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Abstract

The (conditional or unconditional) distribution of the continuous scan statistic

in a one-dimensional Poisson process may be approximated by that of a

discrete analogue via time discretization (to be referred to as the discrete

approximation). Using a change-of-measure argument, we derive the first-

order term of the discrete approximation which involves some functionals of

the Poisson process. Richardson’s extrapolation is then applied to yield a

corrected (second-order) approximation. Numerical results are presented to

compare various approximations.
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1. Introduction
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has found a great many applications in diverse areas ranging from astronomy to
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epidemiology, genetics and neuroscience. See Glaz, Naus and Wallenstein [10] and Glaz

and Naus [8] for a thorough review and comprehensive discussion of scan distribution

theory, methods and applications. See also Glaz, Pozdnyakov and Wallenstein [9] for

a collection of articles on recent developments.

In the one-dimensional setting, let Π be a (homogeneous) Poisson point process of

intensity λ > 0 on the (normalized) unit interval (0, 1]. For a specified window size

0 < w < 1 and integers N ≥ k ≥ 2, we are interested in finding the conditional and

unconditional probabilities

P (k;N,w) := P(Sw ≥ k | |Π| = N) and P ∗(k;λ,w) := P(Sw ≥ k),

where |Π| is the cardinality of the point set Π (i.e. the total number of Poisson points)

and

Sw = Sw(Π) := max
0≤t≤1−w

∣∣∣Π ∩ (t, t+ w]
∣∣∣ ,

the maximum number of Poisson points within any window of size w. The (continuous)

scan statistic Sw arises from the likelihood ratio test for the null hypothesis H0 :

the intensity function λ(t) = λ (constant) against the alternative Ha : λ(t) = λ +

∆1(a,a+w](t) for (unknown) 0 ≤ a ≤ 1− w and ∆ > 0 where 1A denotes the indicator

function of a set A.

By applying results on coincidence probabilities and the generalized ballot problem

(cf. Karlin and McGregor [16] and Barton and Mallows [1]), Huntington and Naus [11]

and Hwang [14] derived closed-form expressions for P (k;N,w) which require to sum a

large number of determinants of large matrices and hence are in general not amenable

to numerical evaluation. Later by exploiting the fact that P (k;N,w) is piecewise

polynomial in w with (finitely many) different polynomials of w in different ranges,

Neff and Naus [20] developed a more computationally feasible approach and presented

extensive tables for the exact P (k;N,w) for various combinations of (k,N,w) with N ≤

25. (More precisely, each number in the tables has an error bounded by 10−9.) Noting

that P ∗(k;λ,w) is a weighted average of P (k;N,w) over N (with Poisson probabilities

as weights), they also provided tables for P ∗(k;λ,w) with λ ≤ 16 where the error

size for each tabulated number varies depending on the combination of (k, λ, w). (The

errors tend to be greater for smaller values of w.) Huffer and Lin [12, 13] developed an

alternative approach (based on spacings) to computing the exact P (k;N,w).
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Instead of finding the exact P ∗(k;λ,w), Naus [19] proposed an accurate product-

type approximation based on a heuristic (approximate) Markov property while Janson

[15] derived some sharp bounds. See also Glaz and Naus [7] for related results in a

discrete setting. Treating the problem as boundary crossing for a two-dimensional

random field, Loader [18] obtained effective large deviation approximations for the tail

probability of the scan statistic in one and higher dimensions. For more general large

deviation approximation results, see Siegmund and Yakir [21] and Chan and Zhang [2].

The continuous scan statistic Sw may be approximated by a discrete analogue via

time discretization. Specifically, assuming w = p/q (p, q relatively prime integers),

partition the (time) interval (0, 1] into n subintervals of length n−1, n a multiple of q.

Each subinterval (independently) contains either no point (with probability 1 − λ/n)

or exactly one point (with probability λ/n). Since a window of size w covers nw

subintervals, as an approximation to Sw, we define the discrete scan statistic S
(n)
w to

be the maximum number of points within any nw consecutive subintervals. For large n,

P ∗(k;λ,w) = P(Sw ≥ k) may be approximated by P(S(n)
w ≥ k), which can be readily

calculated using the Markov chain embedding method (cf. [4, 5, 17]). Indeed, it is

known that P(Sw ≥ k)− P(S(n)
w ≥ k) = O(n−1) (cf. [6, 22]).

In Section 2, as n (multiple of q) tends to infinity, we derive the limit of n[P(Sw ≥

k) − P(S(n)
w ≥ k)], which involves some functionals of Π. In order to establish this

limit result, we find it instructive to introduce a slightly different discrete scan statistic

(denoted S
′(n)
w ) which is stochastically smaller than Sw and S

(n)
w . With a coupling

device, we derive the limits of n[P(Sw ≥ k)−P(S′(n)
w ≥ k)] and n[P(S(n)

w ≥ k)−P(S′(n)
w ≥

k)]. In Section 3, using a change-of-measure argument, a similar result is obtained

for the conditional probability P(Sw ≥ k | |Π| = N). Based on these limit results,

Richardson’s extrapolation is then applied to yield second-order approximations for

the conditional and unconditional distributions of the continuous scan statistic. In

Section 4, numerical results comparing the various approximations are presented along

with some discussion.
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2. The unconditional case

Recall the window size w = p/q with p and q relatively prime integers. For n =

mq (m = 1, 2, . . . ), let Hn
i , i = 1, . . . , n, be i.i.d. with P(Hn

i = 0) = 1−λ/n and P(Hn
i =

1) = λ/n, and let Ini , i = 1, . . . , n, be i.i.d. with P(Ini = 0) = e−λ/n and P(Ini = 1) =

1− e−λ/n. The i.i.d. Bernoulli sequence (Hn
1 , . . . , H

n
n ) approximates the Poisson point

process Π by matching the expected number of points in each subinterval, i.e. E(Hn
i ) =

E
(∣∣∣Π ∩

(
i−1
n , i

n

]∣∣∣) = λ
n . On the other hand, the i.i.d. Bernoulli sequence (In1 , . . . , I

n
n )

approximates Π by matching the probability of no point in each subinterval, i.e. P(Ini =

