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Abstract

Sengupta (1989) showed that for the first-come-first-served (FCFS) G/G/1

queue, the workload and attained waiting time of a customer in service have

the same stationary distribution. Sakasegawa and Wolff (1990) derived a

sample-path version of this result, showing that the empirical distribution of the

workload values over a busy period of a given sample path is identical to that of

the attained waiting time values over the same period. For a given sample path

of an FCFS G/G/s queue, we construct a dual sample path of a dual queue

which is FCFS G/G/s in reverse time. It is shown that the workload process on

the original sample path is identical to the total attained waiting time process

on the dual sample path. As an application of this duality relation, we show

that for a time-stationary FCFS M/M/s/k queue, the workload process is equal

in distribution to the time-reversed total attained waiting time process.
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Sengupta [3] showed that for the first-come-first-served (FCFS) G/G/1 queue,

the workload and attained waiting time of a customer in service have the same

stationary distribution. Sakasegawa and Wolff [2] derived a sample-path version

of this result, showing that the empirical distribution of the workload values

over a busy period of a given sample path is identical to that of the attained

waiting time values over the same period. See also Cohen [1] for a different

proof and Toyoizumi [4] for related results. For a general multi-server queueing

system, Yamazaki and Miyazawa [5] established that the workload and total
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attained waiting time of customers in service are identical in average, but their

distributions are unequal in general. We complement this result by deriving a

duality relation between the workload process and the total attained waiting

time process (in reverse time) in FCFS G/G/s queues. As an application of

this duality relation, we show that for a time-stationary FCFS M/M/s/k queue,

the workload process is equal in distribution to the time-reversed total attained

waiting time process.

Specifically, consider a sample path ω of an FCFS G/G/s queue. We will

construct a corresponding sample path ω∗ of a dual queue which is FCFS G/G/s

in reverse time, and show that the workload process on ω is identical to the

total attained waiting time process on ω∗. Let [t, t] be a busy period of ω

during which n customers C1, . . . , Cn enter the system with corresponding arrival

and departure times, Ai < Di, i = 1, . . . , n, where t = A1 < A2 < · · · <

An < t (implying no batch arrivals). We also assume that the departure times

D1, . . . , Dn are all distinct. Let π be the permutation of (1 2 · · · n) such that

t < Dπ(1) < Dπ(2) < · · · < Dπ(n) = t. (1)

To be consistent with the assumption of FCFS service discipline, π needs to

satisfy the requirement that

π(i) < s+ i for all 1 ≤ i ≤ n. (2)

In words, the i-th departing customer must be one of C1, . . . , Cs+i−1. Note that

(2) is equivalent to

j > π(i) for all 1 ≤ i, j ≤ n with i ≤ j − s. (3)

The service time of each customer can be determined as follows. Each of C1, . . . , Cs

begins service upon arrival, so that Ci’s service time Si = Di −Ai, i = 1, . . . , s.

Customer Cs+1 begins service either upon arrival if at least one of C1, . . . , Cs has

already completed service, or at the first departure time Dπ(1) otherwise. More
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generally, Cs+i begins service at max{As+i, Dπ(i)}, so that

Ss+i = Ds+i −max{As+i, Dπ(i)}, i = 1, . . . , n− s. (4)

The workload V (t) at time t ∈ [t, t] is the total remaining service time of

customers in the system at time t (which is also known as the virtual waiting

time for the case s = 1). The arrival and departure times Ai, i = 2, . . . , n, Dπ(i),

i = 1, . . . , n − 1 divide the interval [t, t] = [A1, Dπ(n)] into 2n − 1 subintervals.

In each (open) subinterval, V (t) is linear with a slope ∈ {−1, . . . ,−s}. (More

precisely, the absolute value of the slope equals the smaller of s and the number of

customers in the system during this subperiod.) Let L(t) = |{i : Ai < t < Di}|,

the number of customers in the system at t /∈ {Aj , Dj , j = 1, . . . , n}, which is

constant in each of the 2n− 1 (open) subintervals. The following lemma can be

proved easily.

