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Abstract

The Auto-PARM (Automatic Piecewise AutoRegressive Modeling) procedure, de-

veloped by Davis, Lee, and Rodriguez-Yam (2006), uses the minimum description

length (MDL) principle to estimate the number and locations of structural breaks

in a non-stationary time series. Consistency of this model selection procedure has

been established when using conditional maximum (Gaussian) likelihood variance

estimates. In contrast, the estimate of the number of change-points is inconsis-

tent in general if Yule-Walker variance estimates are used instead. This surprising

result is due to an exact cancellation of first-order terms in a Taylor series ex-

pansion in the conditional maximum likelihood case, which does not occur in the

Yule-Walker case. In order to simplify notation and make the arguments more

transparent, we only treat in detail the simple case where the time series follows

an AR(p) model with no change-points.
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1. Introduction

In recent years, there has been considerable development in non-stationary

time series modeling. One prominent subject in non-stationary time series model-

ing is the “change-point” or “structural breaks” model. In this paper, we discuss

a posteriori estimation of change-points with a fixed sample size using minimum

description length as a model fitting criterion with a small number of assumptions.

The majority of the early literature on change-point estimation assumes inde-

pendent normal data. In their seminal paper, Chernoff and Zacks (1964) examine

the problem of detecting mean changes in independent normal data with unit vari-

ance. Both Yao (1988) and Sullivan (2002) estimate the number and locations of

changes in the mean of independent normal data with constant variance, and Chen

and Gupta (1997) examine changes in the variance of independent normal data

with a constant mean. Some research considers the change-point problem without

assuming normality, but still assumes independence (see, for example, Lee, 1996,

1997; Hawkins, 2001; and Yao and Au, 1989). Bayesian approaches have also been

explored, e.g., Fearnhead (2006), Perreault et al. (2000a, b), Stephens (1994), Yao

(1984), and Zhang and Siegmund (2007).

Many of the applications of structural breaks, in fact even the name, come

from the econometrics community. Some of the early econometrics papers on

this topic include those by Bai and Perron (1998), Bai (1999), and Bai and Perron

(2003). As has been well-documented, see, for example, Diebold and Inoue (2001),

there is a strong connection between long-memory and structural breaks. Diebold
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and Inoue (2001) show that models that incorporate regime shifts can produce

data that exhibit long-memory behavior. For financial time series, volatility often

appears to exhibit long memory and as such, long-memory GARCH models (e.g.,

IGARCH) provide reasonable fits to the data. Mikosch and Stărică (2004) provide

an explanation for this phenomenon. They show that data from a GARCH model

with structural breaks possess long memory characteristics and lead to fitting

IGARCH-type models that have long memory.

Though much of the early literature on change-point problems is from a hy-

pothesis testing perspective, the pendulum in recent years has swung to consider-

ing this problem in the context of model selection. That is, instead of not including

a structural break in the model unless there is strong evidence to do so, model

selection approach allows for the inclusion of one or more breaks if the increase

in model complexity is offset by a sufficiently improved fit. Davis et al. (1995)

derive the asymptotic distribution of the likelihood ratio test for a change in the

parameter values and order of an autoregressive model, and Ling (2007) examines

a general asymptotic theory on the Wald test for change-points in a general class

of time series models under the hypothesis of no change-point. Research on the

estimation of the number and locations of the change-points includes Kühn (2001),

who assumes a weak invariance principle, and Kokoszka and Leipus (2000) on the

estimation of change-points in ARCH models. See Csörgó and Horváth (1997) for

a comprehensive review. Recently, there have been some interesting advances on

the change-point problem. Here we mention the work of Fryzlewicz (2014), who

uses a promising idea based on wild binary segmentation to locate change-points.

This paper examines the procedure Auto-PARM, a method developed by

Davis, Lee, and Rodriguez-Yam (2006) for estimating the number and locations

of the structural breaks. This method does not assume independence nor a distri-

bution on the data, e.g., normality, and does not assume a specific type of change.
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It models the data as a piecewise autoregressive (AR) process, and can detect

changes in the mean, variance, spectrum, or other model parameters. Specifically,

the time series does not need to follow AR models in each of the segments. The

most important ingredient of Auto-PARM is its use of the minimum description

length criterion in fitting the model. There are now a number of applications of

Auto-PARM in the literature (e.g., see the application to segmentation in climate

in Lu, Lund and Lee, 2010) and a general framework can be found in Davis, Lee,

and Rodriguez-Yam (2008) and Davis and Yau (2013). A new view on piecewise

AR modeling is given in Chan, Yau, and Zhang (2012), who cleverly embed this

problem into a LASSO framework.

The estimated (relative) structural break locations are shown to be consistent

in Davis et al. (2006) when the number of change-points is known. While the

paper leaves open the issue of consistency in the case with an unknown number of

change-points, it is shown in Hancock (2008) that the estimated number of change-

points and the estimated AR orders are weakly consistent when using conditional

maximum (Gaussian) likelihood variance estimates. (See also Davis and Yau,

2013, for related results.)

However, the estimate for the number of change-points may not even be weakly

consistent if we use Yule-Walker variance estimates. It seems surprising to find

that consistency breaks down in general for Auto-PARM when using Yule-Walker

estimation, but can be saved if conditional maximum likelihood estimates are sub-

stituted for Yule-Walker. This unexpected result is due to an exact cancellation

of first-order terms in a Taylor series expansion in the conditional maximum like-

lihood case, which does not occur in the Yule-Walker case. The objective of this

paper is to explain this result by contrasting the two approaches and showing the

subtle difference between the conditional maximum likelihood and Yule-Walker

variance estimates.
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The rest of the paper is organized as follows. Section 2 reviews the Auto-

PARM procedure. Section 3 discusses the functional law of the iterated logarithm

applied to sample autocovariance functions, which plays an important role in

Section 4 where a consistency result is established for the Auto-PARM estimate

of the number of change-points using conditional maximum likelihood estimation.

Section 5 contains an inconsistency result when using Yule-Walker estimation.

In order to simplify notation and make the arguments more transparent, we only

consider in Sections 4 and 5 the simple case where the time series follows an AR(p)

model with no change-points. Section 6 contains a small simulation study on the

practical differences between Yule-Walker and conditional maximum likelihood

estimation.

2. Automatic piecewise autoregressive modeling and the issue of con-

sistency

Davis et al. (2006) develop a procedure for modeling a non-stationary time se-

ries by segmenting the series into blocks of different autoregressive processes. The

modeling procedure, referred to as Automatic P iecewise AutoRegressive M odeling

(Auto-PARM), uses a minimum description length (MDL) model selection crite-

rion to estimate the number of change-points, the locations of the change-points,

and the autoregressive model orders.

The class of piecewise autoregressive models that Auto-PARM fits to an ob-

served time series with n observations is as follows. For k = 1, . . . ,m, denote the

change-point between the kth and (k + 1)st autoregressive processes as τk, where

τ0 := 0 < τ1 < · · · < τm < τm+1 := n. Let {εk,t}, k = 1, . . . ,m + 1, be indepen-

dent sequences of independent and identically distributed (iid) random variables

with mean zero and unit variance. Then for given initial values X−p∗+1, . . ., X0
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with p∗ a preassigned upper bound on the AR order, AR coefficient parameters

φk,j , k = 1, . . . ,m + 1, j = 0, 1, . . . , pk, and noise parameters σ1, . . . , σm+1, the

piecewise autoregressive process {Xt} is defined as

Xt = φk,0 + φk,1Xt−1 + · · ·+ φk,pkXt−pk + σkεk,t−τk−1
(2.1)

for t ∈ (τk−1, τk], where ψk := (φk,0, φk,1, . . . , φk,pk , σk) is the parameter vector

corresponding to the causal AR(pk) process in the kth segment. Notice that in

each segment, the subscripting on the new noise sequence is restarted to time

one. If {Xt} is stationary in the first segment with mean denoted by µ1, then the

intercept φ1,0 equals µ1(1− φ1,1 − · · · − φ1,p1), and for t ∈ (τ0, τ1], we can express

the model as

Xt − µ1 = φ1,1(Xt−1 − µ1) + · · ·+ φ1,p1(Xt−p1 − µ1) + σ1ε1,t.

To ensure identifiability of the change-point locations, the model assumes that

ψj 6= ψj+1 for every j = 1, . . . ,m. That is, between consecutive segments, at

least one of the AR coefficients, the process mean, the white noise variance, or the

AR order must change.

Given an observed time series X1, . . . , Xn, Auto-PARM obtains the best-fitting

model by finding the best combination of the number of change-points m, the

change-point locations τ = (τ1,. . . ,τm), and the AR orders p = (p1,. . . ,pm+1)

according to the MDL criterion. When estimating the change-points, it is neces-

sary to require sufficient separation between the change-point locations in order

to be able to estimate the AR parameters. We define “relative change-points”

λ = (λ1, . . . , λm) such that λk = τk/n for k = 0, . . . ,m + 1. Defined as such, we

take throughout the convention that λkn is an integer. Let (small) δ > 0 be a

preassigned lower bound for the relative length of each of the fitted segments, and
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define

Aδm = {(λ1, . . . , λm) : 0 < λ1 < · · · < λm < 1, (2.2)

λk − λk−1 ≥ δ, k = 1, . . . ,m+ 1},

where λ0 := 0 and λm+1 := 1. (Note that the total number of change-points

is bounded by M = Mδ := [1/δ] − 1 where [x] denotes the integer part of x.)

Estimates are then obtained by minimizing the MDL over 0 ≤ m ≤M , 0 ≤ p ≤ p∗,

and λ ∈ Aδm, where p∗ is a preassigned upper bound for pk. Using results from

information theory (cf. Rissanen (1989)) and standard likelihood approximations,

we define the minimum description length for a piecewise autoregressive model

(cf. Davis et al. (2006)) as

MDL(m,λ1, . . . , λm; p1, . . . , pm+1)

= log+m+ (m+ 1) log n+

m+1∑
k=1

log+ pk (2.3)

+
m+1∑
k=1

pk + 2

2
log nk +

m+1∑
k=1

nk
2

log(2πσ̂2k),

where log+ x = max{log x, 0}, nk = n(λk−λk−1) is the number of observations in

the kth segment and σ̂2k is the white noise variance estimate in the kth segment.

Then, the parameter estimates are denoted by

m̂, λ̂, p̂ = arg min
0≤m≤M, 0≤p≤p∗, λ∈Aδm

{
2

n
MDL(m,λ;p)

}
. (2.4)

The only dependence on the AR parameter estimates in the MDL is through

the white noise variance estimates, σ̂2k, which only involve sample autocovariance

functions (ACVFs). Two common approaches to estimating the white noise vari-

ance are conditional maximum (Gaussian) likelihood estimation (equivalent to

conditional least-squares) and Yule-Walker estimation. Since Yule-Walker esti-
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mates have the same asymptotic distribution as the conditional maximum likeli-

hood estimates (see Section 8.10 in Brockwell and Davis, 1991), one would expect

that substituting Yule-Walker estimates into MDL would not change the consis-

tency result. In Sections 4 and 5, we examine the subtle difference between the

two approaches that yields an inconsistency result when using the Yule-Walker

variance estimates. In order to simplify notation and make the arguments more

transparent, we only consider the simple case where the true process follows an

AR(p) model (with p ≥ 1 and no change-points) and MDL is used to select between

Model 1 : The observations follow an AR(p) model,

Model 2 : The observations follow a piecewise AR(p) model with m ≥ 1 (relative)

change-points, λ ∈ Aδm.

We show in Section 4 that with probability 1, Model 1 is selected for large n

when using the conditional maximum likelihood estimates, and in Section 5 that

as n → ∞, there is a nonnegligible probability that Model 1 is not selected in

favor of Model 2 when using Yule-Walker estimates.

3. Functional law of the iterated logarithm

As the consistency proof in Section 4 uses the functional law of the iterated log-

arithm (FLIL) on the sample ACVF and sample means of autoregressive processes,

we first describe how to apply the FLIL to AR processes and discuss sufficient con-

ditions in order for the FLIL to hold.

Rio (1995) shows that the FLIL holds for stationary strong mixing sequences

under the following condition. Suppose {Xt}t∈Z is a strictly stationary and strong

mixing sequence of real-valued mean zero random variables, with sequence of

strong mixing coefficients {αn}n>0. Define the strong mixing function α(·) by
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α(u) = α[u], and denote the quantile function of |X1| by Q. Then the FLIL holds

for the sequence {Xt} if
∫ 1
0 α
−1(v)Q2(v)dv <∞, where f−1 denotes the inverse of

the monotonic function f . This condition simplifies if the process is strong mixing

at a geometric rate. In this case, the FLIL holds if E
(
X2

1 log+ |X1|
)
< ∞ (see

Rio, 1995, for proof). Therefore, assuming

E
(
X4

1 (log+ |X1|)2
)
<∞ (3.1)

and strong mixing with a geometric rate function allows us to apply the FLIL of

Rio to the sample ACVF calculated using the change-point locations that minimize

the MDL. In other words, e.g., for an AR(p) process {Xt} with mean µ and (fixed)

δ > 0, we have

sup
0≤λ<λ+δ≤λ′≤1

γ̃λ:λ′(i, j)− γ(|i− j|)√
2
n log logn

< C a.s. (3.2)

where C <∞ is a constant,

γ̃λ:λ′(i, j) :=
1

(λ′ − λ)n

λ′n∑
t=λn+1

(Xt−i − µ)(Xt−j − µ), (3.3)

and γ(h) is the true ACVF of the process. (Throughout λ and λ′ are assumed to

be such that λn and λ′n are integers.) Note that (3.2) also holds if γ̃λ:λ′(i, j) is

replaced by

γ̂λ:λ′(i, j) :=

1

(λ′ − λ)n

λ′n∑
t=λn+1

(
Xt−i −Xλn+1−i:λ′n−i

) (
Xt−j −Xλn+1−j:λ′n−j

)
(3.4)

where Xa:b :=
∑b

t=aXt/(b− a+ 1). It follows that

sup
0≤i,j≤p∗, 0≤λ<λ+δ≤λ′≤1

|γ̃λ:λ′(i, j)− γ(|i− j|)| = O(
√

log logn/n) a.s., (3.5)

sup
0≤i,j≤p∗, 0≤λ<λ+δ≤λ′≤1

|γ̂λ:λ′(i, j)− γ(|i− j|)| = O(
√

log logn/n) a.s., (3.6)
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for any given upper bound p∗ <∞.

When applying the FLIL to the sample ACVF of a piecewise autoregressive

process, we need to assume that the stationary process generated by the parameter

values and the iid noise sequence for each of the segments

(A1) is causal and strongly mixing at a geometric rate, and

(A2) satisfies the moment condition (3.1).

As commented in Remark 2.1 of Davis et al. (1995), there are many sufficient

conditions on the distribution of the noise in order to ensure that {Xt} is strongly

mixing. One such condition is for {εt} to be iid with a common distribution

function which has a nontrivial absolutely continuous component (see Athreya

and Pantula, 1986a, b). Under this condition, it can be shown (cf. Theorems

16.0.1 and 16.1.5 in Meyn and Tweedie, 1993) that the strong mixing function

α(u) decays at a geometric rate.

Remark 3.1. With more effort, the moment condition (3.1) may be relaxed in

order for the results in the following sections to hold. When fitting an AR(p)

model to observations X1, . . . , Xn, conditional maximum likelihood estimation

uses a definition of the sample ACVF that includes initial values X−p+1, . . . , X0.

(Note that as a piecewise autoregressive model of order up to p∗ is fitted to the

observations, we treat the first p∗ observations as the initial values.) In other

words, conditional maximum likelihood estimates use

γ̂(h) =
1

n

n∑
t=1

(Xt −X1:n)(Xt−h −X1−h:n−h)

for the sample ACVF. For a stationary process {Xt} satisfying (A1) and (A2), the

FLIL holds for γ̂(h). While we may assume that the Xt in the first segment of a

piecewise AR model are stationary, the Xt in each of the other segments (if any)

cannot be stationary. In order to apply the FLIL to this sample ACVF within

10



any given segment of a piecewise AR model when using conditional maximum

likelihood estimation, the FLIL must hold for γ̂(h) when we condition on any

initial values X−p+1, . . . , X0. It is not difficult to show that for a causal AR(p)

process {Xt} with initial values X−p+1, . . . , X0, there exists a stationary AR(p)

process {X ′t} generated by the same AR coefficients and the same noise sequence

such that as t→∞,

Xt −X ′t = O(ρt) a.s. (3.7)

for some constant 0 < ρ < 1 depending on the AR coefficients φ1, . . . , φp. Thus,

if {X ′t} satisfies (3.5) and (3.6), so does {Xt} where in (3.5) and (3.6), γ(h) =

lim
t→∞

Cov(Xt, Xt−h) = Cov(X ′s, X
′
s−h) for all s.

Remark 3.2. Like conditional maximum likelihood estimation, Yule-Walker esti-

mation of the parameters is also a function of the sample autocovariance function,

but now these are defined in a slightly different fashion than above. In fact, Yule-

Walker estimates use the more conventional estimates of the ACVF (see Brockwell

and Davis, 1991), given by

γ̂′(h) =
1

n

n−h∑
t=1

(Xt −X1:n)(Xt+h −X1:n), h ≥ 0 .

4. Conditional maximum likelihood

In this section, we assume that the true process follows an AR(p) model with

p ≥ 1

Xt = φ0 + φ1Xt−1 + · · ·+ φpXt−p + σεt, t = 1, . . . , n, (φp 6= 0) (4.1)

where the noise sequence {εt} is iid with mean zero and unit variance. (That

is, the true process follows Model 1.) When using the MDL together with the

conditional maximum likelihood variance estimates, Theorem 4.1 shows that with

probability 1, Model 1 is selected over Model 2 for large n.
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Theorem 4.1. Suppose the true process {Xt} follows the AR(p) model given

in (4.1) with no change-points and initial values X−p+1,. . . , X0, which satisfies

assumptions (A1) and (A2). Then for any 1 ≤ m ≤Mδ, with probability one,

MDL(0; p) < min
λ∈Aδm

MDL(m,λ; p, . . . , p)

for large n, where MDL(0; p) denotes the MDL when fitting an AR(p) model with

no change-points and MDL(m,λ; p, . . . , p) denotes the MDL when fitting a piece-

wise AR(p) model with m ≥ 1 change-points, both of which use conditional maxi-

mum likelihood variance estimates.

Proof. By the definition of MDL in (2.3), we have

MDL(0; p) =
p+ 4

2
log n+ log p+

n

2

[
log(2π) + log σ̂2

]
,

where σ̂2 is the conditional maximum likelihood estimate of the AR(p) noise vari-

ance over the entire data set, and

MDL(m,λ; p, . . . , p) = logm+ (m+ 1)

(
p+ 4

2
log n+ log p

)
+
p+ 2

2

m+1∑
k=1

log(λk − λk−1) +
n

2

[
log(2π) +

m+1∑
k=1

(λk − λk−1) log σ̂2k

]
,

where σ̂2k is the conditional maximum likelihood estimate of the AR(p) noise vari-

ance in the kth fitted segment, k = 1, . . . ,m+ 1.

Let λ̂ = arg min
λ∈Aδm

{
2
nMDL(m,λ; p, . . . , p)

}
, and consider the quantity

2

n

[
MDL(m, λ̂; p, . . . , p)−MDL(0; p)

]
=

2 logm

n
+m(p+ 4)

log n

n
+

2m log p

n

+
p+ 2

n

m+1∑
k=1

log(λ̂k − λ̂k−1) +

m+1∑
k=1

(λ̂k − λ̂k−1) log σ̂2k − log σ̂2. (4.2)
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We will show that (4.2) is strictly positive for n large with probability one. By

assumption, δ ≤ λ̂k − λ̂k−1 < 1, and hence the sum of the first four terms on the

right hand side of (4.2) is m(p+ 4) log n/n+ O(1/n). Since there are no change-

points in the true process, σ̂2k → σ2 as n → ∞ for all k = 1, . . . ,m + 1. Thus,

since σ̂2 also converges to σ2, the quantity

m+1∑
k=1

(λ̂k − λ̂k−1) log σ̂2k − log σ̂2 (4.3)

converges to zero as n → ∞. We will use the FLIL on a Taylor series expansion

of (4.3) to show that this quantity is of order log log n/n, from which the theorem

follows since log n/n > log log n/n for n large.

Defining

Xa:b =
(
Xa, Xa+1, · · · , Xb

)T
and (4.4)

(4.5)

Np
a:b =


1 Xa−1 Xa−2 . . . Xa−p

1 Xa Xa−1 . . . Xa−p+1

...
...

...
...

1 Xb−1 Xb−2 . . . Xb−p

 =


1

1
...

1

Xa−1:b−1 . . .Xa−p:b−p

 ,

note that nσ̂2 is the squared norm of the difference between X1:n and its projection

onto the subspace spanned by (1, . . . , 1)T and X1−i:n−i, i = 1, . . . , p, i.e.,

nσ̂2 =
∥∥∥X1:n − PNp

1:n
(X1:n)

∥∥∥2, (4.6)

where PNp
1:n

(X1:n) is the projection of X1:n onto the (p+ 1)-dimensional column

space of Np
1:n. This is the same as the squared norm of the difference between
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X∗1:n and its projection onto the subspace spanned by X∗1−i:n−i, i = 1, . . . , p, where

X∗1:n is the component of X1:n orthogonal to (1, . . . , 1)T , i.e.,

X∗1:n = X1:n − (X1:n)(1, . . . , 1)T ,

and X∗1−i:n−i, i = 1, . . . , p are defined similarly. It follows that

σ̂2 = Gp (γ̂(i, j) : i, j = 0, . . . , p) , (4.7)

where

γ̂(i, j) := γ̂0:1(i, j) =
1

n

n∑
t=1

(Xt−i −X1−i:n−i)(Xt−j −X1−j:n−j), (4.8)

is the sample ACVF (cf. (3.4)), and

Gp (uij : i, j = 0, . . . , p) = u00 − (u01, . . . , u0p)
[{
uij
}p
i,j=1

]−1


u01
...

u0p

 . (4.9)

Similarly, for k = 1, . . . ,m+ 1,

(λ̂k − λ̂k−1)nσ̂2k =
∥∥∥Xλ̂k−1n+1:λ̂kn

− PNp

λ̂k−1n+1:λ̂kn

(
Xλ̂k−1n+1:λ̂kn

)∥∥∥2, (4.10)

and thus,

σ̂2k = Gp (γ̂k(i, j) : i, j = 0, . . . , p) , (4.11)

where

γ̂k(i, j) := γ̂λ̂k−1:λ̂k
(i, j) (4.12)

=
1

(λ̂k − λ̂k−1)n

λ̂kn∑
t=λ̂k−1n+1

(Xt−i −X λ̂k−1n+1−i:λ̂kn−i)(Xt−j −X λ̂k−1n+1−j:λ̂kn−j)

is the sample ACVF in the kth segment (cf. (3.4)).
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While the causal AR(p) process {Xt} is not assumed to be stationary, it can

be approximated by a stationary AR(p) process {X ′t} generated by the same AR

coefficients and the same noise sequence in such a way that (3.7) holds, i.e., as

t→∞, Xt−X ′t = O(ρt) a.s. where 0 < ρ < 1 depends on the AR coefficients. Let

µ := lim
t→∞

E(Xt) and γ(h) := lim
t→∞

Cov(Xt, Xt−h). (4.13)

Note that

µ = E(X ′t) and γ(h) = Cov(X ′t, X
′
t−h) for all t. (4.14)

Without loss of generality, we take µ = 0 since the estimates σ̂2k are location

invariant, and consider the µ-centered sample ACVF (cf. (3.3)),

γ̃(i, j) := γ̃0:1(i, j) =
1

n

n∑
t=1

(Xt−i − µ)(Xt−j − µ) =
1

n

n∑
t=1

Xt−iXt−j , and (4.15)

γ̃k(i, j) := γ̃λ̂k−1:λ̂k
(i, j) =

1

(λ̂k − λ̂k−1)n

λ̂kn∑
t=λ̂k−1n+1

Xt−iXt−j . (4.16)

Let nσ̃2 denote the squared norm of the difference between X1:n and its projection

onto the subspace spanned by X1−i:n−i, i = 1, . . . , p, and for each k = 1, . . . ,m+1,

let (λ̂k−λ̂k−1)nσ̃2k denote the squared norm of the difference between Xλ̂k−1n+1:λ̂kn

and its projection onto the subspace spanned by Xλ̂k−1n+1−i:λ̂kn−i, i = 1, . . . , p.

It follows that

σ̃2 = Gp(γ̃(i, j) : i, j = 0, . . . , p), and (4.17)

σ̃2k = Gp(γ̃k(i, j) : i, j = 0, . . . , p) (4.18)

for each k = 1, . . . ,m + 1. Since γ̂(i, j) − γ̃(i, j) = O(log log n/n) and γ̂k(i, j) −

γ̃k(i, j) = O(log log n/n) by the FLIL, we have log σ̂2 − log σ̃2 = O(log log n/n)

and log σ̂2k − log σ̃2k = O(log log n/n) for each of the m + 1 fitted segments. We
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now show that

m+1∑
k=1

(λ̂k − λ̂k−1) log σ̃2k − log σ̃2 = O

(
log logn

n

)
, (4.19)

which then implies that

m+1∑
k=1

(λ̂k − λ̂k−1) log σ̂2k − log σ̂2 = O

(
log logn

n

)
. (4.20)

Let γ = (γ(|i − j|) : i, j = 0, . . . , p) be the vector of true (limiting) ACVFs

ranging over lags 0, . . . , p (cf. (4.13) and (4.14)). Carrying out a second order

Taylor expansion on each of the log σ̃2k terms and the log σ̃2 term, we obtain

m+1∑
k=1

(λ̂k − λ̂k−1) log σ̃2k − log σ̃2

=

m+1∑
k=1

(λ̂k − λ̂k−1) logGp(γ̃k)− logGp(γ̃)

=

[
m+1∑
k=1

(λ̂k − λ̂k−1) logGp(γ)− logGp(γ)

]

+

[
m+1∑
k=1

(λ̂k − λ̂k−1)∇logGp(γ)(γ̃k − γ)−∇logGp(γ)(γ̃ − γ)

]

+
1

2

[
m+1∑
k=1

(λ̂k − λ̂k−1)(γ̃k − γ)T∇2 logGp(γ
∗
k)(γ̃k − γ)

− (γ̃ − γ)T∇2 logGp(γ
∗)(γ̃ − γ)

]
, (4.21)

where γ̃k := (γ̃k(i, j) : i, j = 0, . . . , p) and γ̃ := (γ̃(i, j) : i, j = 0, . . . , p). The

variables γ∗ and γ∗k are between γ and γ̃ or between γ and γ̃k, respectively, for

k = 1, . . . ,m + 1, and each variable converges to γ almost surely as n goes to

infinity.

Both the constant and first-order terms in the Taylor expansion (4.21) are

exactly zero due to the form of the conditional maximum likelihood estimates; see
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(4.15) and (4.16). Within the second order term of the Taylor series expansion,

we can apply the FLIL to the µ-centered sample ACVF. It is then readily seen

that the second order term in the Taylor series expansion is of order log log n/n

with probability one (cf. (3.5) and (3.7)), and (4.19) holds. (More precisely, (3.5)

applies to the µ-centered sample ACVF for the stationary {X ′t}. Due to (3.7), it

also applies to γ̃ and γ̃k for {Xt}.) Thus, by (4.20), (4.2) becomes

2

n

[
MDL(m, λ̂; p, . . . , p)−MDL(0; p)

]
= m(p+ 4)

log n

n
+O

(
1

n

)
+O

(
log logn

n

)
,

which is greater than zero for large n with probability one.

5. Yule-Walker

As in the last section, we assume that the true process follows the AR(p)

model in (4.1) (i.e. Model 1). To show that the consistency result breaks down

when using the MDL together with the Yule-Walker variance estimates, it suffices

to prove that there is a nonnegligible probability that Model 1 is not selected in

favor of Model 2 with m = 1 for large n, which is stated formally in the following

theorem.

Theorem 5.1. Assume that the true process {Xt} follows the AR(p) model in

(4.1) where the noise sequence {εt} is iid with mean zero and variance one. Fur-

thermore suppose that {Xt} satisfies assumptions (A1) and (A2) and that the

noise εt has a density function fε which satisfies

(i) fε(x) > 0 for −∞ < x <∞,

(ii) lim infu→∞ e
cu
∫∞
u fε(x)dx > 0 for some constant c > 0.
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Then, using Yule-Walker estimation in the MDL, for every 0 < δ < 1/2 and

C > 0,

lim inf
n→∞

P

(
MDL(0; p)− min

δ≤λ≤1−δ
MDL(1, λ; p, p) > C log n

)
> 0. (5.1)

Proof. As in the proof of Theorem 4.1, note that the causal process {Xt}

can be approximated by a stationary AR(p) process {X ′t} with the same AR coef-

ficients and the same noise sequence in such a way that (3.7) holds. So it suffices

to prove the theorem under the additional assumption that {Xt} is stationary. By

(2.3), the MDL for an AR(p) process with no change-points equals

MDL(0; p) =
p+ 4

2
log n+ log p+

n

2
log(2πσ̂′2), (5.2)

while the MDL when calculated under one change-point for an AR(p) in each of

the two segments is

MDL(1, λ̂; p, p) = min
δ≤λ≤1−δ

MDL(1, λ; p, p)

= min
δ≤λ≤1−δ

{
(p+ 4) log n+

p+ 2

2

(
log(λ) + log(1− λ)

)
(5.3)

+ 2 log p+
n

2

(
λ log(2πσ̂′21 (λ)) + (1− λ) log(2πσ̂′22 (λ))

)}
,

where now σ̂′2 is the Yule-Walker variance estimate of the entire sequence, σ̂′21 (λ)

is the Yule-Walker variance estimate from observations 1, . . . , λn, and σ̂′22 (λ) is the

Yule-Walker variance estimate from observations λn+ 1, . . . , n. The change-point

estimate λ̂ is obtained by minimizing MDL(1, λ; p, p) with respect to λ ∈ Aδ1 =

[δ, 1 − δ]. By (5.2) and (5.3), to establish (5.1) for all 0 < δ < 1/2 and C > 0, it

suffices to show that for all 0 < δ < 1/2 and C > 0,

lim inf
n→∞

P

(
log σ̂′2− min

δ≤λ≤1−δ

{
λ log σ̂′21 (λ) + (1− λ) log σ̂′22 (λ)

}
> Cn−1 log n

)
> 0.

(5.4)
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For λ ∈ [δ, 1− δ], k = 1, 2 and h = 0, 1, . . . , define

γ̂′(h) =
1

n

n−h∑
t=1

(Xt −X1:n)(Xt+h −X1:n),

γ̂′k,λ(h) =
1

(λk − λk−1)n

λkn−h∑
t=λk−1n+1

(Xt −Xλk−1n+1:λkn)(Xt+h −Xλk−1n+1:λkn),

where λ0 := 0, λ1 := λ and λ2 := 1. Let γ̂′(i, j) := γ̂′(|i − j|) and γ̂′k,λ(i, j) :=

γ̂′k,λ(|i − j|). Then we have σ̂′2 = Gp(γ̂
′(i, j) : i, j = 0, . . . , p) and σ̂′2k (λ) =

Gp(γ̂
′
k,λ(i, j) : i, j = 0, . . . , p) where Gp is given in (4.9). Since the above variance

estimates are all location invariant, we assume without loss of generality that the

stationary process {Xt} has mean µ = 0, and consider the following µ-centered

version of γ̂′ and γ̂′k,λ

γ̃′(h) :=
1

n

n−h∑
t=1

XtXt+h,

γ̃′k,λ(h) :=
1

(λk − λk−1)n

λkn−h∑
t=λk−1n+1

XtXt+h,

γ̃′(i, j) := γ̃′(|i− j|), and γ̃′k,λ(i, j) := γ̃′k,λ(|i− j|).

By FLIL, γ̂′(i, j)− γ̃′(i, j) = O(n−1 log log n) a.s., and

sup
δ≤λ≤1−δ

|γ̂′k,λ(i, j)− γ̃′k,λ(i, j)| = O(n−1 log log n) a.s.,

implying that σ̂′2 − σ̃′2 = (n−1 log log n) a.s. and

sup
δ≤λ≤1−δ

|σ̂′2k (λ)− σ̃′2k (λ)| = O(n−1 log log n) a.s., k = 1, 2,

where σ̃′2 := Gp(γ̃
′(i, j) : i, j = 0, . . . , p) and σ̃′2k (λ) := Gp(γ̃

′2
k,λ(i, j) : i, j =

0, . . . , p), k = 1, 2. To prove (5.4), it suffices to show that for all 0 < δ < 1/2 and

C > 0,

lim inf
n→∞

P

(
log σ̃′2− min

δ≤λ≤1−δ

{
λ log σ̃′21 (λ) + (1− λ) log σ̃′22 (λ)

}
> Cn−1 log n

)
> 0.

(5.5)
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We now prove (5.5) for the case p = 1. (The general case p > 1 can be treated

similarly with more complicated notation and extensive calculations.) Writing

φ = φ1(6= 0), the AR(1) process {Xt} satisfies Xt = φXt−1 + σεt (since µ is

assumed to be 0). Let τ = λn, an integer between δn and (1 − δ)n. It is readily

seen that

σ̃′2 =
1

n

n∑
t=1

X2
t −

(
1
n

∑n−1
t=1 XtXt+1

)2
1
n

∑n
t=1X

2
t

, (5.6)

σ̃′21 (λ) = σ̃′21 (τ/n) =
1

τ

τ∑
t=1

X2
t −

(
1
τ

∑τ−1
t=1 XtXt+1

)2
1
τ

∑τ
t=1X

2
t

, (5.7)

σ̃′22 (λ) = σ̃′22 (τ/n) =
1

n− τ

n∑
t=τ+1

X2
t −

(
1

n−τ
∑n−1

t=τ+1XtXt+1

)2
1

n−τ
∑n

t=τ+1X
2
t

. (5.8)

Performing a Taylor expansion on the log of (5.6), we obtain

log σ̃′2 = log

[
σ2

1− φ2
+

1

n

n∑
t=1

(
X2
t −

σ2

1− φ2

)

−

(
φσ2

1−φ2 + 1
n

∑n−1
t=0

(
XtXt+1 − φσ2

1−φ2

)
− X0X1

n

)2
σ2

1−φ2 + 1
n

∑n
t=1

(
X2
t − σ2

1−φ2

) ]

= log σ2 +
1 + φ2

σ2
1

n

n∑
t=1

(
X2
t −

σ2

1− φ2

)

− 2φ

σ2

[
1

n

n−1∑
t=0

(
XtXt+1 −

φσ2

1− φ2

)
− X0X1

n

]
+O

(
log logn

n

)
a.s. ,

where the second equality follows from the facts that
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[ φσ2

1− φ2
+

1

n

n−1∑
t=0

(
XtXt+1 −

φσ2

1− φ2

)
− X0X1

n

]2
=

(
φσ2

1− φ2

)2

+

(
2φσ2

1− φ2

)[
1

n

n−1∑
t=0

(
XtXt+1 −

φσ2

1− φ2

)
− X0X1

n

]

+O
(
n−1 log log n

)
a.s. ,

and that[ σ2

1− φ2
+

1

n

n∑
t=1

(
X2
t −

σ2

1− φ2

)]−1
=

(
σ2

1− φ2

)−1 [
1−

(
σ2

1− φ2

)−1
1

n

n∑
t=1

(
X2
t −

σ2

1− φ2

)
+O

(
log log n

n

)]
a.s.

Let

Sn :=
1 + φ2

σ2

n∑
t=1

(
X2
t −

σ2

1− φ2

)
− 2φ

σ2

n−1∑
t=0

(
XtXt+1 −

φσ2

1− φ2

)
,

so that

log σ̃′2 = log σ2 +
1

n
Sn +

2φ

σ2
X0X1

n
+O

(
n−1 log logn

)
.

Similarly, for (5.7) and (5.8),

max
δ≤ τ

n
≤1−δ

∣∣∣∣∣ log σ̃′21 (τ/n) −
(

log σ2 +
1

τ
Sτ +

2φ

σ2
X0X1

τ

) ∣∣∣∣∣
and

max
δ≤ τ

n
≤1−δ

∣∣∣∣∣ log σ̃′22 (τ/n) −
(

log σ2 +
1

n− τ
(Sn − Sτ ) +

2φ

σ2
XτXτ+1

n− τ

) ∣∣∣∣∣
are both O

(
n−1 log logn

)
. It follows that

max
δ≤ τ

n
≤1−δ

∣∣∣∣∣ log σ̃′2 −
(
τ

n
log σ̃′21 (τ/n) +

n− τ
n

log σ̃′22 (τ/n)

)

+
2φ

σ2
XτXτ+1

n

∣∣∣∣∣ = O
(
n−1 log log n

)
. (5.9)
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Under the assumptions for the density fε of the noise, it is clear that

lim
n→∞

P

(
max

{
εt : δ ≤ t

n
≤ 1− δ

}
>

1

2c
log n

)
= 1. (5.10)

Let T := max
{

[nδ] + 2 ≤ t ≤ n(1− δ) : εt >
1
2c log n

}
if the specified set is non-

empty, and define T := [nδ]+2 otherwise. Note by (5.10) that P (εT >
1
2c log n)→

1 as n → ∞. Moreover, XT−1 and εT are independent, and XT−1 has the same

(stationary) distribution as X0 since T is a stopping time in reverse time, which

has an everywhere-positive density function by condition (i). Therefore, from

(5.9), we have

log σ̃′2 −
(
T − 1

n
log σ̃′21 ((T − 1)/n) +

n− T + 1

n
log σ̃′22 ((T − 1)/n)

)
=
−2φ

σ2
XT−1XT

n
+O

(
n−1 log log n

)
=
−2φ

σ2
(φX2

T−1 + σXT−1εT )

n
+O

(
n−1 log logn

)
=

(
−φ
cσ

XT−1
2cεT
log n

)
log n

n
− 2φ2

σ2
X2
T−1
n

+O
(
n−1 log log n

)
=

(
−φ
cσ

XT−1
2cεT
log n

)
log n

n
−Op(n−1) +O

(
n−1 log log n

)
. (5.11)

For every C > 0, we have P
(
−φ
cσ XT−1 > C

)
> 0, implying (5.5) for every C > 0

(and 0 < δ < 1/2). This completes the proof.

Remark 5.1. Theorem 4.1 requires only the moment condition (3.1) in order

for the consistency result to hold when using the conditional maximum likelihood

estimates. On the other hand, for the consistency result to break down in the

Yule-Walker case, condition (ii) in Theorem 5.1 essentially requires the noise dis-

tribution to have exponential (or heavier) tails. It would be of theoretical interest

to see if the consistency result can be saved in the Yule-Walker case when the

noise distribution has very light tails (such as the normal distribution). Further-

more, we may extend Theorem 5.1 to the case where the true process follows a
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piecewise autoregressive model with m ≥ 1 change-points and show that there is

a nonnegligible probability that more than m change-points will be selected by

using Yule-Walker estimation in the MDL.

6. Simulation Results

In order to investigate the practical differences between conditional maximum

likelihood and Yule-Walker estimation when applied to structural break detection,

we conducted a small simulation study. We were also curious if the lack of consis-

tency specified in Theorem 5.1 could be discerned in simulated data. To explore

these issues, we simulated a first-order mean-zero autoregressive process (with no

change-points) given by

Xt = .8Xt−1 + εt, {εt} ∼ IID(0, σ2),

using several different noise distributions. For each simulated process, we cal-

culated the MDL assuming no change-points (and AR order 1), MDL(0;1), as

well as the MDL assuming one change-point (and AR order 1 in each segment),

MDL(1, λ; 1, 1), with change-point location λn for δ ≤ λ ≤ 1 − δ. The MDL

was calculated for both conditional maximum likelihood (CML) and Yule-Walker

(YW) estimates, where the mean in each segment was assumed known equal to

zero and not estimated (so that the term
∑m+1

k=1
pk+2
2 log nk in (2.3) was replaced by∑m+1

k=1
pk+1
2 log nk =

∑m+1
k=1 log nk,m = 0, 1). We ran the simulations for a variety

of noise distributions, sample sizes (n), and δ values. Based on 1000 replications

for each case, the proportion of replications with minδ≤λ≤1−δ MDL(1, λ; 1, 1) <

MDL(0; 1) (indicating evidence for a change-point) is reported in Tables 1, 2 and

3.

The most definitive results concern the case of a t-distribution with 5 degrees

of freedom. This distribution satisfies the conditions of Theorem 5.1 and as one
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can see in Table 1, with δ = .005, the rejection rate increases from 21.2% to 35.8%

as the sample size grows from 1000 to 50,000. In contrast, the rejection rates are

getting smaller (from 17.1% to 8.7%) in the CML case as n increases. Similar

patterns persist for the four other choices of δ.

As seen in the normal case (Table 2), the rejection rates for both CML and YW

are both converging to zero (no more than one out of 1000 replications rejects the

true model for sample sizes greater than 1000 and all choices of δ). This does not

contradict Theorem 5.1 since the normal distribution does not satisfy condition

(ii) of the theorem. These results suggest that both CML and YW produce a

consistent procedure for structural break detection for normal noise.

For Laplace noise (see Table 3), both estimates YW and CML have quite

small rejection rates (3.3% and .6%, respectively, for n = 50, 000 and δ = .1).

By Theorem 5.1 the asymptotic rate for YW is positive so that an enormous

sample size may be required in order to confirm this result. So from a practical

perspective, there may be little consequence in using YW estimates in this context.

In other simulation cases with noise distributions that have infinite fourth

moment, it appears that the rejection rates (not reported here) for both CML

and YW are rather large. In this case, neither the conditions of Theorem 4.1 or

Theorem 5.1 are met. The heavy-tailed case will be the subject of future research

and is beyond the scope of the current paper.

Based on this limited study, the use of YW for structural break estimation

could have an impact for structural break detection if the tails of the noise distri-

bution are heavy. It would certainly be of practical interest to get a better sense

about the range of distributions for which the use of Yule-Walker estimation may

be problematic in structural break detection. An advantage of Yule-Walker esti-

mates is that they remain numerically stable and can be computed quickly over

various subsets of the time series, so one does not want to eliminate this estimation
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procedure from consideration.
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Table 1: Rejection rate with t noise distribution with 5 degrees of freedom.

Method n δ = 0.005 0.01 0.03 0.05 0.1

YW 1000 0.212 0.204 0.190 0.170 0.150

CML 1000 0.171 0.152 0.137 0.125 0.105

YW 2000 0.183 0.174 0.156 0.146 0.131

CML 2000 0.127 0.117 0.105 0.097 0.079

YW 5000 0.204 0.193 0.169 0.161 0.140

CML 5000 0.112 0.102 0.081 0.072 0.059

YW 10000 0.248 0.238 0.212 0.195 0.164

CML 10000 0.120 0.112 0.090 0.073 0.052

YW 20000 0.286 0.275 0.254 0.237 0.206

CML 20000 0.104 0.089 0.072 0.059 0.045

YW 50000 0.358 0.341 0.318 0.303 0.270

CML 50000 0.087 0.074 0.053 0.047 0.036
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Table 2: Rejection rate with Gaussian noise distribution.

Method n δ = 0.005 0.01 0.03 0.05 0.1

YW 1000 0.008 0.004 0.003 0.002 0.001

CML 1000 0.006 0.002 0.002 0.002 0.001

YW 2000 0.001 0.000 0.000 0.000 0.000

CML 2000 0.000 0.000 0.000 0.000 0.000

YW 5000 0.001 0.000 0.000 0.000 0.000

CML 5000 0.000 0.000 0.000 0.000 0.000

YW 10000 0.000 0.000 0.000 0.000 0.000

CML 10000 0.000 0.000 0.000 0.000 0.000

YW 20000 0.000 0.000 0.000 0.000 0.000

CML 20000 0.000 0.000 0.000 0.000 0.000

YW 50000 0.000 0.000 0.000 0.000 0.000

CML 50000 0.000 0.000 0.000 0.000 0.000
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Table 3: Rejection rate with Laplace noise distribution.

Method n δ = 0.005 0.01 0.03 0.05 0.1

YW 1000 0.125 0.115 0.090 0.081 0.057

CML 1000 0.128 0.097 0.070 0.061 0.044

YW 2000 0.082 0.076 0.056 0.052 0.040

CML 2000 0.068 0.062 0.040 0.037 0.022

YW 5000 0.079 0.070 0.055 0.050 0.036

CML 5000 0.041 0.033 0.026 0.022 0.017

YW 10000 0.066 0.062 0.049 0.044 0.034

CML 10000 0.029 0.024 0.016 0.014 0.007

YW 20000 0.050 0.040 0.028 0.023 0.020

CML 20000 0.027 0.016 0.008 0.006 0.005

YW 50000 0.055 0.051 0.043 0.039 0.033

CML 50000 0.014 0.013 0.008 0.007 0.006
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