0) = P
(∣∣∣Π ∩

(
i−1
n , i

n

]∣∣∣ = 0
)
= e−λ/n. The two discrete scan statistics S

(n)
w and S

′(n)
w

are now defined in terms of the two Bernoulli sequences as follows:

S(n)
w = S

(n)
w,H := max

i=1,...,nw+1

i+nw−1∑
r=i

Hn
r , S′(n)

w = S
(n)
w,I := max

i=1,...,nw+1

i+nw−1∑
r=i

Inr ,

where w := 1−w. Since Ini is stochastically smaller than Hn
i and |Π∩((i−1)/n, i/n]|, it

follows that S(n)
w,I is stochastically smaller than Sw and S

(n)
w,H . In Sections 2.1 and 2.2, we

derive limn→∞ n[P(Sw ≥ k)− P(S(n)
w,I ≥ k)] and limn→∞ n[P(Sw ≥ k)− P(S(n)

w,H ≥ k)],

respectively.

2.1. Matching the probability of no point

Since the Bernoulli sequence (In1 , . . . , I
n
n ) and Π match in the probability of no

point in each subinterval, it is instructive to define (In1 , . . . , I
n
n ) in terms of Π by

Ini = 1
{
Π ∩

(
i−1
n , i

n

]
̸= ∅

}
, i = 1, . . . , n. Thus, (In1 , . . . , I

n
n ) and Π are defined on

the same probability space. In particular, Sw ≥ S
(n)
w,I with probability 1. For fixed

w = p/q and for each (fixed) k = 2, 3, . . . , let α = P(A) and αn = P(An) where

A = Ak,w := {Sw ≥ k} and An = An,k,w := {S(n)
w,I ≥ k}.

Note that α = P ∗(k;λ,w) defined in Section 1. In order to derive the limit of

n(α − αn) as n → ∞, we need to introduce some functionals of Π. Let M := |Π|,

which is a Poisson random variable with mean λ. Writing Π = {Q1, . . . , QM}, assume

(with probability 1) that 0 < Q1 < · · · < QM < 1. Further assume (with probability

1) that w /∈ Π, w = 1 − w /∈ Π, and Qj ± w /∈ Π for j = 1, . . . ,M (i.e. Qj − Qi ̸= w

for all 1 ≤ i < j ≤ M). Define the functionals ν(Π) = ν({Q1, . . . , QM}) and ν̃(Π) =
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ν̃({Q1, . . . , QM}) as follows:

ν(Π) :=
∑

{ℓ:Qℓ<1−w}

1

{
Sw < k,

∣∣∣Π ∩ (Qℓ, Qℓ + w]
∣∣∣ = k − 2,

∣∣∣Π ∩ (t, t+ w]
∣∣∣ ≤ k − 2 for all t with Qℓ ≤ t ≤ Qℓ + w

}
,

ν̃(Π) :=

M∑
ℓ=1

1

{
Sw < k, max

0≤t≤1−w

∣∣∣(Π ∪ {Qℓ}) ∩ (t, t+ w]
∣∣∣ = k

}
,

where Π ∪ {Qℓ} is interpreted as a multiset with Qℓ having multiplicity 2.

Theorem 2.1. For n = mq (m = 1, 2, . . . ),

lim
n→∞

n(α− αn) =
λ

2
E
[
ν(Π) + ν̃(Π)

]
.

Proof. Denoting the complement of An by Ac
n and noting that An ⊂ A, we have

α − αn = P(A) − P(An) = P(A ∩ Ac
n). For i = 1, . . . , n, let Ĩni =

∣∣∣Π ∩
(

i−1
n , i

n

]∣∣∣, the

number of Poisson points in the i-th subinterval. Then Ĩni = 0 implies Ini = 0 and

Ĩni ≥ 1 implies Ini = 1. Consider the following disjoint events

G1 = {Ĩnj ≤ 1, j = 1, . . . , n},

G2,i = {Ĩni = 2, Ĩnj ≤ 1 for all j ̸= i}, i = 1, . . . , n,

G3 = {Ĩnj = Ĩnj′ = 2 for some j ̸= j′} ∪ {Ĩnj ≥ 3 for some j}.

We have

α− αn = P(A ∩Ac
n ∩ G1) +

n∑
i=1

P(A ∩Ac
n ∩ G2,i) + P(A ∩Ac

n ∩ G3). (2.1)

Claim that

P(A ∩Ac
n ∩ G1) =

1

2

nw∑
i=1

P
(n)
i + O(n−2), (2.2)

n∑
i=1

P(A ∩Ac
n ∩ G2,i) =

n∑
i=1

P̃
(n)
i + O(n−2), (2.3)

P(A ∩Ac
n ∩ G3) = O(n−2), (2.4)
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where

P
(n)
i = P

(
Ac

n,

i+nw−1∑
r=i+1

Inr = k − 2, Ini = Ini+nw = 1

)
, i = 1, . . . , nw, (2.5)

P̃
(n)
i = P

Ac
n, Ĩ

n
i = 2,

i′+nw−1∑
r=i′

Inr = k − 1 for some i′ with (2.6)

1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

)
, i = 1, . . . , n.

Since P(G3) = O(n−2), (2.4) follows easily. To prove (2.2), note that when Ĩni ≤ 1

for all i (i.e. on the event G1), each subinterval ((i − 1)/n, i/n] contains at most one

Poisson point. If Ĩni = 1, denote the only Poisson point in ((i − 1)/n, i/n] by Q(i)

whose location is uniformly distributed over ((i − 1)/n, i/n]. When Ĩni ≤ 1 for all

i, in order for A ∩ Ac
n to occur, there must exist some pair (i, i′) with i′ = i + nw

such that
∑i′−1

r=i+1 Ĩ
n
r = k − 2, Ĩni = Ĩni′ = 1, and Q(i′) − Q(i) < w. So we have

A ∩Ac
n ∩ G1 = ∪nw

i=1G1,i where for i = 1, . . . , nw,

G1,i = Ac
n ∩

{
Ĩnj ≤ 1 for all j,

i+nw−1∑
r=i+1

Ĩnr = k − 2,

Ĩni = Ĩni+nw = 1, and Q(i+nw) −Q(i) < w

}
.