Lemma 1. Assume n ≥ 2. Let (t1, t2) and (t2, t3) be two consecutive subinter-

vals (t1 < t2 < t3).

(i) If t2 = Di for some i, then V (t) is continuous at t2 and V ′(t2+)−V ′(t2−) =

0 or 1 according to L(t2−) > s or ≤ s.

(ii) If t2 = Ai for some i, then V (t2+)− V (t2−) = Si (the service time of Ci)

and V ′(t2+)− V ′(t2−) = −1 or 0 according to L(t2−) < s or ≥ s.

(iii) V (t) = t− t in the last subinterval (Dπ(n−1), t).

Let Wa,i(t) denote the attained waiting time of Ci at t, which is defined as

t−Ai if Ci is in service at t or 0 otherwise. Let Wa(t) =
∑n

i=1Wa,i(t), the total

attained waiting time of all customers in service at t, which is linear in each of

the 2n − 1 subintervals with a slope ∈ {1, 2, . . . , s} (depending on the number

of customers in service). Lemma 2 can also be proved easily.

Lemma 2. Assume n ≥ 2. Let (t1, t2) and (t2, t3) be two consecutive subinter-

vals (t1 < t2 < t3).
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(i) Suppose t2 = Ai for some i. Then Wa(t) is continuous at t2 and W ′
a(t2+)−

W ′
a(t2−) = 1 or 0 according to L(t2−) < s or ≥ s.

(ii) Suppose t2 = Di for some i. If L(t2−) > s, some customer Cj begins service

at t2, and then Wa(t2+) − Wa(t2−) = Wa,j(t2+) − Wa,i(t2−) = Ai − Aj

and W ′
a(t2+)−W ′

a(t2−) = 0. If L(t2−) ≤ s, then Wa(t2+)−Wa(t2−) =

−Wa,i(t2−) = Ai −Di = Ai − t2 and W ′
a(t2+)−W ′

a(t2−) = −1.

(iii) Wa(t) = t− t in the first subinterval (t, A2).

We now construct a (time-reversed) sample path ω∗ of a dual FCFS G/G/s

queue in reverse time which has the same busy periods as ω. In the busy period

[t, t] of ω∗, n customers C∗
1 , . . . , C

∗
n enter the system with corresponding arrival

and departure times A∗
i > D∗

i , i = 1, . . . , n, where A∗
i = Di and D∗

i = Ai. Since

t < Dπ(1) < · · · < Dπ(n) = t, we have t < A∗
π(1) < · · · < A∗

π(n) = t, implying

that the n customers arrive in the order C∗
π(n), C

∗
π(n−1), . . . , C

∗
π(1) (since these

customers arrive in reverse-time order). Since t = A1 < A2 < · · · < An < t,

we have t = D∗
1 < D∗

2 < · · · < D∗
n < t, implying that the n customers leave

the system in the order C∗
n, C

∗
n−1, . . . , C

∗
1 . By (3), we have j ∈ {π(n), π(n −

1), . . . , π(j − s+ 1)}, i.e. the (n− j + 1)-th departing customer must be one of

the first n − j + s arriving customers, implying that the arrival and departure

times A∗
i , D∗

i , i = 1, . . . , n, are consistent with the requirement of FCFS service

discipline. (Note that the j-th arriving customer in forward time corresponds to

the (n− j + 1)-th departing customer in reverse time.) So ω∗ is a valid sample

path of a (dual) FCFS G/G/s queue in reverse time.

Let W ∗
a,i(t) be the attained waiting time of C∗

i at t, i.e. W ∗
a,i(t) = A∗

i − t if C∗
i

is in service at t and 0 otherwise. Let W ∗
a (t) =

∑n
i=1W

∗
a,i(t), the total attained

waiting of all customers in service at t for ω∗. Note that the 2n − 2 points in

{A∗
i , D

∗
i , i = 1, . . . , n}\{D∗

1, A
∗
π(n)} = {Ai, Di, i = 1, . . . , n}\{A1, Dπ(n)} divide

[t, t] into 2n− 1 subintervals. In each (open) subinterval, W ∗
a (t) is linear with a

slope ∈ {−1, . . . ,−s}. Since the definitions of V,Wa and W ∗
a at arrival/departure
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times may be ambiguous, we take the convention that V and W ∗
a are right-

continuous and Wa is left-continuous. Note also that L(t) = |{i : Ai < t <

Di}| = |{i : D∗
i < t < A∗

i }| so that the number of customers in the system at t

for ω is the same as that for ω∗.

Lemma 2 is stated in terms of ω. To facilitate the proof of Theorem 1 below,

it is convenient to rewrite Lemma 2 in terms of ω∗ as follows.

Lemma 2’. Assume n ≥ 2. Let (t1, t2) and (t2, t3) be two consecutive subinter-

vals (t1 < t2 < t3).

(i) Suppose t2 = A∗
i for some i. Then W ∗

a (t) is continuous at t2 and W ∗
a
′(t2−)−

W ∗
a
′(t2+) = −1 or 0 according to L(t2+) < s or ≥ s.

(ii) Suppose t2 = D∗
i for some i. If L(t2+) > s, some customer C∗

j begins

service at t2, and then W ∗
a (t2−) − W ∗

a (t2+) = W ∗
a,j(t2−) − W ∗

a,i(t2+) =

(A∗
j − t2) − (A∗

i − t2) = A∗
j − A∗

i and W ∗
a
′(t2−) − W ∗

a
′(t2+) = 0. If

L(t2+) ≤ s, then W ∗
a (t2−)−W ∗

a (t2+) = −W ∗
a,i(t2+) = t2−A∗

i = D∗
i −A∗

i

and W ∗
a
′(t2−)−W ∗

a
′(t2+) = 1.

(iii) W ∗
a (t) = t− t in the “first” subinterval (A∗

π(n−1), t).

Theorem 1. In the busy period [t, t], we have V (t) = W ∗
a (t) for all t.

Before proving the theorem, we illustrate the result with Figure 1. We assume

there are two servers (s = 2) and four customers enter the system during the

busy period [t, t] = [0, 7] with A1 = D∗
1 = 0, A2 = D∗

2 = 1, A3 = D∗
3 = 2,

A4 = D∗
4 = 4, D1 = A∗

1 = 5, D2 = A∗
2 = 3, D3 = A∗

3 = 7, D4 = A∗
4 = 6. Note

that this implies S1 = D1 − A1 = 5, S2 = D2 − A2 = 2, S3 = D3 − D2 = 4,

S4 = D4−D1 = 1, and that customers C∗
3 , C

∗
4 , C

∗
1 , C

∗
2 enter the system at times

7, 6, 5, 3 (in reverse time) and begin service at times 7, 6, 4, 2, respectively.
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V (t) = W ∗
a (t)
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Figure 1

Proof of Theorem 1. The case n = 1 is trivial. Assume n ≥ 2. The 2n −

2 points in {Ai, Di, i = 1, . . . , n} \ {A1, Dπ(n)} = {A∗
i , D

∗
i , i = 1, . . . , n} \

{D∗
1, A

∗
π(n)} divide [t, t] into 2n−1 subintervals. In the subinterval (Dπ(n−1), t) =

(A∗
π(n−1), t), which is the last subinterval for ω and the “first” subinterval for

ω∗, we have V (t) = t − t = W ∗
a (t) by Lemmas 1(iii) and 2’(iii). Consider two

consecutive subintervals (t1, t2) and (t2, t3), t1 < t2 < t3. Suppose V (t) = W ∗
a (t)

for t ∈ (t2, t3). We will show that V (t) = W ∗
a (t) for t ∈ (t1, t2), which by

induction yields that V (t) = W ∗
a (t) in each of the 2n − 1 open subintervals.

It then follows from the right-continuity of V and W ∗
a that V (t) = W ∗

a (t) for

t ∈ [t, t].

It remains to show V (t) = W ∗
a (t) for t ∈ (t1, t2). We need to consider the
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following cases separately.

