the $q_{k, d}$ converge to the Poisson probabilities $e^{-\lambda^{\prime} / \lambda}\left(\lambda^{\prime} / \lambda\right)^{k} / k!, k=0,1, \ldots$ We derive the (sharp) rate of convergence $d^{-1 / 2}(4 / 3 \sqrt{3})^{d}$, which is related to the asymptotic behavior of the variance of the volume of the typical cell of the Poisson-Voronoi tessellation generated by $П$. An extension to the case involving more than two independent Poisson point processes is also considered.

© 2014 Elsevier B.V. All rights reserved.

In this note, we consider two independent homogeneous Poisson point processes Π of intensity λ and Π^{\prime} of intensity λ^{\prime} in d-dimensional Euclidean space \mathbb{R}^{d}. Let $p_{k, d}, k=0,1, \ldots$, be the fraction of Π-points which are the nearest Π-neighbor of precisely k other Π-points, and $q_{k, d}, k=0,1, \ldots$, the fraction of Π-points which are the nearest Π-neighbor of precisely $k \Pi^{\prime}$-points. Here for given $\mathbf{v} \in \mathbb{R}^{d}$, a point $Q \in \Pi$ is called the nearest Π-neighbor of \mathbf{v} if $\|Q-\mathbf{v}\|_{d}<\|\mathbf{u}-\mathbf{v}\|_{d}$ for all $\mathbf{u} \in \Pi \backslash\{\mathbf{Q}\}$ where $\|\cdot\|_{d}$ denotes the Euclidean norm in \mathbb{R}^{d}. By ergodic-type arguments, $p_{k, d}$ and $q_{k, d}$ are well defined. In their Theorems 5 and 10, Newman et al. (1983) proved that

$$
\begin{equation*}
\lim _{d \rightarrow \infty} p_{k, d}=e^{-1} / k!\text { and } \lim _{d \rightarrow \infty} q_{k, d}=e^{-\rho} \rho^{k} / k! \tag{1}
\end{equation*}
$$

where $\rho=\lambda^{\prime} / \lambda$. (See also Newman and Rinott, 1985.)
The limit results in (1) can also be formulated in terms of a "typical point" Q of Π, to be translated so that $Q=\mathbf{0}=$ $(0, \ldots, 0)$, the origin in \mathbb{R}^{d}. We will refer to $\mathbf{0}$ as the typical point of Π. (Note that since Π is a Poisson point process, its Palm distribution at $\mathbf{0}$ is equivalent to the distribution of Π with an independently added point at $\mathbf{0}$; see e.g. Daley and Vere-Jones (2007, Proposition 13.1.VII).) Let M_{d} be the number of Π-points which have $\mathbf{0}$ as their nearest Π-neighbor, and $N_{\rho, d}$ the number of Π^{\prime}-points which have $\mathbf{0}$ as their nearest Π-neighbor, i.e.

$$
\begin{align*}
M_{d} & =\#\left\{\mathbf{u} \in \Pi:\|\mathbf{u}-\mathbf{0}\|_{d}<\|\mathbf{u}-\mathbf{v}\|_{d} \text { for all } \mathbf{v} \in \Pi \backslash\{\mathbf{u}\}\right\} \\
N_{\rho, d} & =\#\left\{\mathbf{u}^{\prime} \in \Pi^{\prime}:\left\|\mathbf{u}^{\prime}-\mathbf{0}\right\|_{d}<\left\|\mathbf{u}^{\prime}-\mathbf{v}\right\|_{d} \text { for all } \mathbf{v} \in \Pi\right\} \\
& =\#\left(\Pi^{\prime} \cap C_{d}\right), \tag{2}
\end{align*}
$$

[^0]where
\[

$$
\begin{equation*}
C_{d}=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}-\mathbf{0}\|_{d}<\|\mathbf{x}-\mathbf{u}\|_{d} \text { for all } \mathbf{u} \in \Pi\right\}, \tag{3}
\end{equation*}
$$

\]

the (typical) Voronoi cell centered at $\mathbf{0}$ generated by $\Pi \cup\{\mathbf{0}\}$ (cf. Okabe et al., 2000). Note that $\mathcal{L}\left(M_{d}\right)$, the distribution of M_{d}, is independent of λ and λ^{\prime}, and $\mathcal{L}\left(N_{\rho, d}\right)$ depends on λ and λ^{\prime} only through $\rho=\lambda^{\prime} / \lambda$. Then (1) is equivalent to the limit results that as $d \rightarrow \infty, M_{d}$ and $N_{\rho, d}$ converge in distribution to $\operatorname{Po}(1)$ and $\operatorname{Po}(\rho)$, respectively, where $\operatorname{Po}(\rho)$ denotes the Poisson distribution with mean ρ.

In the present note, we derive the rate of convergence for $N_{\rho, d}$ as stated below.
Theorem 1. For any given $\rho_{0}>0$, there exists a constant $c_{1}\left(\rho_{0}\right)>0$ such that for all $1 \leq d<\infty$ and $0<\rho \leq \rho_{0}$,

$$
\begin{equation*}
c_{1}\left(\rho_{0}\right) \rho^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \leq d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), \operatorname{Po}(\rho)\right) \leq c_{2} \rho\left(1-e^{-\rho}\right) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \tag{4}
\end{equation*}
$$

where $d_{T V}$ denotes the total variation distance and $c_{2}>0$ is a constant (independent of ρ_{0}).
Proof. Without loss of generality, assume $\lambda=1$, so that $\rho=\lambda^{\prime} / \lambda=\lambda^{\prime}$. Note that $N_{\rho, d}$ has a mixed Poisson distribution. By (2) and (3), the conditional distribution of $N_{\rho, d}$ given $\mu_{d}\left(C_{d}\right)=v$ is $\operatorname{Po}\left(\lambda^{\prime} v\right)=\operatorname{Po}(\rho v)$ where $\mu_{d}(S)$ denotes the d-dimensional Lebesgue measure (volume) of measurable $S \subset \mathbb{R}^{d}$. Also, $E\left[\mu_{d}\left(C_{d}\right)\right]=1 / \lambda=1$, and by Alishahi and Sharifitabar (2008, Theorem 3.1),

$$
\operatorname{var}\left(\mu_{d}\left(C_{d}\right)\right) \leq \frac{c_{2}}{\lambda^{2}} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d}=c_{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \quad \text { for all } 1 \leq d<\infty,
$$

for some constant $c_{2}>0$. By Barbour et al. (1992, Theorem 1.C(ii)), we have

$$
\begin{aligned}
d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), P o(\rho)\right) & \leq \rho^{-1}\left(1-e^{-\rho}\right) \operatorname{var}\left(\rho \mu_{d}\left(C_{d}\right)\right) \\
& \leq c_{2} \rho\left(1-e^{-\rho}\right) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d},
\end{aligned}
$$

establishing the upper bound.
To derive the lower bound, fix a (large) $u>0$ and consider the ball of volume u centered at $\mathbf{0}$, denoted by $B=B_{u, d}$. Applying Lemma 1 below with $\alpha_{1}=\rho \mu_{d}\left(C_{d} \cap B\right) \leq \rho u, \alpha_{2}=\rho \mu_{d}\left(C_{d} \backslash B\right), \beta_{1}=\mathrm{E}\left[\alpha_{1}\right]=\rho \mathrm{E}\left[\mu_{d}\left(C_{d} \cap B\right)\right] \leq \rho u, \beta_{2}=$ $\mathrm{E}\left[\alpha_{2}\right]=\rho \mathrm{E}\left[\mu_{d}\left(C_{d} \backslash B\right)\right]=\rho-\beta_{1}$, we have

$$
\begin{aligned}
d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), P o(\rho)\right) & \geq P\left(N_{\rho, d}=0\right)-e^{-\rho} \\
& =\mathrm{E}\left[e^{-\rho \mu_{d}\left(C_{d}\right)}\right]-e^{-\rho} \\
& =\mathrm{E}\left\{e^{-\alpha_{1}-\alpha_{2}}-e^{-\beta_{1}-\beta_{2}}\right\} \\
& \geq \mathrm{E}\left\{e^{-\beta_{1}-\beta_{2}}\left[h_{1}(\rho u)\left(\alpha_{1}-\beta_{1}\right)^{2}-\left(\alpha_{1}-\beta_{1}\right)\right]-e^{-\alpha_{1}-\beta_{2}}\left(\alpha_{2}-\beta_{2}\right)\right\} \\
& =e^{-\rho} h_{1}(\rho u) \operatorname{var}\left(\alpha_{1}\right)-e^{-\beta_{2}} \mathrm{E}\left[e^{-\alpha_{1}}\left(\alpha_{2}-\beta_{2}\right)\right] \\
& \geq e^{-\rho} h_{1}(\rho u) \operatorname{var}\left(\rho \mu_{d}\left(C_{d} \cap B\right)\right) \\
& \geq e^{-\rho} h_{1}(\rho u) \rho^{2} c \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d},
\end{aligned}
$$

where the last two inequalities follow from Lemma 2 (with $S_{1}=B$ and $S_{2}=\mathbb{R}^{d} \backslash B$) and Lemma 3 (with $u \geq u_{0}$ and $c>0$ and $u_{0}<\infty$ appearing in the statement of Lemma 3). Noting that h_{1} is nonincreasing, we have for all $1 \leq d<\infty$ and $0<\rho \leq \rho_{0}$,

$$
\begin{aligned}
d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), P o(\rho)\right) & \geq c e^{-\rho_{0}} h_{1}\left(\rho_{0} u\right) \rho^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \\
& =c_{1}\left(\rho_{0}\right) \rho^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d},
\end{aligned}
$$

where $c_{1}\left(\rho_{0}\right)=c e^{-\rho_{0}} h_{1}\left(\rho_{0} u\right)$. The proof is complete.
Remark 1. The lower and upper bounds in (4) may be expressed as

$$
\begin{aligned}
& \inf _{1 \leq d<\infty, 0<\rho \leq \rho_{0}} d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), P o(\rho)\right) /\left[\rho^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d}\right]>0, \\
& \sup _{1 \leq d<\infty, \rho>0} d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), \operatorname{Po}(\rho)\right) /\left[\rho\left(1-e^{-\rho}\right) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d}\right]<\infty .
\end{aligned}
$$

Since $N_{\rho, d}$ has a mixed Poisson distribution, we may apply Barbour et al. (1992, Theorem 3.F) to obtain a lower bound for $d_{T V}\left(\mathcal{L}\left(N_{\rho, d}\right), \operatorname{Po}(\rho)\right)$, which, however, involves the third and fourth moments of $\mu_{d}\left(C_{d}\right)$. As no good estimates of these higher-order moments are available, we make use of Lemmas 1-3 to derive the lower bound in (4) which only involves the second moment of $\mu_{d}\left(C_{d} \cap B_{u, d}\right)$.

Lemma 1. For $u>0,0 \leq \alpha_{1}, \beta_{1} \leq u$, and $\alpha_{2}, \beta_{2} \in \mathbb{R}$, we have

$$
e^{-\alpha_{1}-\alpha_{2}}-e^{-\beta_{1}-\beta_{2}} \geq e^{-\beta_{1}-\beta_{2}}\left[h_{1}(u)\left(\alpha_{1}-\beta_{1}\right)^{2}-\left(\alpha_{1}-\beta_{1}\right)\right]-e^{-\alpha_{1}-\beta_{2}}\left(\alpha_{2}-\beta_{2}\right),
$$

where $h_{1}(u):=\inf _{0<|x| \leq u}\left(e^{-x}-1+x\right) / x^{2}>0$.
Proof. Since $e^{-x} \geq 1-x$ for $x \in \mathbb{R}$, we have

$$
\begin{aligned}
e^{-\alpha_{1}-\alpha_{2}}-e^{-\beta_{1}-\beta_{2}} & =e^{-\beta_{2}}\left[e^{-\alpha_{1}} e^{-\left(\alpha_{2}-\beta_{2}\right)}-e^{-\beta_{1}}\right] \\
& \geq e^{-\beta_{2}}\left[e^{-\alpha_{1}}\left(1-\left(\alpha_{2}-\beta_{2}\right)\right)-e^{-\beta_{1}}\right] \\
& =e^{-\beta_{1}-\beta_{2}}\left[e^{-\left(\alpha_{1}-\beta_{1}\right)}-1\right]-e^{-\alpha_{1}-\beta_{2}}\left(\alpha_{2}-\beta_{2}\right) \\
& \geq e^{-\beta_{1}-\beta_{2}}\left[h_{1}(u)\left(\alpha_{1}-\beta_{1}\right)^{2}-\left(\alpha_{1}-\beta_{1}\right)\right]-e^{-\alpha_{1}-\beta_{2}}\left(\alpha_{2}-\beta_{2}\right),
\end{aligned}
$$

where the last inequality follows from the definition of $h_{1}(u)$ and $\left|\alpha_{1}-\beta_{1}\right| \leq u$, completing the proof.
Lemma 2. For two measurable subsets S_{1} and S_{2} of \mathbb{R}^{d}, let $\alpha_{1}=\rho \mu_{d}\left(C_{d} \cap S_{1}\right), \alpha_{2}=\rho \mu_{d}\left(C_{d} \cap S_{2}\right)$ and $\beta_{2}=\mathrm{E}\left[\alpha_{2}\right]=$ $\rho \mathrm{E}\left[\mu_{d}\left(C_{d} \cap S_{2}\right)\right]$. Then $\mathrm{E}\left[e^{-\alpha_{1}}\left(\alpha_{2}-\beta_{2}\right)\right] \leq 0$, i.e. $e^{-\alpha_{1}}$ and α_{2} are nonpositively correlated.
Proof. For any integrable random variables X and Y with $E|X Y|<\infty$,

$$
\mathrm{E}[(X-E X)(Y-E Y)]=\mathrm{E}[X(Y-E Y)]=\mathrm{E}[(X-E X) Y]
$$

Noting that $\alpha_{2}=\rho \int_{S_{2}} \mathbf{1}_{C_{d}}(\mathbf{x}) d \mathbf{x}$ where $\mathbf{1}_{C_{d}}$ denotes the indicator function of C_{d}, we have

$$
\begin{align*}
\mathrm{E}\left[e^{-\alpha_{1}}\left(\alpha_{2}-\beta_{2}\right)\right] & =\mathrm{E}\left[\left(e^{-\alpha_{1}}-\mathrm{E}\left[e^{-\alpha_{1}}\right]\right) \alpha_{2}\right] \\
& =\mathrm{E}\left[\left(e^{-\alpha_{1}}-\mathrm{E}\left[e^{-\alpha_{1}}\right]\right) \rho \int_{S_{2}} \mathbf{1}_{C_{d}}(\mathbf{x}) d \mathbf{x}\right] \\
& =\rho \int_{S_{2}} \mathrm{E}\left[\left(e^{-\alpha_{1}}-\mathrm{E}\left[e^{-\alpha_{1}}\right]\right) \mathbf{1}_{C_{d}}(\mathbf{x})\right] d \mathbf{x} \\
& =\rho \int_{S_{2}} P\left(\mathbf{x} \in C_{d}\right) \mathrm{E}\left[e^{-\alpha_{1}}-\mathrm{E}\left[e^{-\alpha_{1}}\right] \mid \mathbf{x} \in C_{d}\right] d \mathbf{x} \\
& =\rho \int_{S_{2}} P(\Pi \cap B(\mathbf{x})=\emptyset)\left\{\mathrm{E}\left[e^{-\alpha_{1}} \mid \Pi \cap B(\mathbf{x})=\emptyset\right]-\mathrm{E}\left[e^{-\alpha_{1}}\right]\right\} d \mathbf{x} \tag{5}
\end{align*}
$$

where the last equality follows from the fact that $\mathbf{x} \in C_{d}$ if and only if $\Pi \cap B(\mathbf{x})=\emptyset$, with $B(\mathbf{x}):=\left\{\mathbf{y} \in \mathbb{R}^{d}:\|\mathbf{y}-\mathbf{x}\|_{d} \leq\|\mathbf{x}\|_{d}\right\}$ (the ball of radius $\|\mathbf{x}\|_{d}$ centered at \mathbf{x}). We claim that the conditional distribution of $\mu_{d}\left(C_{d} \cap S_{1}\right)$ given $\Pi \cap B(\mathbf{x})=\emptyset$ is stochastically larger than the (unconditional) distribution of $\mu_{d}\left(C_{d} \cap S_{1}\right)$. To show this, we make use of the following simple coupling argument. Note by the independence properties of the Poisson process that the conditional distribution of $\mu_{d}\left(C_{d} \cap S_{1}\right)$ given $\Pi \cap B(\mathbf{x})=\emptyset$ is the same as the (unconditional) distribution of $\mu_{d}\left(C^{*} \cap S_{1}\right)$ where C^{*} denotes the Voronoi cell centered at $\mathbf{0}$ generated by $(\Pi \backslash B(\mathbf{x})) \cup\{\mathbf{0}\}$. Since C_{d} and C^{*} are defined on the same probability space, we have $C_{d} \subset C^{*}$ for every realization of Π, so that $\mu_{d}\left(C_{d} \cap S_{1}\right) \leq \mu_{d}\left(C^{*} \cap S_{1}\right)$ with probability 1 . It follows that the (unconditional) distribution of $\mu_{d}\left(C_{d} \cap S_{1}\right)$ is stochastically smaller than the conditional distribution of $\mu_{d}\left(C_{d} \cap S_{1}\right)$ given $\Pi \cap B(\mathbf{x})=\emptyset$. Since $e^{-\alpha_{1}}=f\left(\mu_{d}\left(C_{d} \cap S_{1}\right)\right)$ with $f(x)=e^{-\rho x}$ (a decreasing function), we have

$$
\mathrm{E}\left[e^{-\alpha_{1}} \mid \Pi \cap B(\mathbf{x})=\emptyset\right] \leq \mathrm{E}\left[e^{-\alpha_{1}}\right]
$$

which together with (5) implies that $\mathrm{E}\left[e^{-\alpha_{1}}\left(\alpha_{2}-\beta_{2}\right)\right] \leq 0$. The proof is complete.
Remark 2. It is shown in Yao (2010) that for any measurable subsets S_{1} and S_{2} of $\mathbb{R}^{d}, \mu_{d}\left(C_{d} \cap S_{1}\right)$ and $\mu_{d}\left(C_{d} \cap S_{2}\right)$ are nonnegatively correlated. We can use the same argument as in the proof of Lemma 2 to show more generally that for any nondecreasing function $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(\mu_{d}\left(C_{d} \cap S_{1}\right)\right)$ and $\mu_{d}\left(C_{d} \cap S_{2}\right)$ are nonnegatively correlated provided that $\mathrm{E}\left[\left|f\left(\mu_{d}\left(C_{d} \cap S_{1}\right)\right)\right|\right]<\infty$ and $\mathrm{E}\left[\left|f\left(\mu_{d}\left(C_{d} \cap S_{1}\right)\right)\right| \mu_{d}\left(C_{d} \cap S_{2}\right)\right]<\infty$.

Lemma 3. Assume $\lambda=1$ (the intensity of Π). Then there exist constants $c>0$ and $u_{0}<\infty$ such that for all $u \geq u_{0}$ and $1 \leq d<\infty$,

$$
\operatorname{var}\left(\mu_{d}\left(C_{d} \cap B_{u, d}\right)\right) \geq c \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d}
$$

where $B_{u, d} \subset \mathbb{R}^{d}$ denotes the ball of volume u centered at $\mathbf{0}$.

Proof. We need several results in Alishahi and Sharifitabar (2008, Sections 3 and 4). By Alishahi and Sharifitabar (2008, Remark 3.2), there exists a constant $c^{\prime}>0$ such that

$$
\begin{equation*}
\operatorname{var}\left(\mu_{d}\left(C_{d}\right)\right) \geq c^{\prime} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \quad \text { for all } 1 \leq d<\infty \tag{6}
\end{equation*}
$$

Define $R_{d}(u)=\mu_{d}^{d-1}\left(C_{d} \cap \partial B_{u, d}\right) / \mu_{d}^{d-1}\left(\partial B_{u, d}\right)$ where μ_{d}^{d-1} denotes the $(d-1)$-dimensional Hausdorff measure (surface area) in \mathbb{R}^{d} and $\partial B_{u, d}$ denotes the boundary of $B_{u, d}$ (which is a ($d-1$)-dimensional sphere). By Alishahi and Sharifitabar (2008, Lemmas 4.1 and 4.2),

$$
\begin{aligned}
& \mu_{d}\left(C_{d} \backslash B_{u, d}\right)=\mu_{d}\left(C_{d}\right)-\mu_{d}\left(C_{d} \cap B_{u, d}\right)=\int_{u}^{\infty} R_{d}(v) d v, \\
& \mathrm{E}\left[R_{d}(v)\right]=e^{-v}, \quad \text { and } \mathrm{E}\left[\mu_{d}\left(C_{d} \backslash B_{u, d}\right)\right]=\int_{u}^{\infty} e^{-v} d v,
\end{aligned}
$$

so that

$$
\begin{align*}
\operatorname{var}\left(\mu_{d}\left(C_{d} \backslash B_{u, d}\right)\right) & =\mathrm{E}\left[\int_{u}^{\infty}\left(R_{d}(v)-e^{-v}\right) d v\right]^{2} \\
& \leq \mathrm{E}\left[\int_{u}^{\infty} v^{2}\left(R_{d}(v)-e^{-v}\right)^{2} d v \int_{u}^{\infty} v^{-2} d v\right] \\
& =u^{-1} \int_{u}^{\infty} v^{2} \operatorname{var}\left(R_{d}(v)\right) d v \\
& \leq u^{-1} \int_{u}^{\infty} c^{\prime \prime} v^{3} e^{-v} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} d v \\
& =c^{\prime \prime}\left(u^{-1} \int_{u}^{\infty} v^{3} e^{-v} d v\right) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \tag{7}
\end{align*}
$$

where the Cauchy-Schwarz inequality is applied to the inner $(d v)$ integral to yield the first inequality and the second inequality follows from the fact that

$$
\operatorname{var}\left(R_{d}(v)\right) \leq c^{\prime \prime} v e^{-v} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \quad \text { for all } 1 \leq d<\infty
$$

for some constant $c^{\prime \prime}>0$ (cf. Alishahi and Sharifitabar, 2008, p. 929). Since $\mu_{d}\left(C_{d} \cap B_{u, d}\right)+\mu_{d}\left(C_{d} \backslash B_{u, d}\right)=\mu_{d}\left(C_{d}\right)$, it follows from Minkowski's inequality, (6) and (7) that for all $1 \leq d<\infty$,

$$
\begin{aligned}
\sqrt{\operatorname{var}\left(\mu_{d}\left(C_{d} \cap B_{u, d}\right)\right)} & \geq \sqrt{\operatorname{var}\left(\mu_{d}\left(C_{d}\right)\right)}-\sqrt{\operatorname{var}\left(\mu_{d}\left(C_{d} \backslash B_{u, d}\right)\right)} \\
& \geq\left\{\left(c^{\prime}\right)^{1 / 2}-\left(c^{\prime \prime} u^{-1} \int_{u}^{\infty} v^{3} e^{-v} d v\right)^{1 / 2}\right\}\left\{\frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d}\right\}^{1 / 2}
\end{aligned}
$$

So for all (large) u satisfying $c^{\prime}>c^{\prime \prime} u^{-1} \int_{u}^{\infty} v^{3} e^{-v} d v$, we have

$$
\operatorname{var}\left(\mu_{d}\left(C_{d} \cap B_{u, d}\right)\right) \geq h_{2}(u) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \quad \text { for all } 1 \leq d<\infty
$$

where $h_{2}(u)=\left[\left(c^{\prime}\right)^{1 / 2}-\left(c^{\prime \prime} u^{-1} \int_{u}^{\infty} v^{3} e^{-v} d v\right)^{1 / 2}\right]^{2}$. Observing that $h_{2}(u) \rightarrow c^{\prime}>0$ as $u \rightarrow \infty$, the proof is complete.
Remark 3. According to Alishahi and Sharifitabar (2008, Remark 3.1), the constant c_{2} in (4) may be taken to be 5 . Since $1-e^{-\rho} \leq \rho$, (4) may be rewritten as

$$
c_{1}\left(\rho_{0}\right) \rho^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \leq d_{T V}\left(\mathscr{L}\left(N_{\rho, d}\right), P o(\rho)\right) \leq c_{2} \rho^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d}
$$

for all $1 \leq d<\infty$ and $0<\rho \leq \rho_{0}$. This indicates that $\rho^{2} d^{-1 / 2}(4 / 3 \sqrt{3})^{d}$ is the rate of Poisson approximation for small ρ and large d.

Remark 4. Theorem 1 indicates that the rate of Poisson approximation for $N_{\rho, d}$ is closely related to the asymptotic behavior of $\operatorname{var}\left(\mu_{d}\left(C_{d}\right)\right)$ as $d \rightarrow \infty$. While Newman et al. (1983) showed that M_{d} converges in distribution to Po(1), it remains an open problem to determine the rate of convergence for M_{d}. More generally, let $M_{d, k}$ be the number of Π-points which have
$\mathbf{0}$ (the typical point of Π) as their k th nearest Π-neighbor, and $N_{\rho, d, k}$ the number of Π^{\prime}-points which have $\mathbf{0}$ as their k th nearest Π-neighbor, $k=1,2, \ldots$. Note that $M_{d, 1}=M_{d}$ and $N_{\rho, d, 1}=N_{\rho, d}$. It is shown in Yao and Simons (1996, Theorem 1) and Yao (2010, Remark 11) that for all k, as $d \rightarrow \infty, M_{d, k}$ and $N_{\rho, d, k}$ converge in distribution to $P o$ (1) and $P o(\rho)$, respectively. It will also be of interest to determine the rates of convergence for $k \geq 2$.

Remark 5. Consider $m+1$ independent homogeneous Poisson point processes in \mathbb{R}^{d}, Π of intensity λ, Π_{i} of intensity $\lambda_{i}, i=$ $1, \ldots, m$. Again referring to $\mathbf{0}$ as the typical point of Π, let $N_{\rho, d}^{i}$ be the number of Π_{i}-points which have $\mathbf{0}$ as their nearest Π-neighbor, $i=1, \ldots, m$, where $\rho=\left(\rho_{1}, \ldots, \rho_{m}\right)=\left(\lambda_{1} / \lambda, \ldots, \lambda_{m} / \lambda\right)$. Let $\Pi^{\prime}=\cup_{i=1}^{m} \Pi_{i}$ and $N_{\rho_{\text {total }, d}}=\sum_{i=1}^{m} N_{\rho, d}^{i}$, where $\rho_{\text {total }}=\sum_{i=1}^{m} \rho_{i}$. Then Π^{\prime} is a homogeneous Poisson point process of intensity $\sum_{i=1}^{m} \lambda_{i}$, independent of Π, and $N_{\rho_{\text {total }}, d}$ is the number of Π^{\prime}-points which have $\mathbf{0}$ as their nearest Π-neighbor. By (4), we have

$$
\begin{align*}
c_{1}\left(\rho_{0}\right) \rho_{\text {total }}^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} & \leq d_{T V}\left(\mathcal{L}\left(N_{\rho_{\text {total }}, d}\right), P o\left(\rho_{\text {total }}\right)\right) \\
& \leq c_{2} \rho_{\text {total }}\left(1-e^{-\rho_{\text {total }}}\right) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} \tag{8}
\end{align*}
$$

for all $1 \leq d<\infty$ and $0<\rho_{\text {total }} \leq \rho_{0}$. Since each Π^{\prime}-point is a Π_{i}-point with probability $\rho_{i} / \rho_{\text {total }}$, the conditional distribution of $\left(N_{\rho, d}^{1}, \ldots, N_{\rho, d}^{m}\right)$ given $N_{\rho_{\text {total }, d}}=n$ is multinomial with parameters $n, \rho_{i} / \rho_{\text {total }}, i=1, \ldots, m$. Denote by $Z_{\rho}^{1}, \ldots, Z_{\rho}^{m}, m$ independent Poisson random variables with respective means $\rho_{1}, \ldots, \rho_{m}$. Let $Z_{\rho_{\text {total }}}=Z_{\rho}^{1}+\cdots+Z_{\rho}^{m}$, which is $\operatorname{Po}\left(\rho_{\text {total }}\right)$. Since the conditional distribution of $\left(Z_{\rho}^{1}, \ldots, Z_{\rho}^{m}\right)$ given $Z_{\rho_{\text {total }}}=n$ is also multinomial with parameters $n, \rho_{i} / \rho_{\text {total }}, i=1, \ldots, m$, it follows that

$$
\begin{aligned}
& P\left(N_{\rho, d}^{i}=j_{i}, i=1, \ldots, m\right)-P\left(Z_{\rho}^{i}=j_{i}, i=1, \ldots, m\right) \\
& \quad=\left[P\left(N_{\rho_{\text {total }, d}}=n\right)-P\left(Z_{\rho_{\text {total }}}=n\right)\right]\binom{n}{j_{1} \cdots j_{m}} \frac{\rho_{1}^{j_{1}} \cdots \rho_{m}^{j_{m}}}{\rho_{\text {total }}^{n}}
\end{aligned}
$$

for all $\left(j_{1}, \ldots, j_{m}\right) \in A_{n}=\left\{\left(\ell_{1}, \ldots, \ell_{m}\right): \ell_{i} \geq 0, \ell_{1}+\cdots+\ell_{m}=n\right\}$, implying that

$$
\sum_{\left(j_{1}, \ldots, j_{m}\right) \in A_{n}}\left|P\left(N_{\rho, d}^{i}=j_{i}, i=1, \ldots, m\right)-P\left(Z_{\rho}^{i}=j_{i}, i=1, \ldots, m\right)\right|=\left|P\left(N_{\rho_{\text {total }, d}}=n\right)-P\left(Z_{\rho_{\text {total }}}=n\right)\right| .
$$

So,

$$
d_{T V}\left(\mathcal{L}\left(N_{\rho, d}^{1}, \ldots, N_{\rho, d}^{m}\right), \mathscr{L}\left(Z_{\rho}^{1}, \ldots, Z_{\rho}^{m}\right)\right)=d_{T V}\left(\mathcal{L}\left(N_{\rho_{\text {total }}, d}\right), \mathcal{L}\left(Z_{\rho_{\text {total }}}\right)\right)
$$

which together with (8) yields the following corollary.
Corollary 1. For any $\rho_{0}>0$, there exists a constant $c_{1}\left(\rho_{0}\right)>0$ such that

$$
\begin{aligned}
c_{1}\left(\rho_{0}\right) \rho_{\text {total }}^{2} \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d} & \leq d_{T V}\left(\mathcal{L}\left(N_{\rho, d}^{1}, \ldots, N_{\rho, d}^{m}\right), \operatorname{Po}\left(\rho_{1}\right) \times \cdots \times \operatorname{Po}\left(\rho_{m}\right)\right) \\
& \leq c_{2} \rho_{\text {total }}\left(1-e^{-\rho_{\text {total }}}\right) \frac{1}{\sqrt{d}}\left(\frac{4}{3 \sqrt{3}}\right)^{d},
\end{aligned}
$$

for all $1 \leq d<\infty$ and $0<\rho_{\text {total }} \leq \rho_{0}$.

Acknowledgment

The author gratefully acknowledges support from the National Science Council of Taiwan under grant NSC 102-2118-M-001-006.

References

Alishahi, K., Sharifitabar, M., 2008. Volume degeneracy of the typical cell and the chord length distribution for Poisson-Voronoi tessellations in high dimensions. Adv. Appl. Probab. 40, 919-938.
Barbour, A.D., Holst, L., Janson, S., 1992. Poisson Approximation. Clarendon Press, Oxford.
Daley, D.J., Vere-Jones, D., 2007. An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, second ed. Springer, New York.
Newman, C.M., Rinott, Y., 1985. Nearest neighbors and Voronoi volumes in high-dimensional point processes with various distance functions. Adv. Appl. Probab. 17, 794-809.
Newman, C.M., Rinott, Y., Tversky, A., 1983. Nearest neighbors and Voronoi regions in certain point processes. Adv. Appl. Probab. 15, 726-751.
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, second ed. John Wiley, Chichester.
Yao, Y.-C., 2010. On variances of partial volumes of the typical cell of a Poisson-Voronoi tessellation and large-dimensional volume degeneracy. Adv. Appl. Probab. 42, 359-370.
Yao, Y.-C., Simons, G., 1996. A large-dimensional independent and identically distributed property for nearest neighbor counts in Poisson processes. Ann. Appl. Probab. 6, 561-571.

[^0]: E-mail address: yao@stat.sinica.edu.tw.
 http://dx.doi.org/10.1016/j.spl.2014.05.014
 0167-7152/© 2014 Elsevier B.V. All rights reserved.