Since
∑

1≤i<j≤nw P(Ĩni = Ĩni+nw = Ĩnj = Ĩnj+nw = 1) = O(n−2), we have

P(A ∩Ac
n ∩ G1) =

nw∑
i=1

P(G1,i) +O(n−2) =
1

2

nw∑
i=1

P(G′
1,i) +O(n−2), (2.7)

where G′
1,i = Ac

n ∩ {Ĩnj ≤ 1 for all j,
∑i+nw−1

r=i+1 Ĩnr = k − 2, Ĩni = Ĩni+nw = 1}. In (2.7),

we have used the facts that Ĩn1 , . . . , Ĩ
n
n are independent and that given Ĩni = Ĩni+nw =

1, Q(i) and Q(i+nw) are (conditionally) independent and uniformly distributed over

((i−1)/n, i/n] and ((i+nw−1)/n, (i+nw)/n], respectively, so that Q(i+nw)−Q(i) < w

with (conditional) probability 1/2, which implies P(G1,i) =
1
2P(G

′
1,i). For i = 1, . . . , nw,

define

G′′
1,i = Ac

n ∩

{
i+nw−1∑
r=i+1

Inr = k − 2, Ini = Ini+nw = 1

}
, (2.8)

which is the event inside the parentheses on the right-hand side of (2.5), so that P (n)
i =

P(G′′
1,i). Note that G′

1,i ⊂ G′′
1,i and that G′′

1,i\G′
1,i is contained in {Ini = Ini+nw = 1, Ĩnj ≥
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2 for some j}, which has a probability of order n−3. By (2.7),

P(A ∩Ac
n ∩ G1) =

1

2

nw∑
i=1

P(G′′
1,i) +O(n−2) =

1

2

nw∑
i=1

P
(n)
i +O(n−2),

establishing (2.2).

To prove (2.3), let H = {Ij = Ij+nw = 1 for some 1 ≤ j ≤ nw}. On G2,i ∩ Hc, in

order for A ∩Ac
n to occur, there must exist some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

such that
∑i′+nw−1

r=i′ Inr = k − 1 (implying that
∑i′+nw−1

r=i′ Ĩnr = k). It follows that

A ∩Ac
n ∩ G2,i ∩Hc ⊂ G′

2,i ⊂ A ∩Ac
n ∩ G2,i, where

G′
2,i = Ac

n ∩
{
Ĩni = 2, Ĩnj ≤ 1 for all j ̸= i,

i′+nw−1∑
r=i′

Inr = k − 1 for some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

 .

Since P(G2,i ∩ H) = O(n−3), we have
∑n

i=1 P(G2,i ∩ H) = O(n−2), implying that∑n
i=1 P(A ∩Ac

n ∩ G2,i) =
∑n

i=1 P(G′
2,i) +O(n−2) =

∑n
i=1 P(G′′

2,i) +O(n−2), where

G′′
2,i = Ac

n∩

Ĩni = 2,

i′+nw−1∑
r=i′

Inr = k − 1 for some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

 .

(Note that G′
2,i ⊂ G′′

2,i and G′′
2,i\G′

2,i is contained in the event {Ĩni = 2, Ĩnj ≥ 2 for some j ̸= i},

which has a probability of order n−3.) By (2.6), P̃ (n)
i = P(G′′

2,i). This establishes (2.3).

By (2.1)–(2.4), we have

α− αn =
1

2

nw∑
i=1

P
(n)
i +

n∑
i=1

P̃
(n)
i +O(n−2). (2.9)

For i = 1, . . . , nw, let P
′(n)
i = P(Fi) where

Fi := Ac
n ∩

{ i+nw−1∑
r=i+1

Inr = k − 2, Ini = 1, Ini+nw = 0, sum of any nw

consecutive Inr including r = i+ nw is at most k − 2
}
.

Claim that

P
(n)
i /P

′(n)
i = ρn for all i = 1, . . . , nw, (2.10)

where ρn := P(Ini+nw = 1)/P(Ini+nw = 0) = (1 − e−λ/n)/e−λ/n = eλ/n − 1. To

establish the claim, recall that P
(n)
i = P(G′′

1,i) where G′′
1,i (cf. (2.8)) depends only
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on (In1 , . . . , I
n
n ). It is instructive to interpret G′′

1,i as a collection of configurations

(In1 , . . . , I
n
n ) = (h1, . . . , hn) where (h1, . . . , hn) satisfies hj = 0 or 1 for all j, hi =

hi+nw = 1, maxj=1,...,nw+1

∑j+nw−1
r=j hr < k, and

∑i+nw−1
r=i+1 hr = k − 2. Likewise, the

event Fi is a collection of configurations (In1 , . . . , Inn ) = (h′
1, . . . , h

′
n) where (h′

1, . . . , h
′
n)

satisfies that h′
j = 0 or 1 for all j, h′

i = 1, h′
i+nw = 0, maxj=1,...,nw+1

∑j+nw−1
r=j h′

r <

k,
∑i+nw−1

r=i+1 h′
r = k − 2, and sum of any nw consecutive h′

r including r = i + nw

is at most k − 2. It is readily seen that a configuration (In1 , . . . , I
n
n ) = (h1, . . . , hn)

is in G′′
1,i if and only if the configuration (In1 , . . . , I

n
n ) = (h′

1, . . . , h
′
n) is in Fi where

(h′
1, . . . , h

′
n) = (h1, . . . , hn) − ei+nw with ei+nw being the vector of zeroes except for

the (i + nw)-th entry being 1. The claim (2.10) now follows from the independence

property of In1 , . . . , Inn . By (2.10),

ρ−1
n

nw∑
i=1

P
(n)
i =

nw∑
i=1

P
′(n)
i =

nw∑
i=1

P(Fi) = E
[
ν(n)(Π)

]
, (2.11)

where

ν(n)(Π) :=

nw∑
i=1

1

{
Ac

n,

i+nw−1∑
r=i+1

Inr = k − 2, Ini = 1, Ini+nw = 0, sum of any

nw consecutive Inr including r = i+ nw is at most k − 2

}
.

To deal with the terms P̃
(n)
i , i = 1, . . . , n on the right-hand side of (2.9), let

P̃
′(n)
i := P

Ac
n, I

n
i = 1,

i′+nw−1∑
r=i′

Inr = k − 1 for some i′ with

1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

)
.

By an argument similar to the proof of (2.10), we have P̃
(n)
i /P̃

′(n)
i = ρ̃n for all i =

1, . . . , n where ρ̃n = P(Ĩni = 2)/P(Ini = 1) = e−λ/n(λ/n)2/[2(1− e−λ/n)]. So,

ρ̃−1
n

n∑
i=1

P̃
(n)
i =

n∑
i=1

P̃
′(n)
i = E

[
ν̃(n)(Π)

]
, (2.12)

where

ν̃(n)(Π) :=

n∑
i=1

1

Ac
n, I

n
i = 1,

i′+nw−1∑
r=i′

Inr = k − 1

for some i′ with 1 ≤ i′ ≤ i ≤ i′ + nw − 1 ≤ n

}
.
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Since ρn = λ/n+O(n−2) and ρ̃n = λ/(2n) +O(n−2), it follows from (2.9), (2.11) and

(2.12) that

n(α− αn)−
λ

2
E
[
ν(n)(Π) + ν̃(n)(Π)

]
= O(n−1). (2.13)

Note that ν(n)(Π) and ν̃(n)(Π) converge a.s. to ν(Π) and ν̃(Π), respectively. Since

max{ν(n)(Π), ν̃(n)(Π)} ≤
∑n

i=1 1{Ini = 1} ≤ |Π|, we have by the dominated conver-

gence theorem that E[ν(n)(Π) + ν̃(n)(Π)] converges to E[ν(Π) + ν̃(Π)], which together

with (2.13) completes the proof.

Remark 2.1. With a little more effort, it can be shown that

E
[
ν(n)(Π) + ν̃(n)(Π)

]
− E

[
ν(Π) + ν̃(Π)

]
= O(n−1),

which together (2.13) yields α−αn = Cαn
−1+O(n−2) where Cα = λ

2E
[
ν(Π) + ν̃(Π)

]
.

2.2. Matching the expected number of points

Recall that Hn
i , i = 1, . . . , n are i.i.d. with P(Hn

i = 0) = 1− λ/n and P(Hn
i = 1) =

λ/n. Let βn = P(Bn) where Bn := {S(n)
w,H ≥ k} =

{
maxi=1,...,nw+1

∑i+nw−1
r=i Hn

r ≥ k
}

.

Lemma 2.1. For n = mq (m = 1, 2, . . . ),

lim
n→∞

2n

λ2
(βn − αn) = −α+

∫ 1

0

P
(

max
0≤t≤1−w

∣∣∣∣(Π ∪ {u}) ∩ (t, t+ w]

∣∣∣∣ ≥ k

)
du.

Proof. Let Ln
i , i = 1, . . . , n be i.i.d. and independent of In1 , . . . , Inn such that P(Ln

i =

0) = (1 − λ/n)eλ/n = 1 − P(Ln
i = 1). Letting L̃n

i = max{Ini , Ln
i } and noting that

P(L̃n
i = 0) = P(Ini = 0 and Ln

i = 0) = 1−λ/n = P(Hn
i = 0), we have L(L̃n

1 , . . . , L̃
n
n) =

L(Hn
1 , . . . , H

n
n ) where L(V) denotes the law of a random vector V, so that βn =

P(Bn) = P(B̃n) where B̃n =
{
maxi=1,...,nw+1

∑i+nw−1
r=i L̃n

r ≥ k
}

. Since Ini = 1 implies

L̃n
i = 1, we have An ⊂ B̃n. Letting Sn =

∑n
i=1 L

n
i and noting that B̃n ∩ {Sn = 0} =

An ∩ {Sn = 0} and that

P(Sn = 0) = 1− λ2

2n
+O(n−2), P(Sn = 1) =

λ2

2n
+O(n−2), P(Sn ≥ 2) = O(n−2),
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we have

βn = P(B̃n) = P(B̃n|Sn = 0)P(Sn = 0) + P(B̃n|Sn = 1)P(Sn = 1)

+ P(B̃n|Sn ≥ 2)P(Sn ≥ 2)

= P(An|Sn = 0)

(
1− λ2

2n

)
+ P(B̃n|Sn = 1)

λ2

2n
+O(n−2)

= αn

(
1− λ2

2n

)
+ P(B̃n|Sn = 1)

λ2

2n
+O(n−2). (2.14)

Claim that

lim
n→∞

P(B̃n|Sn = 1) =

∫ 1

0

P
(

max
0≤t≤1−w

∣∣∣(Π ∪ {u}) ∩ (t, t+ w]
∣∣∣ ≥ k

)
du, (2.15)

which together with (2.14) yields the desired result.

It remains to establish the claim (2.15). Let Q be a random point which is uniformly

distributed on (0, 1] and independent of Π. Let Îni = 1
{
(Π∪{Q})∩

(
i−1
n , i

n

]
̸= ∅
}
, i =

1, . . . , n. It is readily seen that L(L̃n
1 , . . . , L̃

n
n | Sn = 1) = L(În1 , . . . , Înn ), which implies

P(B̃n|Sn = 1) = P(B̂n), where B̂n =
{
maxi=1,...,nw+1

∑i+nw−1
r=i Înr ≥ k

}
. Since 1B̂n

converges a.s. to 1{max0≤t≤1−w |(Π ∪ {Q}) ∩ (t, t+ w]| ≥ k}, we have

lim
n→∞

P(B̃n|Sn = 1) = lim
n→∞

P(B̂n) = P
(

max
0≤t≤1−w

∣∣∣(Π ∪ {Q}) ∩ (t, t+ w]
∣∣∣ ≥ k

)
,

from which the claim (2.15) follows. This completes the proof of the lemma.

Theorem 2.2. For n = mq (m = 1, 2, . . . ),

lim
n→∞

2n

λ2
(α− βn) =

1

λ
E
[
ν(Π) + ν̃(Π)

]
+ α

−
∫ 1

0

P
(

max
0≤t≤1−w

∣∣∣∣(Π ∪ {u}) ∩ (t, t+ w]

∣∣∣∣ ≥ k

)
du.

Proof. Note that 2n
λ2 (α − βn) = 2n

λ2 (α − αn) − 2n
λ2 (βn − αn), which together with

Theorem 2.1 and Lemma 2.1 yields the desired result.

Remark 2.2. It can be shown (cf. Remark 2.1) that α − βn = Cβn
−1 + O(n−2),

where

Cβ = Cα +
1

2
λ2α− λ2

2

∫ 1

0

P
(

max
0≤t≤1−w

∣∣∣(Π ∪ {u}) ∩ (t, t+ w]
∣∣∣ ≥ k

)
du.
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3. The conditional case

In this section, for given N ≥ k = 2, 3, . . . , we are interested in approximating

γ(N) := P (k;N,w) = P
(

max
0≤t≤1−w

∣∣∣Π ∩ (t, t+ w]
∣∣∣ ≥ k

∣∣∣∣M = N

)
, M := |Π|.

Denoting by ΠN a set of N i.i.d. uniform random variables on (0, 1], we have L(ΠN ) =

L(Π|M = N) and γ(N) = P(EN ) where EN :=
{
max0≤t≤1−w

∣∣ΠN ∩ (t, t+ w]
∣∣ ≥ k

}
.

As in Section 2, with n = mq (m = 1, 2, . . . ), the interval (0, 1] is partitioned into n

subintervals of length n−1, so that a window of size w = p/q covers nw subintervals.

As an approximation to N points uniformly distributed on (0, 1], we randomly select

N of the n subintervals and assign a point to each of them. Let Jn
i = 1 or 0 according

to whether or not the i-th subinterval is selected (so as to contain a point). Then∑n
i=1 J

n
i = N . For hi = 0 or 1 with

∑n
i=1 hi = N , PN (Jn

i = hi, i = 1, . . . , n) =

1/
(
n
N

)
where the subscript N in PN signifies that there are N 1’s in Jn

1 , . . . , J
n
n .

While in Section 2, (In1 , . . . , I
n
n ) is defined in terms of Π in order to make use of a

coupling argument, there is no natural way to define (Jn
1 , . . . , J

n
n ) and ΠN on the

same probability space. As no danger of confusion may arise, we will use the same

probability measure notation PN for both the probability space where ΠN is defined

and the probability space where (Jn
1 , . . . , J

n
n ) is defined. Let

γ(N)
n = PN (EN

n ) , where EN
n :=

{
max

i=1,...,nw+1

i+nw−1∑
r=i

Jn
r ≥ k

}
. (3.1)

Theorem 3.1. For N fixed and n = mq (m = 1, 2, . . . ),

lim
n→∞

n(γ(N) − γ(N)
n ) =

1

2
N(N − 1)(γ(N−1) − γ(N))

+
1

2
NE

[
ν(Π) + ν̃(Π)

∣∣∣M = N − 1
]
.

Proof. The proof is similar to (but somewhat more involved than) that of Theorem

2.1. Because of space limitation, we only sketch it here and refer the reader to [23]

for details. For notational simplicity, the superscript N in EN and EN
n is suppressed

while to avoid possible confusion, PN is not abbreviated to P as later a change-of-

measure argument requires consideration of PN−1. Let J̃i =
∣∣ΠN ∩ ((i− 1)/N, i/N ]

∣∣,
i = 1, . . . , n, and define the (disjoint) events

U1 = {J̃n
j ≤ 1, j = 1, . . . , n}; U2 =

n∪
i=1

U2,i, U2,i = {J̃n
i = 2, J̃n

j ≤ 1 for all j ̸= i};
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and U3 = {J̃n
j = J̃n

j′ = 2 for some j ̸= j′} ∪ {J̃n
j ≥ 3 for some j}. We have PN (U1) =

1−N(N−1)/(2n)+O(n−2), PN (U2) = N(N−1)/(2n)+O(n−2), and PN (U3) = O(n−2),

so that

γ(N) = PN (EN ) = PN (E) = PN (E|U1)PN (U1) + PN (E ∩ U2) +O(n−2). (3.2)

To deal with PN (E|U1), let Ẽn :=
{
maxi=1,...,nw+1

∑i+nw−1
r=i J̃n

r ≥ k
}

(which is con-

tained in E). Note that L(J̃n
1 , . . . , J̃

n
n |U1) = L(Jn

1 , . . . , J
n
n ) and that Ẽn depends on

(J̃n
1 , . . . , J̃

n
n ) in the same way that En = EN

n does on (Jn
1 , . . . , J

n
n ) (cf. (3.1)). So we

have PN (Ẽn|U1) = PN (En) = γ
(N)
n , and

PN (E|U1) = PN (Ẽn|U1) + PN (E ∩ Ẽc
n |U1) = γ(N)

n + PN (E ∩ Ẽc
n |U1). (3.3)

If J̃n
i = 1, denote the only point of ΠN in ((i − 1)/n, i/n] by Q(i), whose location is

uniformly distributed over ((i − 1)/n, i/n]. When J̃n
i ≤ 1 for all i (i.e. on the event

U1), in order for E ∩ Ẽc
n to occur, there must exist some pair (i, i′) with i′ = i + nw

such that
∑i′−1

r=i+1 J̃
n
r = k − 2, J̃n

i = J̃n
i′ = 1, and Q(i′) − Q(i) < w. So we have

E ∩ Ẽc
n ∩ U1 =

∪nw
i=1 U1,i where for i = 1, . . . , nw,

U1,i = Ẽc
n ∩

{
J̃n
j ≤ 1 for all j,

i+nw−1∑
r=i+1

J̃n
r = k − 2,

J̃n
i = J̃n

i+nw = 1, Q(i+nw) −Q(i) < w

}
.

Since
∑

1≤i<j≤nw PN (U1,i ∩ U1,j) = O(n−2), we have

PN (E ∩ Ẽc
n | U1) =

nw∑
i=1

PN (U1,i|U1) +O(n−2) =
1

2

nw∑
i=1

PN (U ′
1,i|U1) +O(n−2), (3.4)

where U ′
1,i = Ẽc

n ∩
{
J̃n
j ≤ 1 for all j,

∑i+nw−1
r=i+1 J̃n

r = k − 2, J̃n
i = J̃n

i+nw = 1
}

, i =

1, . . . , nw. In (3.4), we have used the fact that for any given hj = 0 or 1 (j = 1, . . . , n)

with
∑n

j=1 hj = N and hi = hi+nw = 1, conditional on J̃n
j = hj , j = 1, . . . , n,

Q(i) and Q(i+nw) are independent and uniformly distributed over ((i− 1)/n, i/n] and

((i+nw− 1)/n, (i+nw)/n], respectively, so that Q(i+nw) −Q(i) < w with probability

1/2, which implies PN (U1,i|U1) =
1
2PN (U ′

1,i|U1).

Note that U ′
1,i, i = 1, . . . , n depend only on J̃n

1 , . . . , J̃
n
n . Since L(J̃n

1 , . . . , J̃
n
n |U1) =

L(Jn
1 , . . . , J

n
n ), we have

PN (U ′
1,i|U1) = PN (Vi), i = 1, . . . , nw, (3.5)
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where Vi = Ec
n ∩

{∑i+nw−1
r=i+1 Jn

r = k − 2, Jn
i = Jn

i+nw = 1
}
. (Note that Vi depends on

(Jn
1 , . . . , J

n
n ) in the same way that U ′

1,i does on (J̃n
1 , . . . , J̃

n
n ).)

We will simplify
∑nw

i=1 PN (U ′
1,i|U1) =

∑nw
i=1 PN (Vi) via a change-of-measure ar-

gument. It is instructive to interpret the event Vi as a collection of configurations

(Jn
1 , . . . , J

n
n ) = (h1, . . . , hn) where (h1, . . . , hn) satisfies hr = 0 or 1 for r = 1, . . . , n,∑n

r=1 hr = N,maxj=1,...,nw+1

∑j+nw−1
r=j hr < k,

∑i+nw−1
r=i+1 hr = k − 2, hi = hi+nw = 1.

Let V ∗
i = {

∑n
r=1 J

n
r = N − 1,maxj=1,...,nw+1

∑j+nw−1
r=j Jn

r < k,
∑i+nw−1

r=i+1 Jn
r = k −

2, Jn
i = 1, Jn

i+nw = 0, sum of any nw consecutive Jn
r including r = i+ nw is at most k − 2}.

We interpret V ∗
i as a collection of configurations (Jn

1 , . . . , J
n
n ) = (h∗

1, . . . , h
∗
n), where

(h∗
1, . . . , h

∗
n) satisfies that h∗

r = 0 or 1 for r = 1, . . . , n,
∑n

r=1 h
∗
r = N−1,

∑j+nw−1
r=j h∗

r <

k for j = 1, . . . , nw + 1,
∑i+nw−1

r=i+1 h∗
r = k − 2, h∗

i = 1, h∗
i+nw = 0, and sum of

any nw consecutive h∗
r including r = i + nw is at most k − 2. If a configuration

(Jn
1 , . . . , J

n
n ) = (h1, . . . , hn) is in Vi, then the configuration (Jn

1 , . . . , J
n
n ) = (h∗

1, . . . , h
∗
n)

is in V ∗
i provided h∗

r = hr for all r ̸= i + nw and hi+nw = 1, h∗
i+nw = 0. In other

words, a configuration is in Vi if and only if with the (i + nw)-th entry replaced by

0, it is in V ∗
i . Note that the number of nonzero entries for a configuration in V ∗

i

equals N − 1. Recall that the notation PN (PN−1, resp.) denotes the probability

measure for (Jn
1 , . . . , J

n
n ) with

∑n
r=1 J

n
r = N (

∑n
r=1 J

n
r = N −1, resp.). It follows that

PN (Vi)/PN−1(V
∗
i ) =

(
n

N−1

)
/
(
n
N

)
= N/(n−N + 1). Therefore,(

n−N + 1

N

) nw∑
i=1

PN (Vi) =

nw∑
i=1

PN−1(V
∗
i ) = EN−1

[
ν
(n)
1 (Jn

1 , . . . , J
n
n )
]
, where (3.6)

ν
(n)
1 (Jn

1 , . . . , J
n
n ) =

nw∑
i=1

1

 max
j=1,...,nw+1

j+nw−1∑
r=j

Jn
r < k,

i+nw−1∑
r=i+1

Jn
r = k − 2,

Jn
i = 1, Jn

i+nw = 0, sum of any nw consecutive Jn
r

including r = i+ nw is at most k − 2

}
.

By (3.3)–(3.6),

PN (E|U1) = γ(N)
n +

1

2

N

n−N + 1
EN−1

[
ν
(n)
1 (Jn

1 , . . . , J
n
n )
]
+O(n−2)

= γ(N)
n +

N

2n
E
[
ν(Π)

∣∣∣M = N − 1
]
+ o(n−1), (3.7)

since lim
n→∞

EN−1

[
ν
(n)
1 (Jn

1 , . . . , J
n
n )
]
= E

[
ν(Π)

∣∣∣M = N − 1
]
.
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Another change-of-measure argument can be used to deal with PN (E∩U2) (cf. [23]),

yielding

PN (E ∩ U2) =
N

2n

(
(N − 1)γ(N−1) + E

[
ν̃(Π)

∣∣∣M = N − 1
])

+ o(n−1),

which together with (3.2) and (3.7) completes the proof.

Remark 3.1. It can be shown (cf. Remarks 2.1 and 2.2) that γ(N)−γ
(N)
n = Cγn

−1+

O(n−2) where Cγ = N(N−1)
2 (γ(N−1) − γ(N)) + N

2 E
[
ν(Π) + ν̃(Π)

∣∣∣M = N − 1
]
.

Remark 3.2. Note that αn and βn are weighted averages of γ(N)
n over N with binomial

probabilities
(
n
N

)
pNn (1−pn)

n−N as weights where pn = 1− e−λ/n for αn and pn = λ/n

for βn. The limits limn→∞ n(α− αn) and limn→∞ n(α− βn) in Theorems 2.1 and 2.2

can be formally derived from limn→∞ n(γ(N) − γ
(N)
n ) by interchanging limn and ΣN .

4. Numerical results and discussion

Using the Markov chain embedding method (cf. [4, 6, 17]), we computed the discrete

approximations αn, βn and γ
(N)
n for various combinations of parameter values (k,w, λ)

(the unconditional case) and (k,w,N) (the conditional case). Figure 1 plots n(α −

αn), n(α − βn) and n(γ(N) − γ
(N)
n ) for n = 25(5)600 with k = 5, w = 0.4, λ = 8 and

N = 8, where the superscript (N) in γ(N) and γ
(N)
n is suppressed for ease of notation.

The exact probabilities α = P ∗(k;λ,w) = P ∗(5; 8, 0.4) = 0.628144085 and γ(8) =

P (k;N,w) = P (5; 8, 0.4) = 0.780861440 are taken from [20]. By Theorems 2.1, 2.2 and

3.1, n(α−αn), n(α−βn) and n(γ(N)−γ
(N)
n ) converge, respectively, to the limits Cα, Cβ

and Cγ (cf. Remarks 2.1, 2.2 and 3.1). These limits were estimated by Monte Carlo

simulation with 106 replications, resulting in Cα = 4.6322 ± 0.0096(Std. Err.), Cβ =

0.8297± 0.0167, Cγ = 2.7279± 0.0114. In view of Remarks 2.1, 2.2 and 3.1, the rate of

convergence, n−1, for αn, βn and γ
(N)
n can be improved to n−2 by using Richardson’s

extrapolation. Specifically for w = p/q, suppose n is even such that n/2 is a multiple

of q. Letting α̃n := 2αn − αn/2, β̃n := 2βn − βn/2 and γ̃
(N)
n := 2γ

(N)
n − γ

(N)
n/2 , we have

α − α̃n = O(n−2), α − β̃n = O(n−2) and γ(N) − γ̃
(N)
n = O(n−2). Table 1 presents

numerical results comparing αn, α̃n, βn and β̃n for the unconditional case. Table 2

compares γ
(N)
n and γ̃

(N)
n for the conditional case.
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n(α− αn), n(α− βn), n(γ − γn) vs. n

n(α − αn)
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n(γ − γn)

Cα
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Figure 1: Plot of n(α − αn), n(α − βn), and n(γ − γn) for n = 25(5)600 with parameters

w = 0.4, k = 5, λ = 8, N = 8.

Remark 4.1. In Tables 1 and 2, we have taken relatively large values of w = 0.2 and

0.4 since the exact unconditional probabilities reported in [20] are less accurate for

w < 0.2. Figure 1 shows that n(α− αn), n(α− βn) and n(γ(N) − γ
(N)
n ) monotonically

approach Cα, Cβ and Cγ , respectively. In Table 1, βn is consistently more accurate

than αn, which is not surprising since αn < min{α, βn}. According to Tables 1 and 2,

when n doubles, the errors of αn, βn and γ
(N)
n decrease by roughly a factor of 2 while

the errors of the corrected approximations α̃n, β̃n and γ̃
(N)
n decrease by (very) roughly

a factor of 4. Our limited numerical studies indicate that the corrected approximations

are more accurate than the uncorrected ones for n ≥ 50. Also in the two tables, β̃100

(γ̃(N)
100 , resp.) is about as accurate as or more accurate than β400 (γ(N)

400 , resp.).

Remark 4.2. The referee of this paper raises an important question on the relation-

ship among w, λ (N) and the convergence rate. While the convergence rate for the

uncorrected (corrected, resp.) approximations is n−1 (n−2, resp.), the error size for the

approximations αn, βn, γ
(N)
n , α̃,β̃n, γ̃

(N)
n depends on w and λ (N) as well as on k in a
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Table 1: The unconditional case
Parameters n Exact

λ w k 25 50 100 200 400 α

4 0.2 3 αn 0.226474137 0.297081029 0.330413369 0.346549002 0.354481473 0.362322986

α− αn 0.135848849 0.065241957 0.031909617 0.015773984 0.007841513

α̃n 0.367687921 0.363745709 0.362684635 0.362413943

α− α̃n −0.005364935 −0.001422723 −0.000361649 −0.000090957

βn 0.269466265 0.321289109 0.342964036 0.352912780 0.357682871

α− βn 0.092856721 0.041033877 0.019358950 0.009410206 0.004640115

β̃n 0.373111952 0.364638964 0.362861523 0.362452963

α− β̃n −0.010788966 −0.002315978 −0.000538537 −0.000129977

4 0.2 4 αn 0.028528199 0.063252847 0.083861016 0.094813938 0.100432989 0.106139839

α− αn 0.077611640 0.042886992 0.022278823 0.011325901 0.005706850

α̃n 0.097977495 0.104469184 0.105766860 0.106052039

α− α̃n 0.008162344 0.001670655 0.000372979 0.000087800

βn 0.037826080 0.071921990 0.089167692 0.097701122 0.101933685

α− βn 0.068313759 0.034217849 0.016972147 0.008438717 0.004206154

β̃n 0.106017899 0.106413395 0.106234551 0.106166248

α− β̃n 0.000121940 −0.000273556 −0.000094712 −0.000026409

8 0.4 5 αn 0.400190890 0.524770327 0.579159623 0.604320002 0.616397532 0.628144085

α− αn 0.227953195 0.103373758 0.048984462 0.023824083 0.011746553

α̃n 0.649349765 0.633548918 0.629480382 0.628475061

α− α̃n −0.021205680 −0.005404833 −0.001336297 −0.000330976

βn 0.571524668 0.606381317 0.618451977 0.623556407 0.625910702

α− βn 0.056619417 0.021762768 0.009692108 0.004587678 0.002233383

β̃n 0.641237966 0.630522637 0.628660836 0.628264997

α− β̃n −0.013093881 −0.002378552 −0.000516751 −0.000120912

8 0.4 6 αn 0.156407681 0.278520053 0.341202440 0.372097133 0.387351968 0.402452588

α− αn 0.246044907 0.123932535 0.061250148 0.030355455 0.015100620

α̃n 0.400632426 0.403884826 0.402991826 0.402606803

α− α̃n 0.001820162 −0.001432238 −0.000539238 −0.000154215

βn 0.278663391 0.351874806 0.379351117 0.391387631 0.397034846

α− βn 0.123789197 0.050577782 0.023101471 0.011064957 0.005417742

β̃n 0.425086221 0.406827428 0.403424144 0.402682062

α− β̃n −0.022633633 −0.004374840 −0.000971556 −0.000229474

very complicated way. While addressing this issue in full detail would require extensive

analytical and numerical studies, we briefly present in Table 3 the values of n(α− βn)

and n2(α− β̃n) for n = 400, w ∈ {0.1, 0.2, 0.3, 0.4}, λ ∈ {1, 2, 4, 8} and k ∈ {3, 5}. The

(absolute) value of n2(α − β̃n) is noticeably large for w = 0.1 and λ = 8, indicating

that the approximation β̃n is less accurate when w is small and λ is large.

Remark 4.3. The discrete approximations are usually computed using the Markov

chain embedding method. A drawback of this method is the requirement of a very

large state space (corresponding to a large computer memory space) for some practical

applications. Indeed, it is shown in [3] that to compute αn, βn and γ
(N)
n using the

Markov chain embedding method, the minimum number of states required is
(
nw
k−1

)
+1,
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Table 2: The conditional case
Parameters n Exact

w k N 25 50 100 200 400 γ

0.2 4 6 γn 0.080688876 0.155913836 0.194799457 0.214242757 0.223935622 0.233600000

γ − γn 0.152911124 0.077686164 0.038800543 0.019357243 0.009664378

γ̃n 0.231138796 0.233685077 0.233686058 0.233628487

γ − γ̃n 0.002461204 −0.000085077 −0.000086058 −0.000028487

7 γn 0.166798419 0.294914521 0.354660825 0.383179030 0.397084766 0.410752000

γ − γn 0.243953581 0.115837479 0.056091175 0.027572970 0.013667234

γ̃n 0.423030623 0.414407129 0.411697234 0.410990502

γ − γ̃n −0.012278623 −0.003655129 −0.000945234 −0.000238502

8 γn 0.291588655 0.469102180 0.542215920 0.575193126 0.590840920 0.605949440

γ − γn 0.314360785 0.136847260 0.063733520 0.030756314 0.015108520

γ̃n 0.646615704 0.615329660 0.608170332 0.606488715

γ − γ̃n −0.040666264 −0.009380220 −0.002220892 −0.000539275

9 γn 0.448718168 0.651907101 0.723414803 0.753448974 0.767220941 0.780225536

γ − γn 0.331507368 0.128318435 0.056810733 0.026776562 0.013004595

γ̃n 0.855096034 0.794922506 0.783483145 0.780992907

γ − γ̃n −0.074870498 −0.014696970 −0.003257609 −0.000767371

0.4 5 6 γn 0.162450593 0.224402953 0.254838093 0.269838436 0.277276942 0.284672000

γ − γn 0.122221407 0.060269047 0.029833907 0.014833564 0.007395058

γ̃n 0.286355312 0.285273233 0.284838778 0.284715449

γ − γ̃n −0.001683312 −0.000601233 −0.000166778 −0.000043449

7 γn 0.371395881 0.463718058 0.504028994 0.522865538 0.531971853 0.540876800

γ − γn 0.169480919 0.077158742 0.036847806 0.018011262 0.008904947

γ̃n 0.556040235 0.544339929 0.541702083 0.541078168

γ − γ̃n −0.015163435 −0.003463129 −0.000825283 −0.000201368

8 γn 0.627251924 0.716788906 0.751379277 0.766696715 0.773916208 0.780861440

γ − γn 0.153609516 0.064072534 0.029482163 0.014164725 0.006945232

γ̃n 0.806325887 0.785969648 0.782014154 0.781135700

γ − γ̃n −0.025464447 −0.005108208 −0.001152714 −0.000274260

9 γn 0.864220071 0.918826852 0.936992617 0.944511915 0.947942424 0.951173120

γ − γn 0.086953049 0.032346268 0.014180503 0.006661205 0.003230696

γ̃n 0.973433633 0.955158381 0.952031214 0.951372933

γ − γ̃n −0.022260513 −0.003985261 −0.000858094 −0.000199813

which is enormous when nw is large and k is not small. (It should be remarked that [3]

is concerned with computation of the reliability for the so-called d-within-consecutive-

k-out-of-n system, which is equivalent to the discrete scan statistic.) The corrected

discrete approximations partially alleviate the requirement of large memory space since

a reasonable accuracy can be achieved with relatively small n.

Remark 4.4. Since the assumption of constant intensity plays a relatively minor role

in the proofs of Theorems 2.1, 2.2 and 3.1, the method of proof can be extended to the

setting of nonhomogeneous Poisson point processes, which is relevant to computation

of the power of the continuous scan statistic. In the literature, there appears to be

no general method available for computing the exact power under general nonhomoge-



18 Y.-C. Yao et al.

Table 3: n(α− βn) and n2(α− β̃n) with fixed n = 400

k = 3 k = 5

w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.1 w = 0.2 w = 0.3 w = 0.4

n(α− βn)

λ = 1 0.109466 0.162936 0.182359 0.183382 0.000299 0.001929 0.005073 0.009257

λ = 2 0.681630 0.782077 0.688400 0.554156 0.008114 0.044062 0.097558 0.150669

λ = 4 3.007367 1.856046 0.889771 0.318677 0.185741 0.694806 1.052768 1.126564

λ = 8 4.757807 0.419619 −0.284002 −0.385443 2.891219 4.290922 2.499797 0.893353

n2(α− β̃n)

λ = 1 0.988731 0.370714 0.037438 −0.129136 0.018808 0.055607 0.087602 0.107105

λ = 2 2.851580 −1.776830 −2.686059 −2.468150 0.468006 1.013606 1.124645 0.906081

λ = 4 −20.107224 −20.796382 −10.384765 −4.388858 8.653572 7.869467 0.434585 −4.666294

λ = 8 −144.200096 −13.815051 0.373053 0.747002 70.164359 −54.042093 −47.939426 −19.345980

neous Poisson point processes. The method of corrected discrete approximation may

prove to be useful in such a setting as well as in a multiple-window setting (cf. [22]).
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