(i) Suppose t2 = Di = A∗
i for some i. By Lemmas 1(i) and 2’(i), we have

V (t2−) = V (t2+) = W ∗
a (t2+) = W ∗

a (t2−) where the second equality

follows from the induction hypothesis that V (t) = W ∗
a (t) for t ∈ (t2, t3).

Two subcases are considered below.

(i.1) Suppose L(t2−) ≤ s (implying L(t2+) < s). By Lemmas 1(i) and 2’(i),

V ′(t2+) − V ′(t2−) = 1 and W ∗
a
′(t2−) − W ∗

a
′(t2+) = −1, implying

V ′(t2−) = W ∗
a
′(t2−) since V ′(t2+) = W ∗

a
′(t2+) by the induction

hypothesis. It follows from the linearity of V (t) and W ∗
a (t) in (t1, t2)

that V (t) = W ∗
a (t) for t ∈ (t1, t2).

(i.2) Suppose L(t2−) > s (implying L(t2+) ≥ s). By Lemmas 1(i) and

2’(i) and the induction hypothesis, V ′
a(t2−) = V ′

a(t2+) = W ∗
a
′(t2+) =

W ∗
a
′(t2−), implying that V (t) = W ∗

a (t) for t ∈ (t1, t2).

(ii) Suppose t2 = Ai = D∗
i for some i. Then V (t2+)−V (t2−) = Si, the service

time of Ci.

(ii.1) Suppose L(t2−) < s (implying L(t2+) ≤ s). Then Ci begins service

upon arrival, so Si = Di − Ai and V (t2+) − V (t2−) = Di − Ai.

Also W ∗
a (t2+) − W ∗

a (t2−) = W ∗
a,i(t2+) = A∗

i − D∗
i = Di − Ai, im-

plying V (t2−) = W ∗
a (t2−). Furthermore, by Lemmas 1(ii) and 2’(ii),

V ′(t2+) − V ′(t2−) = −1 and W ∗
a
′(t2−) − W ∗

a
′(t2+) = 1, implying

V ′(t2−) = W ∗
a
′(t2−) since V ′(t2+) = W ∗

a
′(t2+) by the induction

hypothesis. So V (t) = W ∗
a (t) for t ∈ (t1, t2).

(ii.2) Suppose L(t2−) ≥ s (implying L(t2+) > s). By (4), we have

V (t2+)− V (t2−) = Si = Di −max{Ai, Dπ(i−s)}

= Di −Dπ(i−s), (5)

since Ci begins service at max{Ai, Dπ(i−s)} = Dπ(i−s). As for ω∗, C∗
i

completes service at t2 = D∗
i and another customer begins service at t2
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since L(t2+) > s. By time t2 = D∗
i (= Ai), the number of customers

who have completed service is n − i + 1, since the departure times

before t2 (in reverse time) are D∗
i+1 = Ai+1, . . . , D

∗
n = An. Thus

the customer who begins service at t2 must be the (n − i + 1 + s)-th

customer entering the system, i.e. C∗
π(i−s). So

W ∗
a (t2−)−W ∗

a (t2+) = W ∗
a,π(i−s)(t2−)−W ∗

a,i(t2+)

= (A∗
π(i−s) − t2)− (A∗

i − t2)

= Dπ(i−s) −Di,

which together with (5) and the induction hypothesis yields that V (t2−) =

W ∗
a (t2−). Finally by Lemmas 1(ii) and 2’(ii) and the induction hy-

pothesis, V ′(t2−) = V ′(t2+) = W ∗
a
′(t2+) = W ∗

a
′(t2−), implying

V (t) = W ∗
a (t) for t ∈ (t1, t2). This completes the proof.

Remark 1. In the arguments above, we have implicitly assumed that Aj ̸= Di

for all i, j. This restriction can easily be relaxed as follows: Let I = {i : Ai =

Dj for some j}. For (sufficiently small) ε > 0, define Ak,ε = Ak − ε1I(k) and

Dk,ε = Dk, k = 1, . . . , n, where 1I(k) = 1 or 0 according to k ∈ I or k /∈ I.

Then by applying Theorem 1 to the arrival and departure times {Ak,ε, Dk,ε, k =

1, . . . , n}, we have Vε(t) = W ∗
a,ε(t) for t ∈ [t, t]. Letting ε ↘ 0 yields V (t) =

W ∗
a (t).

Remark 2. A stochastic FCFS G/G/s queueing system gives rise to a probabil-

ity measure on the space of sample paths ω (endowed with a suitably specified σ-

field), which induces a probability measure on the space of time-reversed sample

paths ω∗, which in turn defines a dual FCFS G/G/s queue in reverse time. We

may also think of both queues as coupled (i.e. defined on the same probability

space). Then by Theorem 1, V (t) = W ∗
a (t) for all t with probability 1 where V is

the workload process for the original queue and W ∗
a is the total attained waiting

time process for the dual queue. It would be of interest to characterize the dual

queues for some classes of queueing systems. For an FCFS M/M/s/k queue (k



A Duality Relation between Workload and Attained Waiting Time 9

being the system capacity), it can readily be argued that the dual queue is also

FCFS M/M/s/k in reverse time, which together with Theorem 1 implies that

the workload process is equal in distribution to the total attained waiting process

in reverse time. This is summarized in the following theorem.

Theorem 2. For a time-stationary FCFS M/M/s/k queue with 1 ≤ s ≤ k ≤

∞, the workload process V (t) is equal in distribution to the time-reversed total

attained waiting time process Wa(t), i.e.

(V (t1), . . . , V (tk))
d
= (Wa(−t1), . . . ,Wa(−tk)) for all t1, . . . , tk, k ≥ 1.

Consequently, V (t) and Wa(t) have the same stationary distribution and the

same autocovariance function, i.e. Cov(V (0), V (t)) = Cov(Wa(0),Wa(t)) for

all t.

Proof of Theorem 2. For a time-stationary FCFS M/M/s/k queue, let L(t)

denote the queue length (number of customers in the system) at time t. As

a birth-and-death process, L(t) is time-reversible. Let L(·) = {L(t) : −∞ <

t < ∞}, which is a random sample path such that the value of L(·) at time t

is L(t). Fix a realization ωL of L(·). Let [t, t] be a busy period of ωL during

which n customers C1, . . . , Cn enter the system with corresponding arrival times

t = A1 < A2 < · · · < An < t. Denote the ordered departure times by t <

D̃1 < D̃2 < · · · < D̃n = t. Necessarily, |{i : Ai < D̃j}| > j for j < n.

While the information of the Ai’s and D̃i’s is contained in ωL, the departure

time Di of Ci may not be observable given ωL. Since by (1) the (unobservable)

permutation π satisfies Dπ(1) < · · · < Dπ(n), we have Dπ(i) = D̃i for all i, i.e.

Di = D̃π−1(i) for all i. A permutation ϕ of (1 2 · · · n) is said to be an admissible

matching if the paired arrival and departure times (Ai, D̃ϕ−1(i)), i = 1, . . . , n,

satisfy the requirement of FCFS service discipline (cf. (2)). Since (Ai, D̃π−1(i)) =

(Ai, Di), the (unobservable) permutation π is (necessarily) admissible which will

be referred to as the true matching. Note that the identity permutation is always

an admissible matching. It is not difficult to show that
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(i) given L(·) = ωL, the true matching π for the busy period [t, t] is (condi-

tionally) equally likely to be any one of the admissible matchings,

(ii) given L(·) = ωL, the true matchings in different busy periods are (condi-

tionally) independent.

(See Remark 3 below for further discussion.)

While ωL consists only of the information of arrival and departure times, let

ω be an expanded sample path version of ωL which also includes the information

of paired arrival and departure times. More precisely, write ω = (ωL,Φ(ωL))

where the second component Φ(ωL) (a rule matching arrival times with departure

times) specifies an admissible matching in each of the busy periods of ωL. Let

ω∗ = (ωL,Φ(ωL))
∗ = (ω∗

L,Φ(ω
∗
L)) be the corresponding (time-reversed) sample

path of a dual queue as defined earlier, where ω∗
L is ωL with the roles of arrival

times and departure times interchanged and the matching rule Φ(ω∗
L) is such

that an arrival time t′ is matched with a departure time t′′ under Φ(ω∗
L) if and

only if t′ (departure time) and t′′ (arrival time) are matched under Φ(ωL) .

Furthermore, let LΠ = (L(·),Π(L(·))) be the random (expanded) sample path

where the second component Π(L(·)) specifies the (unobservable) true matching

in each of the busy periods of L(·). By (i) and (ii), it is instructive to think of

the second component Π(L(·)) as if it picks an admissible matching at random

in each of the busy periods of L(·). Consequently, for the random time-reversed

(expanded) sample path L∗
Π = (L(·),Π(L(·)))∗ = (L∗(·),Π(L∗(·))), we may also

think of the second component Π(L∗(·)) as if it picks an admissible matching

at random in each of the busy periods of the first component L∗(·). Since L(·)

is time-reversible (i.e. L∗(·) is a time-reversed copy of L(·)), it follows that

the random (expanded) sample path L∗
Π is a time-reversed copy of the random

(expanded) sample path LΠ.

Now let V (·) be the workload process on the random (expanded) sample path

LΠ and let Wa(·) (or W ∗
a (·), respectively) be the total attained waiting time

process on LΠ (or L∗
Π, respectively). Since L∗

Π is a time-reversed copy of LΠ,
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W ∗
a (·) is a time-reversed copy of Wa(·), i.e. for all t1, . . . , tk, u1, . . . , uk, k ≥ 1,

P (W ∗
a (ti) ≤ ui, i = 1, . . . , k) = P (Wa(−ti) ≤ ui, i = 1, . . . , k).

By Theorem 1,

P (V (ti) ≤ ui, i = 1, . . . , k) = P (W ∗
a (ti) ≤ ui, i = 1, . . . , k),

showing that (V (t1), . . . , V (tk)) and (Wa(−t1), . . . ,Wa(−tk)) have the same

joint distribution. This completes the proof.

Remark 3. Denote by (a1 d1 · · · ar dr) the arrival-departure run pattern

determined by the (ordered) arrival and depature times Ai’s and D̃i’s in the

busy period [t, t], i.e.

A1 < · · · < Aa1
< D̃1 < · · · < D̃d1

< Aa1+1 < · · · < Aa1+a2
< D̃d1+1 < · · ·

< D̃d1+d2
< · · · < Aa1+···+ar−1+1 < · · · < An < D̃d1+···+dr−1+1 < · · · < D̃n.

The ai’s and di’s need to satisfy
j∑

i=1

ai >

j∑
i=1

di, j = 1, . . . , r − 1;

r∑
i=1

ai =

r∑
i=1

di = n.

The number of admissible matchings is a function of (a1 d1 · · · ar dr), which

will be denoted by Nr(a1 d1 · · · ar dr) and which can be computed recursively

as follows. The first min{a1, s} arriving customers are equally likely to leave the

system first at D̃1 since the (common) service time distribution is memoryless.

When one of A1, . . . , Amin{a1,s} is matched with D̃1, the run pattern reduces to

((a1 − 1) (d1 − 1) · · · ar dr) if d1 > 1 or ((a1 + a2 − 1) d2 · · · ar dr) if d1 = 1.

This leads to the recursion

Nr(a1 d1 a2 d2 · · · ar dr)

=

 min{a1, s}Nr((a1 − 1) (d1 − 1) a2 d2 · · · ar dr), if d1 > 1;

min{a1, s}Nr−1((a1 + a2 − 1) d2 · · · ar dr), if d1 = 1.

Alternatively, the departure time Dn of the last arriving customer Cn is equally

likely to be any one of D̃i, n − min{dr, s} + 1 ≤ i ≤ n. When An is matched



12 Yi-Ching Yao

with one of these D̃i’s, the run pattern reduces to (a1 d1 · · · (ar − 1) (dr − 1))

if ar > 1 or (a1 d1 · · · ar−1 (dr−1 + dr − 1)) if ar = 1. This leads to a different

but equivalent recursion for Nr(a1 d1 · · · ar dr).
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