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Abstract

We consider a birth-death process with killing where transitions from state

i may go to either state i − 1 or state i + 1 or an absorbing state (killing).

Stochastic ordering results on the killing time are derived. In particular, if the

killing rate in state i is monotone in i, then the distribution of the killing time

with initial state i is stochastically monotone in i. This result is a consequence

of the following one for a non-negative tri-diagonal matrix M : If the row sums

of M are monotone, so are the row sums of Mn for all n ≥ 2.

Keywords: Absorbing time, uniformizable chain, birth-death process with

catastrophes, tri-diagonal matrix.

2000 Mathematics Subject Classification: Primary 60E15

Secondary 60J10; 60J27

∗ Email address: srhsiau@cc.ncue.edu.tw
∗ Postal address: Department of Mathematics, National Changhua University of Education, No. 1, Jin-De Rd.,

Changhua 500, Taiwan, R.O.C.
∗∗ Email address: mayru@faculty.nsysu.edu.tw
∗∗ Postal address: Department of Applied Math., National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 804,

Taiwan, R.O.C.
∗∗∗ Email address: yao@stat.sinica.edu.tw
∗∗∗ Postal address: Institute of Statistical Science, Academia Sinica, No. 128 Academia Road, Section 2, Nankang,

Taipei 11529, Taiwan, R.O.C.

1



2 Hsiau et. al.

1. Introduction

Motivated by genetic studies, Karlin and Tavaré [11] introduced the class of continuous-time

birth-death processes with killing (or CBDKs for short) and obtained explicit results on the killing

time for the case of linear CBDKs. (Earlier Puri [13] also discussed related processes.) Later,

van Doorn and Zeifman [17, 18] considered more general CBDKs and derived the eventual killing

probability among other things. (See also [1, Chapter 9] and [2, 3, 4, 5, 6, 16] for work on the

closely related topic of birth-death processes with catastrophes.)

A CBDK {Xt} is a continuous-time Markov chain with state space {0, 1, . . . } ∪ {e} where e is

an absorbing state and transitions from state i (6= e) may go to either i − 1 (if i > 0) or i + 1

or e with respective transition rates µi (death rate), λi (birth rate), γi (killing rate). We assume

that {Xt} is non-explosive. See Equations (2) and (3) of [17] for conditions on λi, µi and γi under

which {Xt} is non-explosive.

Let Te := inf{t ≥ 0 : Xt = e}, the killing time. (By convention, inf ∅ :=∞.) The distribution of

Te and the probability of Te < ∞ (the eventual killing probability) are of primary interest in the

study of CBDKs. Denote by Li(Te) the distribution of Te given X0 = i. We write Li(Te) ≤d Lj(Te)

(or equivalently, Lj(Te) ≥d Li(Te)) if Li(Te) is stochastically smaller than Lj(Te), i.e.

P (Te > t | X0 = i) ≤ P (Te > t | X0 = j) for all t > 0.

CBDKs have found applications in medicine and biology. Nagylaki [12] considered a stochastic

model for a progressive chronic disease. For a patient with the disease, it is assumed that there

is a useful prognostic indicator for the course of the disease and the survival of the patient. This

indicator may be modeled as a birth-death process with killing. (In [12], the indicator is modeled

as a pure birth process with killing under the assumption that the condition of the patient cannot

improve.) For example, a patient in a coma is given a score i ∈ {3, . . . , 15} (on the Glasgow Coma

Scale) indicating the state of the patient’s consciousness. (A lower score corresponds to a more

severe condition.) With the absorbing state e denoting the patient’s death, the killing time Te is

the patient’s survival time. A natural question is whether the survival time of the patient with

score i is stochastically nondecreasing in i, i.e. Li(Te) ≤d Lj(Te) for i < j. Theorem 1 in the next
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section answers this question in the affirmative provided the killing rate γi is nonincreasing in i,

regardless of the values of λi and µi. In another application of CBDKs, Hadeler [7] considered a

situation where a host carries a finite number of parasites. Let X ′t denote the parasite population

size within the host at time t, which may be modeled as a birth-death process. Let T denote the

death time of the host, and define the process {Xt} by Xt = X ′t for t < T and Xt = e for t ≥ T .

Hadeler [7] proposed to model {Xt} as a CBDK. Note that T = Te = inf{t ≥ 0 : Xt = e} is the

survival time of the host. Again, Theorem 1 shows that the survival time of the host carrying i

parasites is stochastically nonincreasing in i if the killing rate γi is nondecreasing in i.

The rest of this paper is organized as follows. Section 2 states the main results Theorem 1 for

CBDKs and Theorem 2 for the discrete-time counterpart of CBDKs. The proofs of both theorems

rely on Lemma 1 concerning the monotonicity of the row sums of powers of non-negative tri-

diagonal matrices which is of independent interest. Section 3 presents numerical examples. The

proofs of Theorems 1 and 2 and Lemma 1 are relegated to Section 4.

2. Main results

For a non-negative matrix M = (Mi,j), let (M)i,+ denote the ith row sum of M , i.e. (M)i,+ =∑
jMi,j . Before presenting the main results Theorems 1 and 2, we state Lemma 1 below which is

needed for the proofs of Theorems 1 and 2. All the proofs are given in Section 4.

Lemma 1. Let S = {0, 1, . . . , I} (for some integer I > 0) or S = {0, 1, . . . } or S = Z :=

{0,±1, . . . }. Suppose M = (Mi,j)i,j∈S is a non-negative tri-diagonal matrix.

(i) If, for some i∗, (M)i,+ ≤ (M)j,+ for all i ≤ i∗ and j > i∗, then we have

(Mn)i∗,+ ≤ (Mn)i∗+1,+ for all n ≥ 2 .

(ii) If, for some i∗, (M)i,+ ≥ (M)j,+ for all i ≤ i∗ and j > i∗, then we have

(Mn)i∗,+ ≥ (Mn)i∗+1,+ for all n ≥ 2 .

(iii) If the row sums of M are monotone, so are the row sums of Mn for all n ≥ 2.

Theorem 1. Suppose {Xt} is a non-explosive CBDK.
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(i) If, for some i∗ ∈ {0, 1. . . . }, the killing rates satisfy γi ≤ γj for all i ≤ i∗ and j > i∗, then

we have Li∗(Te) ≥d Li∗+1(Te).

(ii) If, for some i∗, γi ≥ γj for all i ≤ i∗ and j > i∗, then we have Li∗(Te) ≤d Li∗+1(Te).

(iii) If γi ≤ γi+1 for all i ≥ 0, then we have Li(Te) ≥d Li+1(Te) for all i ≥ 0.

(iv) If γi ≥ γi+1 for all i ≥ 0, then we have Li(Te) ≤d Li+1(Te) for all i ≥ 0.

Theorem 1 has a discrete-time analogue concerning a Markov chain {Yn} with state space

{0, 1, . . . } ∪ {e} in discrete time n = 0, 1, . . . . Specifically, {Yn} has transition probabilities

satisfying

i+1∑
j=max{0,i−1}

P (Yn+1 = j | Yn = i) + P (Yn+1 = e | Yn = i) = 1 , i = 0, 1 . . . , (1)

and P (Yn+1 = e | Yn = e) = 1. (Note that P (Yn+1 = i | Yn = i) > 0 is allowed.) We refer to {Yn}

as a discrete-time birth-death process with killing (or DBDK for short). Let T de := inf{n ≥ 0 :

Yn = e}, which is the discrete-time counterpart of Te. (By convention, inf ∅ :=∞.)

Theorem 2. Let pi,e := P (Yn+1 = e | Yn = i), i = 0, 1, . . . .

(i) If, for some i∗, pi,e ≤ pj,e for all i ≤ i∗ and j > i∗, then we have Li∗(T de ) ≥d Li∗+1(T de ).

(ii) If, for some i∗, pi,e ≥ pj,e for all i ≤ i∗ and j > i∗, then we have Li∗(T de ) ≤d Li∗+1(T de ).

(iii) If pi,e ≤ pi+1,e for all i ≥ 0, then we have Li(T de ) ≥d Li+1(T de ) for all i ≥ 0.

(iv) If pi,e ≥ pi+1,e for all i ≥ 0, then we have Li(T de ) ≤d Li+1(T de ) for all i ≥ 0.

Remark 1. By Theorem 1, we have Li(Te) stochastically monotone in i provided the killing

rate γi is monotone in i, regardless of the birth and death rates λi and µi. The fact that the

process {Xt} is skip-free to the left and to the right (apart from jumping into the absorbing state

e) is crucial for Theorem 1 to hold. In a different context, Irle and Gani [10] and Irle [9] obtained

level-crossing stochastic ordering results for Markov chains and semi-Markov processes which are

skip-free to the right.

Remark 2. He and Chavoushi [8] considered queueing systems with customer interjections in

which two parameters (denoted by ηI and ηC) are introduced to describe the interjection behavior.

They investigated the effects of the two parameters on the customer’s waiting time, and derived

some monotonicity properties of the distribution of the waiting time and its mean and variance
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in terms of the parameters. (The proof of their Lemma 2.2 contains a special case of our Lemma

1.) In particular, with Wn(ηI , ηC) denoting the waiting time of a customer initially in position n

in the queue, they showed that Wn(ηI , ηC) ≤d Wn(η′I , η
′
C) if ηI ≤ η′I and ηC ≤ η′C . Note that

two different pairs of parameter values (ηI , ηC) and (η′I , η
′
C) correspond to two different transition

rate matrices (with the same state space). In contrast, our results are concerned with a single

transition rate matrix with an absorbing state and compare the absorbing time distributions when

the Markov chain starts from different states.

3. Numerical examples

In this section we illustrate Theorems 1 and 2 with numerical examples. We first consider a

DBDK {Yn} with transition probabilities given by

P (Yn+1 = e | Yn = i) = 0.01, i = 0, 1, 2;

P (Yn+1 = e | Yn = i) = 0.02, i ≥ 3;

P (Yn+1 = 1 | Yn = 0) = 0.99 = 1− P (Yn+1 = e | Yn = 0);

P (Yn+1 = i+ 1 | Yn = i) = 0.5, i ≥ 1;

P (Yn+1 = i− 1 | Yn = i) = 0.5− P (Yn+1 = e | Yn = i), i ≥ 1.

Figure 1 plots the survival probabilities

P (T de > n | Y0 = i) = (Mn)i,+ =
∞∑
j=0

Mn
i,j , for 0 ≤ n ≤ 160 and i = 0, 1, 2, 3,

where the matrix M = (Mi,j) is given by Mi,j = P (Y1 = j | Y0 = i) for i, j = 0, 1, . . . . It shows

that P (T de > n | Y0 = i) decreases as i increases as expected in view of Theorem 2(iii).

For a linear CBDK {Xt} with µi = ai, λi = bi+ θ, and γi = ci where a, b, c and θ are positive

constants, Karlin and Tavaré [11] derived the explicit formula

P (Te > t | X0 = i) = e−θ(1−v0)t
[v0(v1 − 1) + v1σt(1− v0)

v1 − 1 + σt(1− v0)

]i[v1 − 1 + σt(1− v0)

v1 − v0

]−θ/b
,

where 0 < v0 < 1 < v1 are the two roots of the equation bx2 − (a + b + c)x + a = 0 and

σt = e−b(v1−v0)t. Since γi is increasing in i, P (Te > t | X0 = i) should be decreasing in i by
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Figure 1: The survival probabilities P (T d
e > n | Y0 = i), i = 0, 1, 2, 3.

Theorem 1(iii). Noting that v0(v1 − 1) + v1σt(1− v0) < v1 − 1 + σt(1− v0) (since 0 < σt < 1), we

have P (Te > t | X0 = i) decays geometrically in i. Figure 2 plots P (Te > t | X0 = i) for 0 < t < 5

and i = 0, 2, 4, 6, 8 with a = b = c = θ = 1.
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Figure 2: The survival probabilities P (Te > t | X0 = i), i = 0, 2, 4, 6, 8.
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While no explicit formula for P (Te > t | X0 = i) is available for general CBDKs, we may

use the technique of uniformization (cf. [14, Section 5.10] and [15, Section 6.7]) to compute

P (Te > t | X0 = i) if {Xt} is uniformizable (i.e. supi(λi + µi + γi) ≤ C < ∞ for some constant

C > 0). Specifically, with µ0 := 0, let {Zn} be a DBDK with transition probabilities satisfying

P (Zn+1 = e | Zn = e) = 1, and for i ≥ 0

P (Zn+1 = i− 1 | Zn = i) =
µi
C
, P (Zn+1 = i+ 1 | Zn = i) =

λi
C
,

P (Zn+1 = e | Zn = i) =
γi
C
, P (Zn+1 = i | Zn = i) = 1− µi + λi + γi

C
.

Let {N(t)} be a Poisson process of constant rate C, independent of {Zn}. Then we have the

following result :

Given X0 = Z0, the two processes {Xt} and {ZN(t)} have the same distribution. (2)

In other words, the CBDK {Xt} may be constructed by placing the transitions of the DBDK {Zn}

at Poisson arrival epochs. It follows from (2) that

P (Te > t | X0 = i) = P (Xt 6= e | X0 = i)

= P (ZN(t) 6= e | Z0 = i)

=

∞∑
n=0

P (Zn 6= e ,N(t) = n | Z0 = i)

=

∞∑
n=0

P (N(t) = n)P (Zn 6= e | Z0 = i)

=

∞∑
n=0

e−Ct(Ct)n

n!
(M∗n)i,+,

where the matrix M∗ = (M∗i,j) is given by M∗i,j = P (Z1 = j | Z0 = i). So P (Te > t | X0 = i)

may be approximated by
∑L(t)
n=0

e−Ct(Ct)n

n! (M∗n)i,+ for sufficiently large integer L(t) (depending on

t). The distributional equivalence of {Xt} and {ZN(t)} in (2) will be called for in the proof of

Theorem 1 in the next section.
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4. Proofs of Theorems 1 and 2 and Lemma 1

To prove Theorem 2, let M = (Mi,j)i,j∈{0,1,... } be the transition matrix of {Yn} restricted to

the states 0, 1, . . . . That is,

Mi,j = P (Yn+1 = j | Yn = i) , i, j = 0, 1, . . . .

By (1), we have that Mi,j = 0 for |i− j| > 1 and that

(M)i,+ =

i+1∑
j=max{0,i−1}

Mi,j = 1− P (Yn+1 = e | Yn = i) = 1− pi,e . (3)

Moreover,

P (T de > n | Y0 = i) =

∞∑
j=0

P (Yn = j | Y0 = i) = (Mn)i,+ . (4)

In view of (3) and (4), Theorem 2 follows immediately from Lemma 1. To prove Theorem 1, one

may approximate the CBDK {Xt} by a sequence of DBDKs via time-discretization and argue

that Te is the limit of the corresponding T de ’s. Instead of taking this approach, we first consider

uniformizable {Xt} (i.e. supi (λi+µi+γi) <∞) for which the associated (embedded) discrete-time

Markov chain is a DBDK, so that the desired results follow from Theorem 2. The general CBDK

{Xt} is then approximated by a sequence of uniformizable CBDKs. The details are given in the

proof below.

Proof of Theorem 1. We first prove part (i) under the additional assumption that {Xt} is

uniformizable, i.e. supi (λi + µi + γi) ≤ C < ∞ for some C > 0. Let {Zn} and {N(t)}

be, respectively, the DBDK and (independent) Poisson process of constant rate C as described

in the last paragraph of Section 3. Letting p
(Z)
i,e := P (Zn+1 = e | Zn = i) = γi/C and

T
d(Z)
e := inf{n ≥ 0 : Zn = e}, we have that {Zn} is a DBDK with p

(Z)
i,e ≤ p

(Z)
j,e for i ≤ i∗

and j > i∗, so that by Theorem 2(i),

P (Zn 6= e | Z0 = i∗) = P (T d(Z)
e > n | Z0 = i∗)

≥ P (T d(Z)
e > n | Z0 = i∗ + 1) = P (Zn 6= e | Z0 = i∗ + 1) . (5)
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Consequently, for t > 0,

P (Te > t | X0 = i∗) = P (ZN(t) 6= e | Z0 = i∗) (by (2))

=

∞∑
n=0

P (N(t) = n)P (Zn 6= e | Z0 = i∗)

≥
∞∑
n=0

P (N(t) = n)P (Zn 6= e | Z0 = i∗ + 1) (by (5))

= P (ZN(t) 6= e | Z0 = i∗ + 1)

= P (Te > t | X0 = i∗ + 1) .

This proves part (i) for uniformizable {Xt}.

For general (non-explosive) {Xt}, to prove P (Te > t0 | X0 = i∗) ≥ P (Te > t0 | X0 = i∗ + 1) for

any (fixed) t0 > 0, let

ak := P (Tk ≤ t0 | X0 = i∗) and bk := P (Tk ≤ t0 | X0 = i∗ + 1) , (6)

where Tk := inf{t ≥ 0 : Xt = k}. For Xt to reach a (large) state k starting from i∗ or i∗ + 1, at

least k − i∗ − 1 transitions are required. Since {Xt} is non-explosive, we have

lim
k→∞

ak = 0 and lim
k→∞

bk = 0 . (7)

For each k > i∗, let {X(k)
t } be a CBDK whose birth, death and killing rates in state i are

given by λ
(k)
i := λi∧k, µ

(k)
i := µi∧k, γ

(k)
i := γi∧k where i ∧ k := min{i, k}. Clearly, {X(k)

t } is

uniformizable with the killing rates satisfying γ
(k)
i ≤ γ(k)j for i ≤ i∗ and j > i∗. Denote by Li(Tk)

(Li(Te ∧ Tk), resp.) the distribution of Tk (Te ∧ Tk, resp.) given X0 = i. Similarly, denote by

Li(T (k)
k ) (Li(T (k)

e ∧T (k)
k ), resp.) the distribution of T

(k)
k (T

(k)
e ∧T (k)

k , resp.) given X
(k)
0 = i, where

T
(k)
r := inf{t ≥ 0 : X

(k)
t = r} for r = k, e.

For k > i∗, given X0 = i∗ or i∗ + 1, the distributions of Tk and Te ∧ Tk depend only on the

values of λi, µi, γi for i < k. Similarly, given X
(k)
0 = i∗ or i∗ + 1, the distributions of T

(k)
k and

T
(k)
e ∧ T (k)

k depend only on the values of λ
(k)
i , µ

(k)
i , γ

(k)
i for i < k. Since λi = λ

(k)
i , µi = µ

(k)
i and

γi = γ
(k)
i for i ≤ k, we have that

Li(Tk) = Li(T (k)
k ) and Li(Te ∧ Tk) = Li(T (k)

e ∧ T (k)
k ) for i = i∗, i∗ + 1 and k > i∗,
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implying that for k > i∗,

P (Tk > t0 | X0 = i) = P (T
(k)
k > t0 | X(k)

0 = i) , i = i∗, i∗ + 1 (8)

P (Te ∧ Tk > t0 | X0 = i) = P (T (k)
e ∧ T (k)

k > t0 | X(k)
0 = i) , i = i∗, i∗ + 1 . (9)

Since {X(k)
t } is uniformizable with γ

(k)
i ≤ γ(k)j for i ≤ i∗ and j > i∗, we have shown that

P (T (k)
e > t0 | X(k)

0 = i∗) ≥ P (T (k)
e > t0 | X(k)

0 = i∗ + 1) for k > i∗. (10)

Also for k > i∗ and i = i∗, i∗ + 1,

P (Te > t0 | X0 = i) ≥ P (Te ∧ Tk > t0 | X0 = i)

= P (T (k)
e ∧ T (k)

k > t0 | X(k)
0 = i) (by (9)) ,

and

P (Te > t0 | X0 = i) ≤ P (Te ∧ Tk > t0 | X0 = i) + P (Tk ≤ t0 | X0 = i)

= P (T (k)
e ∧ T (k)

k > t0 | X(k)
0 = i) + P (Tk ≤ t0 | X0 = i) (by (9))

≤ P (T (k)
e ∧ T (k)

k > t0 | X(k)
0 = i) + ak ∨ bk ,

where ak and bk are as defined in (6) and ak ∨ bk := max{ak, bk}. Consequently, for k > i∗,

0 ≤ P (Te > t0 | X0 = i)− P (T (k)
e ∧ T (k)

k > t0 | X(k)
0 = i) ≤ ak ∨ bk , i = i∗, i∗ + 1. (11)

Furthermore, for k > i∗ and i = i∗, i∗ + 1,

0 ≤ P (T (k)
e > t0 | X(k)

0 = i)− P (T (k)
e ∧ T (k)

k > t0 | X(k)
0 = i)

≤ P (T
(k)
k ≤ t0 | X(k)

0 = i)

= P (Tk ≤ t0 | X0 = i) (by (8))

≤ ak ∨ bk ,

which together with (11) implies that for k > i∗ and i = i∗, i∗ + 1,

|P (Te > t0 | X0 = i)− P (T (k)
e > t0 | X(k)

0 = i)| ≤ ak ∨ bk . (12)
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It follows from (7), (10) and (12) that

P (Te > t0 | X0 = i∗) ≥ P (Te > t0 | X0 = i∗ + 1),

completing the proof of part (i).

Part (ii) can be proved by using a similar argument and invoking Theorem 2(ii). Parts (iii) and

(iv) follow immediately from parts (i) and (ii), respectively.

Proof of Lemma 1. Note that part (ii) follows from part (i) by reversing the ordering of the

rows and that of the columns, and that part (iii) is a consequence of parts (i) and (ii). It remains

to prove part (i). It suffices to deal only with the case S = Z, since the cases S = {0, 1, . . . , I} and

S = {0, 1, . . . } can be treated as special cases of S = Z. More precisely, for M = (Mi,j)i,j∈{0,1,...,I}

satisfying (M)i,+ ≤ (M)j,+ for i ≤ i∗ < j, define M̃ = (M̃i,j)i,j∈Z by

M̃i,j = Mi,j1{0≤i,j≤I} + (M)i∗,+ δi,j1{i<0} + (M)i∗+1,+ δi,j1{i>I} ,

where 1A denotes the indicator function of a set A and δi,j = 1 if i = j and δi,j = 0 otherwise. We

have (M̃)i,+ ≤ (M̃)j,+ for i ≤ i∗ < j. Moreover, (M̃n)i,+ = (Mn)i,+ for i = 0, 1, . . . , I.

We now prove part (i) for S = Z. Without loss of generality, we assume i∗ = 0, so that the

tri-diagonal matrix M satisfies Mi,j ≥ 0 for i, j ∈ Z, Mi,j = 0 if |i− j| > 1, and (M)i,+ ≤ (M)j,+

for i ≤ 0 < j. To show that (Mn)0,+ ≤ (Mn)1,+ for any (fixed) n ≥ 2, note that (Mn)0,+ and

(Mn)1,+ do not depend on the values of Mi,i−1, Mi,i and Mi,i+1 for i ≤ −n or i ≥ n + 1. Thus

(Mn)0,+ = (M
n
)0,+ and (Mn)1,+ = (M

n
)1,+, where M = (M i,j) is defined by

M i,j = Mi,j1{−n<i≤n} + (M)0,+ δi,j1{i≤−n} + (M)1,+ δi,j1{i>n}.

Note that M has bounded row sums and satisfies (M)i,+ ≤ (M)j,+ for i ≤ 0 < j. If we can show

part (i) of the theorem for non-negative tri-diagonal matrices with bounded row sums, then we

have

(Mn)0,+ = (M
n
)0,+ ≤ (M

n
)1,+ = (Mn)1,+ .

So it suffices to establish part (i) with M having bounded row sums. We may further assume that

the row sums of M are bounded by 1.
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To show that (Mn)0,+ ≤ (Mn)1,+ for n ≥ 2, we introduce a Markov chain {Xn : n = 0, 1, . . .}

with state space Z ∪ {e} and transition probabilities given by

P (Xn+1 = j | Xn = i) = Mi,j , i, j ∈ Z ,

P (Xn+1 = e | Xn = i) = 1− (M)i,+ , i ