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Asymptotics on the number of walks until no shoes
when the number of doors is large

May-Ru Chena, Shoou-Ren Hsiaub, Jia-Ching Tsaib, and Yi-Ching Yaoc

aDepartment of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC;
bDepartment of Mathematics, National Changhua University of Education, Changhua City,
Taiwan, ROC; cInstitute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC

ABSTRACT
A man has a house with n doors. Initially he places k pairs of
walking shoes at each door. For each walk, he chooses one
door at random, and puts on a pair of shoes, returns after the
walk to a randomly chosen door and takes off the shoes at
the door. Let Tn be the first time a door is chosen to walk out
but with no shoes available. We show that as n ! 1, Tn has
the same asymptotic distribution and moments as the number
of choices required to choose among n equally likely alterna-
tives repeatedly until any one of the alternatives has appeared
kþ 1 times. To derive these results, we need to consider a
more general setting where the numbers of pairs of shoes ini-
tially placed at the doors (initial configuration) are not neces-
sarily equal. We show that Tn increases in the sense of
stochastic ordering if the initial configuration is more evenly
distributed in the sense of majorization.
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1. Introduction

A man has a house with n � 2 doors. Initially he places k � 1 pairs of walk-
ing shoes at each door. For each walk, he chooses one door at random, and
puts on a pair of shoes, returns after the walk to a randomly chosen door and
takes off the shoes at the door. Sooner or later he discovers that no shoes are
available at the door he has chosen for a further walk (and has to walk bare-
foot). We are interested in the asymptotic behavior as n ! 1 of the distribu-
tion and moments of the number of finished walks (before walking barefoot).
When n¼ 2 (a house with 2 doors), this problem is referred to as “Number
of walks until no shoes” in the well-known book “Problems and Snapshots
from the World of Probability” by Blom et al.[2]. The problem first appeared
in The American Mathematical Monthly[1].
Our study of this problem was originally motivated by modeling, design

and analysis of bicycle-sharing systems[3,8], which have become popular in
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major cities worldwide. In a bicycle-sharing system, for example the
YouBike system[7], a user can rent a bike at one station and return it at
another station. For such a system to be user-friendly, the number of sta-
tions where a user can rent and return a bike needs to be large and the
number of bikes available at a station should depend on the demand at the
station. In particular, it is costly if a user discovers that no bikes are avail-
able at the chosen station. A bicycle-sharing system may be formulated
mathematically as follows. Suppose that there are n stations labeled
1, 2, :::, n: For i ¼ 1, 2, :::, let ai be the arrival time of the i-th customer at
station si 2 f1, :::, ng with 0 < a1 < a2 < � � � : The i-th customer rents a
bike (if available) at station si and returns it at station s0i 2 f1, :::, ng at the
departure time bi with bi > ai. The i-th customer is lost if no bike is avail-
able at station si. To reduce the rate of customers lost, bikes need to be
shipped between stations periodically according to a policy that takes vari-
ous costs into account. While stochastic modeling of a bicycle-sharing sys-
tem and finding a cost-effective policy is a challenging issue in operations
management, our doors-shoes problem corresponds to a much simplified
special case with bi < aiþ1 (i.e., the next customer arrives after the current
customer returns the bike).
More specifically, with the n doors labeled 1, :::, n, let Dt,D0

t, t ¼ 1, 2, :::
be i.i.d. uniformly distributed on f1, :::, , ng, where Dt denotes the labeling
of the door which the man chooses to go out for the t-th walk and D0

t
denotes the labeling of the door which he chooses to return upon complet-
ing the t-th walk. Let

Ln ¼ inf t � kþ 1 :
Xt
r¼1

1 Dr¼Dtf g ¼ kþ 1

( )
, (1)

the first time a door has been chosen kþ 1 times to walk out. Note that Ln
can be viewed as the number of choices required to choose among n
equally likely alternatives repeatedly until any one of the alternatives has
appeared kþ 1 times (cf. Ref.[4]). Let Tn be the first time a door is chosen
to walk out but with no shoes available (i.e., the first time the man walks
barefoot). Thus Tn � 1 is the number of finished walks (before walk-
ing barefoot).
It is instructive to consider a more general setting where the initial num-

bers of pairs of shoes placed at the n doors are not necessarily equal. Let
Vn ¼ ðv1, :::, vnÞ where vi denotes the initial number of pairs of shoes
placed at door i. We will refer to Vn as the initial configuration (of the
numbers of pairs of shoes placed at the n doors). Let LðTnjVnÞ and
EðTr

njVnÞ denote, respectively, the distribution and r-th moment of Tn

when the initial configuration is Vn. Note that LðTnjVnÞ and EðTr
njVnÞ are

invariant with respect to permutations of Vn.
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In Section 2, we first describe a useful relationship between Tn and Ln
(Proposition 1) and then give the main results (Theorems 2–5) which show
under suitable conditions on Vn that Tn has the same asymptotic distribu-
tion and moments as Ln. Moreover, we also consider the case k¼ 1 and
derive (with Vn ¼ ð1, :::, 1Þ) the asymptotic (conditional) distribution and
moments of Tn � Ln given Tn>Ln, a consequence of which is

lim
n!1 EðTn � LnÞ ¼ 2

3
:

The proofs of Proposition 1 and Theorems 3–5 are contained in Section 3.
To prove Theorem 3, we need to show that LðTnjVnÞ is stochastically
smaller than LðTnjV 0

nÞ if Vn majorizes V 0
n (see Theorem 6), which is of

independent interest. The proof of Theorem 6 is given in Appendix.

2. Main results

In this section, we first give a useful relationship between Tn and Ln. Then
we will show under suitable conditions on Vn that Tn has the same asymp-
totic distribution and moments as Ln. The proofs of Proposition 1 and
Theorems 3–5 are postponed to Section 3.

Proposition 1. Suppose Vn ¼ ðk, :::, kÞ:

(i) Then PðTn > Ln � ‘Þ ¼ E 1� 1� 1=nð ÞLn�1
� �

1 Ln�‘f g
h i

: Consequently,

PðTn ¼ LnÞ ¼ E 1� 1=nð ÞLn�1
� �

:

(ii) As n ! 1, we have PðTn ¼ LnÞ ! 1 as n ! 1:

Recall that Dwass[4] has shown that

lim
n!1 P

Ln
nk=ðkþ1Þ � x

� �
¼ 1� exp � xkþ1

ðkþ 1Þ!

( )
, for x > 0: (2)

That is, Ln=nk=ðkþ1Þ has asymptotically a Weibull distribution with shape
parameter kþ 1 and scale parameter ½ðkþ 1Þ!�1=ðkþ1Þ, which we denote by
Weibullðkþ 1, ½ðkþ 1Þ!�1=ðkþ1ÞÞ: Thus, an immediate consequence of
Proposition 1(ii) and Equation (2) is as follows.

Theorem 2. Suppose Vn ¼ ðk, :::, kÞ. As n ! 1, we have

Tn

nk=ðkþ1Þ !d Weibullðkþ 1, ðkþ 1Þ!½ �1=ðkþ1ÞÞ:

The following theorem considers a more general configuration of the
numbers of pairs of shoes initially placed at the n doors.
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Theorem 3. Suppose Vn ¼ ðvðnÞ1 , :::, vðnÞn Þ has the following properties:

(a)
Pn

i¼1 v
ðnÞ
i ¼ kn:

(b) i : vðnÞi < k
n o��� ��� ¼ oðn1=ðkþ1ÞÞ,

where jAj denote the cardinality number of a set A. Then

Tn

nk=ðkþ1Þ !d Weibullðkþ 1, ðkþ 1Þ!½ �1=ðkþ1ÞÞ:

Notice that Dwass[4] has also shown that for r ¼ 1, 2, :::,

lim
n!1E

Ln
nk=ðkþ1Þ

� �r
" #

¼ lk, r :¼
ð1
0

xkþr

k!
exp � xkþ1

ðkþ 1Þ!

( )
dx, (3)

the r-th moment of Weibull ðkþ 1, ½ðkþ 1Þ!�1=ðkþ1ÞÞ: Theorem 3 suggests
that for r ¼ 1, 2, :::, the limit of Eð½Tn=nk=ðkþ1Þ�rjVnÞ exists and is equal to
lk, r, which is formally stated in the following theorem.

Theorem 4. Suppose Vn ¼ ðvðnÞ1 , :::, vðnÞn Þ satisfies conditions (a) and (b) as
given in Theorem 3. Then we have

lim
n!1E

Tn

nk=ðkþ1Þ

	 
r ���� Vn

 !
¼ lk, r, r ¼ 1, 2, ::::

While Theorems 3 and 4 show under conditions (a) and (b) on Vn that Ln
and Tn have the same asymptotic distribution and moments, we have PðTn �
LnÞ ¼ 1 for Vn ¼ ðk, :::, kÞ so that it is of interest to study the asymptotic
behavior of Tn � Ln: We next consider the case k¼ 1 and derive (with
Vn ¼ ð1, :::, 1Þ) the asymptotic (conditional) distribution and moments of
Tn � Ln as well as the asymptotic (unconditional) moments of Tn � Ln:

Theorem 5. Let U denote a random variable with density

f ðxÞ ¼
ffiffiffi
2
p

r ð1
0
y2ðxþ yÞe�1

2ðxþyÞ2dy, x > 0:

Let Vn ¼ ð1, :::, 1Þ. Then
(i) Lðn�1=2ðTn � LnÞjTn > Ln,VnÞ !d U: Equivalently, for x> 0

lim
n!1P n�1=2ðTn � LnÞ > x j Tn > Ln,Vn

� 
¼ PðU > xÞ

¼
ffiffiffi
2
p

r ð1
0
y2e�

1
2ðxþyÞ2dy: (4)
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(ii) lim
n!1E

Tn � Ln
n1=2

	 
r����Tn > Ln,Vn

 !
¼ EðUrÞ, r ¼ 1, 2, :::: (5)

(iii) lim
n!1 n1=2E

Tn � Ln
n1=2

	 
r����Vn

 !
¼

ffiffiffi
p
2

r
EðUrÞ, r ¼ 1, 2, :::: (6)

In particular, for r ¼ 1,

lim
n!1E Tn � LnjVnð Þ ¼

ffiffiffi
p
2

r
EðUÞ ¼ 2

3
: (7)

3. Proofs of Proposition 1 and Theorems 3–5

In the following proofs, it is convenient to adopt the useful notations Op

and op, which are defined below for completeness (cf. the item of “Big O in
probability notation” in Wikipedia).

Definition 1. For a sequence of random variables Xnf g and a sequence of
non-zero constants cnf g, we write Xn ¼ OpðcnÞ if for any � > 0, there exist
finite M> 0 and n0 2 N such that PðjXn=cnj > MÞ < � for all n � n0; and
we write Xn ¼ opðcnÞ if for any � > 0, lim n!1 PðjXn=cnj > �Þ ¼ 0:

Proof of Proposition 1. (i) Note that PðTn � LnÞ ¼ 1 and that Dt and
D0

t, t ¼ 1, 2, :::, are all independent and Ln is independent of D0
t, t ¼

1, 2, :::: Given Ln ¼ t and Dt ¼ i, Tn ¼ Ln if and only if D0
r 6¼ i for r ¼

1, :::, t � 1: We have

PðTn > LnjLn ¼ t,Dt ¼ iÞ ¼ 1� PðD0
r 6¼ i, r ¼ 1, :::, t � 1jLn ¼ t,Dt ¼ iÞ

¼ 1� PðD0
r 6¼ i, r ¼ 1, :::, t � 1Þ

¼ 1� 1� 1
n

� �t�1

,

so that

PðTn > Ln ¼ tÞ ¼
X
i

PðTn > LnjLn ¼ t,Dt ¼ iÞPðLn ¼ t,Dt ¼ iÞ

¼
X
i

1� 1� 1
n

� �t�1
" #

PðLn ¼ t,Dt ¼ iÞ

¼ 1� 1� 1
n

� �t�1
" #

PðLn ¼ tÞ

¼ E 1� 1� 1
n

� �Ln�1
( )

1 Ln¼tf g

" #
:
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Hence

PðTn > Ln � ‘Þ ¼
X
t�‘

PðTn > Ln ¼ tÞ ¼ E 1� 1� 1
n

� �Ln�1
( )

1 Ln�‘f g

" #
:

Consequently,

PðTn > LnÞ ¼ E 1� 1� 1
n

� �Ln�1
" #

and

PðTn ¼ LnÞ ¼ 1� PðTn > LnÞ ¼ E 1� 1
n

� �Ln�1
" #

:

For Part (ii), for any � > 0, we can choose x0 such that
exp �xkþ1

0 =ðkþ 1Þ!
� �

< �=2 which combining with (2) implies that

lim
n!1 P

Ln
nk=ðkþ1Þ > x0

� �
¼ exp � xkþ1

0

ðkþ 1Þ!

( )
<

�

2
:

So there exists n0 2 N such that P Ln
nk=ðkþ1Þ > x0
� 

< � for all n � n0: That is,

for any � > 0, there exist x0 > 0 and n0 2 N such that P Ln
nk=ðkþ1Þ > x0
� 

< �
for all n � n0: Thus, Ln ¼ Opðnk=ðkþ1ÞÞ, implying that

ðLn � 1Þ ln 1� 1
n

� �
¼ Ln � 1

n
ln 1� 1

n

� �n

¼ Opðn�1=ðkþ1ÞÞ ¼ opð1Þ ðas n ! 1Þ:
(8)

Moreover, since Pðð1� 1=nÞLn�1 � 1Þ ¼ 1 for all n, it follows from part (i),
(8) and bounded convergence theorem that

PðTn ¼ LnÞ ¼ E 1� 1
n

� �Ln�1
" #

¼ E exp ðLn � 1Þ ln 1� 1
n

� �� �	 

! 1,

proving part (ii). w

To prove Theorem 3, we need Lemma 1 and Theorem 6 below, whose
proofs are relegated to Appendix.

Lemma 1. For 1 � n0 < n, we have

PðDi � n0 for all i � LnÞ ¼ E
n0

n

� �Ln0
" #

,

where Ln0 ¼ inf t � kþ 1 :
Pt

r¼1 1 D�
r¼D�

tf g ¼ kþ 1
n o

and where D�
1,D

�
2, :::

are i.i.d. uniformly distributed on 1, :::, n0f g:
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To state Theorem 6, we first define majorization and a stochastic order-
ing for completeness.

Definition 2. A vector Vn ¼ ðv1, :::, vnÞ is said to majorize another vector
V 0
n ¼ ðv01, :::, v0nÞ ifXn

i¼1

vi ¼
Xn
i¼1

vi
0, and

Xj
i¼1

vðiÞ �
Xj
i¼1

vðiÞ0, j ¼ 1, :::, n� 1,

where vðiÞ and v0ðiÞ denote the i-th largest components of Vn and V 0
n,

respectively.

Definition 3. A random variable X is said to be stochastically smaller than
another random variable X0 if PðX � xÞ � PðX0 � xÞ for all x.
Notice that majorization provides a partial order and V ¼ ðk, k, :::, kÞ is

majorized by any other configuration with a total of kn pairs of shoes. Notice
also that X is stochastically smaller than X0 if and only if for every non-
decreasing function f one has E½f ðXÞ� � E½f ðX0Þ�: See e.g. Ref.[5] for the theory
of majorization and Ref.[6] for various stochastic orders and their applications.

Theorem 6. Suppose Vn ¼ ðv1, :::, vnÞ majorizes V 0
n ¼ ðv01, :::, v0nÞ (denoted

Vn � V 0
n). Then LðTnjVnÞ is stochastically smaller than LðTnjV 0

nÞ:

Proof of Theorem 3. Let Kn ¼ i : vðnÞi < k
n o��� ���, which is the number of

doors with initial numbers of pairs of shoes less than k. Since LðTnjVnÞ is
invariant with respect to permutations of Vn, we assume without loss of

generality that vðnÞi � k for i � n� Kn and vðnÞi < k for i > n� Kn, which
implies that Di � n� Kn for all i � Lnf g 	 Tn � Lnf g: By Lemma 1 (with
n0 ¼ n� Kn),

PðTn � LnÞ � PðDi � n� Kn for all i � LnÞ

¼ E exp ðLn�KnÞ ln 1� Kn

n

� �� �	 

: (9)

For any � > 0, let x0 be such that exp �xkþ1
0 =ðkþ 1Þ!

� �
< �=2: Since

assumption (b) implies that n� Kn ! 1, we see that by (2)

lim
n!1 P

Ln�Kn

ðn� KnÞk=ðkþ1Þ > x0

 !
¼ exp � xkþ1

0

ðkþ 1Þ!

( )
<

�

2
:

It follows that there exists n0 2 N such that

P
Ln�Kn

n� Knð Þk=ðkþ1Þ > x0

 !
< �
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for all n � n0: Thus for n � n0,

P
Ln�Kn

nk=ðkþ1Þ > x0

� �
¼ P

Ln�Kn

ðn� KnÞk=ðkþ1Þ > x0
n

n� Kn

� �k=ðkþ1Þ
 !

� P
Ln�Kn

ðn� KnÞk=ðkþ1Þ > x0

 !
< �:

This shows that Ln�Kn ¼ Opðnk=ðkþ1ÞÞ: Moreover,

ln ð1� Kn=nÞ
n�k=ðkþ1Þ ¼ n

Kn
ln 1� Kn

n

� �	 

Kn

n1=ðkþ1Þ ! 0,

since Kn ¼ oðn1=ðkþ1ÞÞ: Thus, we see that

Ln�Kn ¼ Opðnk=ðkþ1ÞÞ and ln 1� Kn

n

� �
¼ oðn�k=ðkþ1ÞÞ,

which together with (9) implies that

PðTn � LnÞ � E exp ðLn�KnÞ ln 1� Kn

n

� �� �	 

! 1,

i:e: lim
n!1 PðTn � LnÞ ¼ 1:

(10)

Since Vn � V 0
n :¼ ðk, :::, kÞ, we have by Theorem 6 that LðTnjVnÞ is sto-

chastically smaller than LðTnjV 0
nÞ, i.e.

P
Tn

nk=ðkþ1Þ � x

���� Vn

 !
� P

Tn

nk=ðkþ1Þ � x

���� V 0
n

 !
, for x > 0: (11)

By Theorem 2,

lim
n!1 P

Tn

nk=ðkþ1Þ � x

���� V 0
n

 !
¼ 1� exp � xkþ1

ðkþ 1Þ!

( )
, for x > 0: (12)

We have for x> 0,

lim sup
n!1

P
Tn

nk=ðkþ1Þ � x

���� Vn

 !
� lim

n!1P
Ln

nk=ðkþ1Þ � x

� �
ðby ð10ÞÞ

¼ 1� exp � xkþ1

ðkþ 1Þ!

( )
ðby ð2ÞÞ,

(13)
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and

lim inf
n!1 P

Tn

nk=ðkþ1Þ � x

���� Vn

 !
� lim

n!1P
Tn

nk=ðkþ1Þ � x

���� V 0
n

 !
ðby ð11ÞÞ

¼ 1� exp � xkþ1

ðkþ 1Þ!

( )
ðby ð12ÞÞ:

(14)

By (13) and (14), Tn=nk=ðkþ1Þ !d Weibullðkþ 1, ½ðkþ 1Þ!�1=ðkþ1ÞÞ, complet-
ing the proof. w

Proof of Theorem 4. Since by Theorem 3, LðTn=nk=ðkþ1ÞjVnÞ !d Weibullðkþ
1, ½ðkþ 1Þ!�1=ðkþ1ÞÞ, an application of Fatou’s lemma yields

lim inf
n!1 E

Tn

nk=ðkþ1Þ

	 
r����Vn

 !
� lk, r: (15)

If

lim sup
n!1

E
Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
� lk, r, r ¼ 1, 2, :::, (16)

holds where V 0
n ¼ ðk, :::, kÞ, then by Theorem 6,

lim sup
n!1

E
Tn

nk=ðkþ1Þ

	 
r����Vn

 !
� lim sup

n!1
E

Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
� lk, r,

which together with (15) implies that lim n!1 Eð½Tn=nk=ðkþ1Þ�rjVnÞ ¼ lk, r:
It remains to establish the claim (16). In the proof below, note that the ini-

tial configuration is V 0
n ¼ ðk, :::, kÞ, so that Theorem 2 can apply. Notice that

E
Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
¼ E

Tn

nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

����V 0
n

 !

þ E
Ln

nk=ðkþ1Þ

	 
r
1 Tn¼Lnf g

����V 0
n

 !
: (17)

Since Tn ¼ ðTn � LnÞ þ Ln � 2max Ln,Tn � Lnf g on Tn > Lnf g, we have

Tn

nk=ðkþ1Þ

	 
r
� 2rmax

Tn � Ln
nk=ðkþ1Þ

	 
r
,

Ln
nk=ðkþ1Þ

	 
r( )

� 2r
Tn � Ln
nk=ðkþ1Þ

	 
r
þ Ln

nk=ðkþ1Þ

	 
r( )
on Tn > Lnf g,
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which together with (17) implies that

E
Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
� 2r E

Tn � Ln
nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

����V 0
n

 !
þ E

Ln
nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

����V 0
n

 !8<
:

9=
;

þ E
Ln

nk=ðkþ1Þ

	 
r
1 Tn¼Lnf g

����V 0
n

 !
:

(18)

For t ¼ 1, 2, :::, let Vt denote the (random) configuration after the tth walk
(and before the ðt þ 1Þ-th walk). Note that V0 ¼ V 0

n ¼ ðk, :::, kÞ is the initial
configuration. Let V� ¼ ðv1, :::, vnÞ : vi � 0 and

Pn
i¼1 vi ¼ kn

� �
be the set

of all configurations whose components sum up to kn. For fixed t and fixed
ðv1, :::, vnÞ 2 V�, given Tn > Ln ¼ t and Vt ¼ ðv1, :::, vnÞ, the conditional dis-
tribution of Tn � Ln ¼ Tn � t (the number of additional walks up until the
first barefoot walk) depends only on the configuration ðv1, :::, vnÞ: This condi-
tional distribution is the same as the distribution of Tn with ðv1, :::, vnÞ as the
initial configuration. (To make it clearer, we may think of the clock being re-
set after the t-th walk. Then, the configuration after the t-th walk ðv1, :::, vnÞ
becomes the “new” initial configuration, and Tn � Ln ¼ Tn � t is the “new”
Tn with ðv1, :::, vnÞ as the initial configuration.) That is,

LðTn � LnjTn > Ln ¼ t,Vt ¼ ðv1, :::, vnÞ,V 0
nÞ ¼ LðTnjðv1, :::, vnÞÞ,

implying that

E
Tn � Ln
nk=ðkþ1Þ

	 
r���� Tn > Ln ¼ t,Vt ¼ ðv1, :::, vnÞ,V 0
n

 !

¼ E
Tn

nk=ðkþ1Þ

	 
r���� ðv1, :::, vnÞ
 !

� E
Tn

nk=ðkþ1Þ

	 
r���� V 0
n

 !
,

(19)

where the inequality is by Theorem 6 since V 0
n ¼ ðk, :::, kÞ is majorized

by ðv1, :::, vnÞ: Multiplying both sides of (19) by PðLn ¼ t,Vt ¼
ðv1, :::, vnÞjTn > Ln,V 0

nÞ and summing over t 2 kþ 1, kþ 2, :::f g and
ðv1, :::, vnÞ 2 V� yields

E
Tn � Ln
nk=ðkþ1Þ

	 
r����Tn > Ln,V
0
n

 !
� E

Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
,

which implies that
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E
Tn � Ln
nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

����V 0
n

 !
¼ PðTn > LnjV 0

nÞE
Tn � Ln
nk=ðkþ1Þ

	 
r����Tn > Ln,V
0
n

 !

� PðTn > LnjV 0
nÞE

Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
:

(20)

Then from (18) to (20), it follows that

1� 2r PðTn > LnjV 0
nÞ

� �
E

Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !

� 2r E
Ln

nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

����V 0
n

 !
þ E

Ln
nk=ðkþ1Þ

	 
r
1 Tn¼Lnf g

����V 0
n

 !

¼ E
Ln

nk=ðkþ1Þ

	 
r����V 0
n

 !
þ ð2r � 1Þ E

Ln
nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

����V 0
n

 !
:

(21)

By Proposition 1(ii), 1� 2rPðTn > LnÞ ! 1, and by Cauchy-Schwarz’s
inequality,

E
Ln

nk=ðkþ1Þ

	 
r
1 Tn>Lnf g

 !( )2

� E
Ln

nk=ðkþ1Þ

	 
2r
PðTn > LnÞ ! 0:

Thus, by (3) and (21), we see that

lim sup
n!1

E
Tn

nk=ðkþ1Þ

	 
r����V 0
n

 !
� lim

n!1E
Ln

nk=ðkþ1Þ

	 
r����V 0
n

 !
¼ lk, r,

which establishes (16) and the proof is complete. w

Proof of Theorem 5. Assume that part (i) holds. Noting that Vn ¼ ð1, :::, 1Þ
is majorized by all configurations, we have by Theorem 6 that LðTn �
LnjTn > Ln,VnÞ is stochastically smaller than LðTnjVnÞ, implying that for
x> 0

P
Tn � Ln
n1=2

	 
r
> x

����Tn > Ln,Vn

 !
� P

Tn

n1=2

	 
r
> x

����Vn

 !
: (22)

By (4) and Theorem 3, the left and right sides of (22) converge, respect-
ively, to PðUr > xÞ and PðWr > xÞ, where W has the Weibull ð2, 21=2Þ
distribution.
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By Theorem 4,

lim
n!1

ð1
0
P

Tn

n1=2

	 
r
> x

����Vn

 !
dx ¼ lim

n!1E
Tn

n1=2

	 
r����Vn

 !

¼ l1, r
¼ E Wrð Þ

¼
ð1
0
P Wr > xð Þdx:

(23)

We have

lim
n!1E

Tn � Ln
n1=2

	 
r����Tn > Ln,Vn

 !

¼ lim
n!1

ð1
0
P

Tn � Ln
n1=2

	 
r
> x

����Tn > Ln,Vn

 !
dx

¼
ð1
0
PðUr > xÞ dx

¼ EðUrÞ,

where the second equality is due to dominated convergence theorem
together with (22) and (23). (More precisely, the left side of (22) is domi-
nated by the right side of (22). Moreover, by (23), the integral of the right
side of (22) converges as n ! 1 to the integral of the limit of the right
side of (22). Then the second equality follows from dominated convergence
theorem. This proves (5).
To show (6), we have

lim
n!1 n1=2E

Tn � Ln
n1=2

	 
r����Vn

 !

¼ lim
n!1 n1=2PðTn > LnjVnÞE Tn � Ln

n1=2

	 
r����Tn > Ln,Vn

 !

¼ lim
n!1 n1=2PðTn > LnjVnÞ EðUrÞ

¼
ffiffiffi
p
2

r
EðUrÞ,

where we have used the fact (cf. (33) below) that lim n!1 n1=2PðTn >
LnjVnÞ ¼

ffiffiffiffiffiffiffiffi
p=2

p
: This proves (6). For r¼ 1 in (6), we have
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lim
n!1E Tn � LnjVnð Þ ¼

ffiffiffi
p
2

r
EðUÞ

¼
ffiffiffi
p
2

r ð1
0
PðU > xÞdx

¼
ð1
0

ð1
0
y2e�

1
2ðxþyÞ2dxdy

¼ 1
2

ð1
0

ð1
0
ðx2 þ y2Þe�1

2ðxþyÞ2dxdy

¼ 1
2

ðp
2

0

ð1
0
r2e�

1
2r

2ð cos hþ sin hÞ2rdrdh

¼
ðp

2

0

1

ð cos hþ sin hÞ4 dh

¼
ðp

2

0

sec4h

ð1þ tan hÞ4 dh

¼
ð1
0

1þ u2

ð1þ uÞ4 du ¼ 2
3
,

proving (7).
It remains to establish (4). Below for notational simplicity, we will sup-

press Vn in P n�1=2ðTn � LnÞ > x j Tn > Ln,Vn

� �
: Let S‘ ¼ D1, :::,D‘f g, the

set of the labelings of the doors which the man chooses to go out for the
first ‘ walks. On the event Tn > Ln ¼ ‘f g (with ‘ � 2), we have that

jS‘j ¼ ‘� 1; Dt ¼ D‘ ¼ D0
s 2 S‘ for some 1 � t, s < ‘ (24)

and that before the ð‘þ 1Þ-th walk, there is at least a pair of shoes avail-
able at door i for all i 62 S‘: Let

Mn, ‘ :¼ inf t � 1 : Dtþ‘ 2 S‘ or Dtþ‘ ¼ Dt0þ‘ 62 S‘ for some 1 � t0 < t
� �

:

Plainly, on the event Tn > Ln ¼ ‘f g, we have Tn � Ln � Mn, ‘: Thus

PðTn � Ln � Mn, Ln j Tn > LnÞ ¼ 1: (25)

It is not difficult to show that for t � 1,

PðMn, ‘ > t j jS‘j ¼ ‘� 1Þ

¼ 1� ‘� 1
n

� �
1� ‘

n

� �
� � � 1� ‘þ t � 2

n

� �

¼ ð1þ Oðn�1=2ÞÞ exp � tð‘þ t=2Þ
n

� �
ðfor ‘ ¼ Oðn1=2Þ and t ¼ Oðn1=2ÞÞ,

(26)
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where the Oðn�1=2Þ term is uniform in 2 � ‘ � Cn1=2 and 1 � t � Cn1=2

for any constant C> 0. More precisely (26) is equivalent to

sup
2�‘�Cn1=2, 1�t�Cn1=2

jPðMn, ‘ > t j jS‘j ¼ ‘� 1Þ exp tð‘þ t=2Þ=n� �� 1j

¼ Oðn�1=2Þ: (27)

For the reader’s convenience, we give some details on the derivation of
(27). Let C> 0 be fixed. Since ln ð1� xÞ ¼ �P1

n¼1
xn
n as jxj < 1, it follows

that

j ln ð1� xÞ þ xj �
X1
n¼2

jxjn
n

� x2
X1
n¼2

jxjn�2

2
� x2

X1
n¼2

1
2

� �n�1

¼ x2 for all jxj < 1
2
:

Thus, for n > 16C2, 2 � ‘ � Cn1=2 and 1 � t � Cn1=2, we have

0 <
‘� 1
n

<
‘

n
< � � � < ‘þ t � 2

n
<

2C
n1=2

<
1
2
:

Letting an, ‘, t ¼
Pt�1

i¼0 ½ln 1� ‘�1þi
n

� 
þ ‘�1þi

n �, we have

jan, ‘, tj �
Xt�1

i¼0

‘� 1þ i
n

� �2

� 1
n2

ð‘þt�1

‘�1
x2dx

� ð‘þ t � 1Þ3
3n2

� 8C3

3n1=2
:

Since
Pt�1

i¼0
‘�1þi

n ¼ tð‘þt=2Þ
n � 3t

2n , it follows that

1� ‘� 1
n

� �
1� ‘

n

� �
� � � 1� ‘þ t � 2

n

� �
exp

tð‘þ t=2Þ
n

� �
� 1

����
����

¼ exp an, ‘, t þ 3t
2n

� �
� 1

����
����

� exp
8C3

3n1=2
þ 3C
2n1=2

� �
� 1 ¼ O n�1=2ð Þ,

establishing (27).
Note that (26) also holds for t¼ 0. While the left side of (26) is

undefined for ‘ ¼ 1 due to PðjS1j ¼ 0Þ ¼ 0, it is convenient to let
PðMn, 1 > t j jS1j ¼ 0Þ :¼ e�tð1þt=2Þ=n, so that (27) remains to hold when
the supremum is taken over 1 � ‘ � Cn1=2 and 0 � t � Cn1=2: Let dce
denote the smallest integer not less than c. For x, y > 0, we have by (26)
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P n�1=2Mn, dn1=2ye > x
��� jSdn1=2yej ¼ dn1=2ye � 1

� �
¼ ð1þ Oðn�1=2ÞÞe�xðx=2þyÞ,

(28)

where the Oðn�1=2Þ term is uniform in 0 < x, y � C for any constant C> 0.
Furthermore, we have by Proposition 1(i)

PðLn � dn1=2yejTn > LnÞ ¼ PðTn > Ln � dn1=2yeÞ
PðTn > LnÞ

¼
E 1� ð1� 1=nÞLn�1
� �

1 Ln�dn1=2yef g
h i

E 1� ð1� 1=nÞLn�1
� � :

(29)

Since ln ð1� 1=nÞ > �1=n� 1=n2 for all n � 2 and since ex � 1þ x for all
x, we have

1� 1
n

� �Ln�1

¼ exp ðLn � 1Þ ln ð1� 1
n

� �� �

� exp ðLn � 1Þ � 1
n
� 1
n2

� �� �

� 1� ðLn � 1Þ 1
n
þ 1
n2

� �
,

so that

n1=2 1� 1� 1
n

� �Ln�1
" #

� Ln
n1=2

� �
1þ 1

n

� �
: (30)

On the other hand, since ln ð1� 1=nÞ < �1=n for all n � 2 and ex �
1þ xþ x2=2 for all x � 0, we have

n1=2 1� 1� 1
n

� �Ln�1
" #

¼ n1=2 1� exp ðLn � 1Þ ln 1� 1
n

� �� �	 


� n1=2 1� exp ðLn � 1Þ � 1
n

� �� �	 


� n1=2
Ln � 1

n
� ðLn � 1Þ2

2n2

	 


¼ Ln
n1=2

� 1
n1=2

� ðLn=n1=2 � 1=n1=2Þ2
2n1=2

:

(31)

By (2), Ln=n1=2 !d W where W has the Weibull ð2, 21=2Þ distribution, imply-
ing that
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n1=2 1� 1� 1
n

� �Ln�1
" #

¼ Ln
n1=2

þ Opðn�1=2Þ !d W: (32)

It follows from (29) to (32) and dominated convergence theorem that

n1=2E 1� 1� 1
n

� �Ln�1
" #

��!n!1
EðWÞ ¼

ffiffiffi
p
2

r
,

n1=2E 1� 1� 1
n

� �Ln�1
" #

1 Ln�dn1=2yef g

 !
��!n!1

E W1 W�yf g
� �

,

PðLn � dn1=2yejTn > LnÞ ��!n!1 E W1 W>yf g
� �
EðWÞ ¼

ffiffiffi
2
p

r ð1
y
v2e�v2=2dv:

(33)

So,

L Ln
n1=2

��� Tn > Ln

� �
!d W0, (34)

where W0 has density
ffiffi
2
p

q
y2e�y2=2 for y> 0. By (28) and (34), for

0 < C < 1,

lim
n!1Pðn�1=2Mn, Ln > x, Ln � Cn1=2jTn > LnÞ

¼ lim
n!1

X
‘�Cn1=2

Pðn�1=2Mn, ‘ > xjTn > Ln ¼ ‘ÞPðLn ¼ ‘jTn > LnÞ

¼ lim
n!1

X
‘�Cn1=2

Pðn�1=2Mn, ‘ > xjjS‘j ¼ ‘� 1ÞPðLn ¼ ‘jTn > LnÞ

¼
ðC
0
e�xðx=2þyÞ

ffiffiffi
2
p

r
y2e�y2=2dy

¼
ffiffiffi
2
p

r ðC
0
y2e�ðxþyÞ2=2dy,

(35)

where the second equality is a consequence of the result that

PðMn, ‘ > xjTn > Ln ¼ ‘Þ ¼ PðMn, ‘ > xjjS‘j ¼ ‘� 1Þ: (36)

To show (36), let

C‘ ¼ ðI1, :::, I‘Þ : 1 � I1, :::, I‘�1 � n are distinct integers
�
and I‘ ¼ Ij for some 1 � j � ‘� 1

�
:

(37)

For c ¼ ðI1, :::, I‘Þ 2 C‘, let

Bc ¼ Dt ¼ It, t ¼ 1, :::, ‘,D0
t ¼ I‘ for some 1 � t � ‘� 1

� �
: (38)

It is readily seen that Bc \ Bc0 ¼ ; for c 6¼ c0 and Tn > Ln ¼ ‘f g ¼ [c2C‘
Bc:

Since Mn, ‘ depends only on the Dt’s but not on the D0
t’s, we have for
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c ¼ ðI1, :::, I‘Þ 2 C‘,

PðMn, ‘ > x j BcÞ ¼ PðMn, ‘ > x j Dt ¼ It, t ¼ 1, :::, ‘Þ:
Moreover, by symmetry, PðMn, ‘ > x j Dt ¼ It, t ¼ 1, :::, ‘Þ is constant for all
c ¼ ðI1, :::, I‘Þ 2 C‘, so that

PðMn, ‘ > x j BcÞ ¼ PðMn, ‘ > x j Dt ¼ It, t ¼ 1, :::, ‘Þ
¼ PðMn, ‘ > x j Dt ¼ t, t ¼ 1, :::, ‘� 1,D‘ ¼ 1Þ:

It follows that

PðMn, ‘ > x j Tn > Ln ¼ ‘Þ ¼
X
c2C‘

PðMn, ‘ > x j BcÞPðBc j Tn > Ln ¼ ‘Þ

¼ PðMn, ‘ > x j Dt ¼ t, t ¼ 1, :::, ‘� 1,D‘ ¼ 1Þ:
It is also readily seen that

PðMn, ‘ > x j jS‘j ¼ ‘� 1Þ ¼ PðMn, ‘ > x j Dt ¼ t, t ¼ 1, :::, ‘� 1,D‘ ¼ 1Þ:
This proves (36).
While the equation (35) has been shown to hold for all 0 < C < 1, it

in fact holds for C ¼ 1 as well. To see this, we have

lim inf
n!1 Pðn�1=2Mn, Ln > x j Tn > LnÞ

� lim inf
n!1 Pðn�1=2Mn, Ln > x, Ln � Cn1=2 j Tn > LnÞ

¼
ffiffiffi
2
p

r ðC
0
y2e�ðxþyÞ2=2dy,

for all 0 < C < 1, implying that

lim inf
n!1 Pðn�1=2Mn, Ln > x j Tn > LnÞ �

ffiffiffi
2
p

r ð1
0
y2e�ðxþyÞ2=2dy: (39)

On the other hand, for all 0 < C < 1,

lim sup
n!1

Pðn�1=2Mn, Ln > x j Tn > LnÞ

¼ lim sup
n!1

Pðn�1=2Mn, Ln > x, Ln � Cn1=2 j Tn > LnÞ
n
þPðn�1=2Mn, Ln > x, Ln > Cn1=2 j Tn > LnÞ

o
� lim sup

n!1
Pðn�1=2Mn, Ln > x, Ln � Cn1=2 j Tn > LnÞ
n
þPðLn > Cn1=2 j Tn > LnÞ

o
¼

ffiffiffi
2
p

r ðC
0
y2e�ðxþyÞ2=2dyþ PðW0 > CÞ,

(40)
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where the last equality is due to (34) and (35). Letting C ! 1 in (40)
yields

lim sup
n!1

Pðn�1=2Mn, Ln > x j Tn > LnÞ �
ffiffiffi
2
p

r ð1
0
y2e�ðxþyÞ2=2dy,

which together with (39) implies that

lim
n!1 Pðn�1=2Mn, Ln > x j Tn > LnÞ ¼

ffiffiffi
2
p

r ð1
0
y2e�ðxþyÞ2=2dy ¼ PðU > xÞ:

(41)

We claim that

lim
n!1 PðTn � Ln ¼ Mn, Ln j Tn > LnÞ ¼ 1: (42)

(Note by (25) that (42) is equivalent to lim n!1 PðTn � Ln > Mn, Ln j Tn >

LnÞ ¼ 0:) Then (4) follows from (41) to (42).
It remains to establish the claim (42). We first show that

PðDLn ¼ DLnþMn, Ln j Tn > LnÞ � E
1

Ln � 1

���� Tn > Ln

 !
��!n!1

0: (43)

Let M0
n, ‘ :¼ inf t � 1 : Dtþ‘ 2 S‘f g �Mn, ‘: If Mn, ‘ <M0

n, ‘, then D‘þMn, ‘ 62
S‘, implying that D‘þMn, ‘ 6¼ D‘ ð2 S‘Þ: Thus we have

DLn ¼ DLnþMn,Lnf g 	 DLn ¼ DLnþM0
n,Ln

� �
:

It is readily seen that

PðDLn ¼ DLnþMn,Ln j Tn > LnÞ

�
X1
‘¼2

PðDLn ¼ DLnþM0
n,Ln

,Ln ¼ ‘ j Tn > LnÞ

¼
X1
‘¼2

PðDLn ¼ DLnþM0
n,Ln

j Tn > Ln ¼ ‘ÞPðLn ¼ ‘ j Tn > LnÞ

¼
X1
‘¼2

1
‘� 1

PðLn ¼ ‘ j Tn > LnÞ

¼ E
1

Ln � 1

���� Tn > Ln

 !
,

(44)

where the second equality is a consequence of

PðDLn ¼ DLnþM0
n,Ln

j Tn > Ln ¼ ‘Þ ¼ 1
‘� 1

(45)

To show (45), note by (24) that jSLn j ¼ ‘� 1 if Ln ¼ ‘: Recall the defini-
tions of C‘ and Bc in (37) and (38), respectively. We have Tn > Ln ¼ ‘f g ¼
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[c2C‘
Bc: Since M0

n,Ln depends only on the Dt’s but not on the D0
t’s, we have

for c ¼ ðI1, :::, I‘Þ 2 C‘,

PðDLn ¼ DLnþM0
n,Ln

j BcÞ
¼ PðDLn ¼ DLnþM0

n,Ln
j Dt ¼ It, t ¼ 1, :::, ‘,

and D0
t ¼ I‘ for some 1� t < ‘Þ

¼ PðDLn ¼ DLnþM0
n,Ln

j Dt ¼ It, t ¼ 1, :::, ‘Þ

¼ 1
‘� 1

,

implying that

PðDLn ¼ DLnþM0
n,Ln

j Tn > Ln ¼ ‘Þ
¼
X
c2C‘

PðDLn ¼ DLnþM0
n,Ln

j BcÞPðBc j Tn > Ln ¼ ‘Þ

¼ 1
‘� 1

,

establishing (45). Noting that Ln � 2 a.s., we have for any (large) constant
C>0,

lim sup
n!1

E
1

Ln � 1

���� Tn > Ln

 !

� lim sup
n!1

PðLn � C j Tn > LnÞ þ 1
C� 1

PðLn > C j Tn > LnÞ
� �

� lim sup
n!1

PðLn � C j Tn > LnÞ þ 1
C� 1

¼ PðW0 ¼ 0Þ þ 1
C� 1

ðby ð34ÞÞ

¼ 1
C� 1

:

Since the upper bound 1=ðC� 1Þ can be made arbitrarily small, we have

lim
n!1E

1
Ln � 1

���� Tn > Ln

 !
¼ 0,

which together with (44) proves (43). By (34, 41) and (43), we have for a
sufficiently small (fixed) d> 0

lim
n!1Pðmax Ln,Mn,Lnf g< n1=2þd,DLn 6¼ DLnþMn,Ln j Tn > LnÞ
¼ lim

n!1Pðmax Ln,Mn,Lnf g < n1=2þd j Tn > Ln,DLn 6¼ DLnþMn,Ln Þ ¼ 1:
(46)

We next show that
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lim
n!1PðTn � Ln ¼Mn,Ln ,max Ln,Mn,Lnf g< n1=2þd j Tn > Ln,DLn 6¼ DLnþMn,Ln Þ ¼ 1,

(47)

which together with (46) implies (42). For 1� i 6¼ j � n, denote by anði, jÞ
the probability

PðTn � Ln ¼Mn,Ln ,max Ln,Mn,Lnf g < n1=2þd j Tn > Ln,DLn ¼ i,DLnþMn,Ln ¼ jÞ:
It is easily seen that the value of anði, jÞ is the same for all pairs of (i, j)
with i 6¼ j: It follows that

anð1, 2Þ ¼ PðTn � Ln ¼Mn,Ln ,max Ln,Mn,Lnf g< n1=2þd j Tn > Ln,DLn 6¼ DLnþMn,Ln Þ:

For the same reason, we have by (46)

lim
n!1Pðmax Ln,Mn,Lnf g < n1=2þd j Tn > Ln,DLn ¼ 1,DLnþMn,Ln ¼ 2Þ
¼ lim

n!1Pðmax Ln,Mn,Lnf g < n1=2þd j Tn > Ln,DLn 6¼ DLnþMn,Ln Þ ¼ 1:
(48)

It now suffices to show

lim
n!1anð1, 2Þ ¼ 1, (49)

(which implies (47) which in turn implies (42)).
We have

anð1, 2Þ
¼ P Tn � Ln ¼ Mn, Ln , max Ln,Mn, Lnf g < n1=2þd j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2

� 
¼

X
‘,m<n1=2þd

P Tn � Ln ¼ Mn, Ln ¼ m, Ln ¼ ‘ j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2
� �

¼
X

‘,m<n1=2þd

bnð‘,mÞP Mn, Ln ¼ m, Ln ¼ ‘ j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2
� �

,

(50)

where

bnð‘,mÞ :¼ P Tn � Ln ¼ m j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2, Ln ¼ ‘,Mn, Ln ¼ m
� �

:

Since the event Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2, Ln ¼ ‘,Mn, Ln ¼ m
� �

is the
same as

Anð‘,mÞ :¼ Ln ¼ ‘,Mn, ‘ ¼ m,D‘ ¼ 1 ¼ D0
t for some t < ‘,D‘þm ¼ 2

� �
,

we have

bnð‘,mÞ ¼ P Tn � Ln ¼ m j Anð‘,mÞð Þ
¼ P D0

t 6¼ 2 for all t < ‘þm j Anð‘,mÞ� �
:

Note that Ln and Mn, Ln depend solely on the process Dtf g, so that
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bnð‘,mÞ ¼ P D0
t 6¼ 2 for all t < ‘þm j D0

t ¼ 1 for some t < ‘
� �

¼ P D0
s 6¼ 2 for all s < ‘þm,D0

t ¼ 1 for some t < ‘
� �

P D0
t ¼ 1 for some t < ‘ð Þ

¼
ð1� 1=nÞm ð1� 1=nÞ‘�1 � ð1� 2=nÞ‘�1

h i
1� ð1� 1=nÞ‘�1

¼
ð1� 1=nÞmð1� 1=nÞ‘�1 1� ð1� 1=ðn� 1ÞÞ‘�1

h i
1� ð1� 1=nÞ‘�1

¼
1þ Oðn�1=2þdÞ
� �

1þ Oðn�1=2þdÞ
� �

‘�1
n

� 
1þ Oðn�1=2þdÞ
� �

‘�1
n

� 
1þ Oðn�1=2þdÞ� �

¼ 1þ Oðn�1=2þdÞ,
where the big O terms are all uniform in ‘,m < n1=2þd: In particular,

lim
n!1min bnð‘,mÞ : ‘,m < n1=2þd

n o
¼ 1: (51)

By (50),

anð1, 2Þ
¼

X
‘,m<n1=2þd

bnð‘,mÞP Mn, Ln ¼ m, Ln ¼ ‘ j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2
� �

� min bnð‘,mÞ : ‘,m < n1=2þd
n o



X

‘,m<n1=2þd

P Mn, Ln ¼ m, Ln ¼ ‘ j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2
� �

¼ min bnð‘,mÞ : ‘,m < n1=2þd
n o


 P max Ln,Mn, Lnf g < n1=2þd j Tn > Ln,DLn ¼ 1,DLnþMn, Ln ¼ 2
� 

��!n!1
1 ðby ð48Þ and ð51ÞÞ,

establishing (49). The proof is complete. w

Appendix

Proof of Lemma 1. For 1 � n0 < n, define

St, n0 :¼
�
ð‘1, :::, ‘tÞ : ‘r � n0 for r ¼ 1, :::, t,

Xs
r¼1

1 ‘r¼‘sf g < kþ 1 for s ¼ 1, :::, t � 1,

and
Xt
r¼1

1 ‘r¼‘tf g ¼ kþ 1

�
:

Note that
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Dr � n0 for all r � Lnf g ¼ [
t

Ln ¼ t,Dr � n0 for all r � tf g
¼ [

t
[

ð‘1, :::, ‘tÞ2St, n0
Dr ¼ ‘r, r ¼ 1, :::, tf g, (52)

and that for ð‘1, :::, ‘tÞ 2 St, n0 ,

PðDr ¼ ‘r , r ¼ 1, :::, tÞ ¼ PðD�
r ¼ ‘r, r ¼ 1, :::, tÞ n0

n

� �t

, (53)

since D�
1,D

�
2, ::: are i.i.d. uniformly distributed on 1, :::, n0f g: Also,

Ln0 ¼ tf g ¼ Ln0 ¼ t,D�
r � n0 for all r � t

� �
¼ [

ð‘1, :::, ‘tÞ2St, n0
D�

r ¼ ‘r, r ¼ 1, :::, t
� �

: (54)

We have

PðDr � n0 for all r � LnÞ ¼
X
t

X
ð‘1, :::, ‘tÞ2St,n0

PðDr ¼ ‘r, r ¼ 1, :::, tÞ ðby ð52ÞÞ

¼
X
t

X
ð‘1, :::, ‘tÞ2St,n0

PðD�
r ¼ ‘r, r ¼ 1, :::, tÞ n0

n

� �t

ðby ð53ÞÞ

¼
X
t

PðLn0 ¼ tÞ n0

n

� �t

ðby ð54ÞÞ

¼ E
n0

n

� �Ln0
" #

:

The proof is complete. w

Proof of Theorem 6. By [5, Lemma 2.B.1], it suffices to prove the theorem for the case
that Vn and V 0

n differ only in 2 components. Recall the assumption that Vn majorizes V 0
n:

Without loss of generality, assume v1 > v01 � v02 > v2, and vi ¼ v0i for i ¼ 3, :::, n: In par-
ticular, v1 � 2 and v01 � v02 � 1: As a consequence of these assumptions, vi > 0 implies
v0i > 0: We will use a coupling device to construct two random variables T and T0 on the
same probability space in such a way that T � T0 a.s., and LðTÞ ¼ LðTnjVnÞ and LðT0Þ ¼
LðTnjV 0

nÞ: Consider two houses (called the V-house and V 0-house) each with a different
owner, where there are vi (v0i, resp.) pairs of shoes available initially at door i of the V-
house (V 0-house, resp.). Let K ¼Pi vi ¼

P
i v

0
i, the total number of pairs of shoes available

for each owner. Let Dt ,D0
t , t ¼ 1, 2, ::: be i.i.d. uniformly distributed on 1, :::, nf g where for

both houses, Dt denotes the current labeling of the door chosen for the t-th walk and D0
t

the current labeling of the door chosen to leave the shoes after the t-th walk.
In the construction of T and T0 below, the labelings of the n doors of the V-house and

the labelings of doors i (i ¼ 3, :::, n) of the V 0-house remain the same throughout, while the
labelings of doors 1 and 2 of the V 0-house may be exchanged at some t only when Dt ¼ 1
or D0

t ¼ 2: For the V 0-house, an exchange of the labelings of doors 1 and 2 may be made
during the t-th walk if Dt ¼ 1 and before the ðt þ 1Þ-th walk if D0

t ¼ 2: The total number
of exchanges of the labelings of doors 1 and 2 of the V 0-house depends on the observed
values of Dt ,D0

t , t ¼ 1, 2, :::: More details are described below. Then T (T0, resp.) denotes
the first time the V-house owner (V 0-house owner, resp.) discovers that no shoes are avail-
able at the door (currently) labeled DT (DT0 , resp.) for the T-th (T0-th, resp.) walk.

For the V-house, let viðtÞ (viðtþÞ, resp.) be the number of pairs of shoes available at the
door initially (and always) labeled i before the t-th walk (during the t-th walk, resp.). The
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notation v0iðtÞ and v0iðtþÞ, i ¼ 3, :::, n, is defined similarly for the V 0-house. Let v0iðtÞ, i ¼
1, 2 (v0iðtþÞ, i ¼ 1, 2, resp.) be the number of pairs of shoes available at the door currently
labeled i for the V 0-house before the t-th walk (during the t-th walk, resp.). Note that
við1Þ ¼ vi and v0ið1Þ ¼ v0i, i ¼ 1, :::, n and thatXn

i¼1

viðtÞ ¼ K for t � T,
Xn
i¼1

viðtþÞ ¼ K � 1 for t < T,

Xn
i¼1

v0iðtÞ ¼ K for t � T0,
Xn
i¼1

v0iðtþÞ ¼ K � 1 for t < T0:

We now describe exactly when an exchange of the labelings of doors 1 and 2 of the V 0-house
is made. Essentially, the labeling exchanges ensure that the majorization relation assumed at the
outset continues to hold (until the stopping time min T,T0f g). Specifically, for t¼ 1, if vD1 ¼ 0
(i.e., no shoes are available at the door labeled D1 of the V-house), then T¼ 1. In this case, no
exchanges of door labelings are needed for the V 0-house. Since necessarily T0 � 1, we have T ¼
1 � T0 as required. Suppose vD1 > 0, implying T> 1. Since vD1 > 0 implies v0D1

> 0, we also
have T0 > 1: During the first walk (or more precisely, before both owners return from the first
walk), by exchanging the labelings of doors 1 and 2 of the V 0-house if (and only if) D1 ¼ 1 and
v01 ¼ v02, we have v1ð1þÞ � v01ð1þÞ � v02ð1þÞ � v2ð1þÞ and við1þÞ ¼ v0ið1þÞ, i ¼ 3, :::, n: As
a consequence, Vnð1þÞ ¼ ðv1ð1þÞ, :::, vnð1þÞÞ � V 0

nð1þÞ ¼ ðv01ð1þÞ, :::, v0nð1þÞÞ: If
v1ð1þÞ ¼ v01ð1þÞ (hence v2ð1þÞ ¼ v02ð1þÞ and Vnð1þÞ ¼ V 0

nð1þÞ), the two configurations
are identical and no further labeling exchanges will be made for the V 0-house. As the same
sequence D0

1,D2,D0
2, ::: applies to both houses, we have T ¼ T0: Suppose v1ð1þÞ > v01ð1þÞ �

v02ð1þÞ > v2ð1þÞ: After both owners return from the first walk, by exchanging the labelings of
doors 1 and 2 of the V 0-house if (and only if) D0

1 ¼ 2 and v01ð1þÞ ¼ v02ð1þÞ, the numbers of
pairs of shoes available at the n doors for both houses (before the second walk) satisfy that
v1ð2Þ � v01ð2Þ � v02ð2Þ � v2ð2Þ and við2Þ ¼ v0ið2Þ for i ¼ 3, :::, n:

More generally, suppose that T and T0 are both greater than t� 1 and that before the t-
th walk, VnðtÞ ¼ ðv1ðtÞ, :::, vnðtÞÞ and V 0

nðtÞ ¼ ðv01ðtÞ, :::, v0nðtÞÞ satisfy v1ðtÞ � v01ðtÞ �
v02ðtÞ � v2ðtÞ and viðtÞ ¼ v0iðtÞ, i ¼ 3, :::, n (i.e., VnðtÞ � V 0

nðtÞ). If VnðtÞ ¼ V 0
nðtÞ, then the

two configurations are identical and no further labeling exchanges will be made for the
V 0-house. As the sequence Dt ,D0

t ,Dtþ1, ::: applies to both houses, we have T ¼ T0: Suppose
v1ðtÞ > v01ðtÞ � v02ðtÞ > v2ðtÞ: If Dtð6¼ 1Þ is such that vDtðtÞ ¼ 0, then T ¼ t � T0: (In this
case, no further exchanges of door labelings are needed for the V 0-house.) Suppose vDt ðtÞ > 0,
implying T> t. Since vDt ðtÞ > 0 implies v0Dt

ðtÞ > 0, we also have T0 > t: Before both owners
return from the t-th walk, by exchanging the labelings of doors 1 and 2 of the V 0-house if
(and only if) Dt ¼ 1 and v01ðtÞ ¼ v02ðtÞ, we have v1ðtþÞ � v01ðtþÞ � v02ðtþÞ � v2ðtþÞ and
viðtþÞ ¼ v0iðtþÞ, i ¼ 3, :::, n: [Note 1: Exchanging the labelings (when Dt ¼ 1 and
v01ðtÞ ¼ v02ðtÞ) does not depend on D0

t ,Dtþ1,D0
tþ1, :::: In particular, each of the n doors of the

V 0-house is equally likely to be the door currently labeled D0
t where the V 0-house owner choo-

ses to leave the shoes upon returning from the t-th walk.] If v1ðtþÞ ¼ v01ðtþÞ, then VnðtþÞ ¼
V 0

nðtþÞ and the two configurations are identical. No further labeling exchanges will be made
for the V 0-house. As the sequence D0

t ,Dtþ1,D0
tþ1, ::: applies to both houses, we have T ¼ T0:

Suppose v1ðtþÞ > v01ðtþÞ � v02ðtþÞ > v2ðtþÞ: After each owner returns from the t-th walk
and leaves shoes at the door currently labeled D0

t , by exchanging the labelings of doors 1 and 2
of the V 0-house if (and only if) D0

t ¼ 2 and v01ðtþÞ ¼ v02ðtþÞ, the numbers of pairs of shoes at
the n doors for both houses (before the ðt þ 1Þ-th walk) satisfy that v1ðt þ 1Þ � v01ðt þ 1Þ �
v02ðt þ 1Þ � v2ðt þ 1Þ and viðt þ 1Þ ¼ v0iðt þ 1Þ for i ¼ 3, :::, n: [Note 2: Exchanging the label-
ings (when D0

t ¼ 2 and v01ðtþÞ ¼ v02ðtþÞ) does not depend on Dtþ1,D0
tþ1,Dtþ2, :::: In
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particular, each of the n doors of the V 0-house is equally likely to be the door currently labeled
Dtþ1 which the V 0-house owner chooses to go out for the ðt þ 1Þ-th walk.]

The above construction yields that T � T0 and LðTÞ ¼ LðTnjVnÞ and LðT0Þ ¼
LðTnjV 0

nÞ: While LðTÞ ¼ LðTnjVnÞ is obvious, LðT0Þ ¼ LðTnjV 0
nÞ follows from Notes 1

and 2 in the preceding paragraph. The proof is complete. w

Remark 1. In the proof of Theorem 6, for the V-house, the labelings of the n doors are
fixed. For the V 0-house, the labelings of doors 3, :::, n are also fixed, while the labelings of
doors 1 and 2 may be exchanged a number of times in order to preserve the majorization rela-
tions VnðtÞ � V 0

nðtÞ and VnðtþÞ � V 0
nðtþÞ for all t. Right before the t-th walk, we generate Dt

which is uniform on 1, :::, nf g and independent of D1, :::,Dt�1,D0
1, :::,D

0
t�1: The owner of the

V 0-house chooses the door currently labeled Dt to walk out. Note that the current labelings of
the doors of the V 0-house before the t-th walk depend only on D1, :::,Dt�1,D0

1, :::,D
0
t�1: Since

Dt is uniform and independent of D1, :::,Dt�1,D0
1, :::,D

0
t�1, given the history of the doors

chosen for the i-th walk, i ¼ 1, :::, t � 1 and the doors chosen to leave shoes after the i-th
walk, i ¼ 1, :::, t � 1, the conditional probability that any door is chosen for the t-th walk
equals 1=n: Next, during the t-th walk, we generate D0

t which is uniform on 1, :::, nf g and
independent of D1, :::,Dt ,D0

1, :::,D
0
t�1: The owner of the V 0-house chooses the door currently

labeled D0
t to leave shoes upon completing the t-th walk. Note that the the current labelings of

the doors of the V 0-house during the t-th walk depend only on D1, :::,Dt ,D0
1, :::,D

0
t�1:

Consequently, given the history of the doors chosen for the i-th walk, i ¼ 1, :::, t and the doors
chosen to leave shoes after the i-th walk, i ¼ 1, :::, t � 1, the conditional probability that any
door is chosen to leave shoes after the t-th walk equals 1=n: This shows that for the V 0-house,
the doors chosen for the t-th walk, t ¼ 1, 2, ::: and the doors chosen to leave shoes after the t-
th walk, t ¼ 1, 2, :::, are i.i.d. with the uniform distribution.
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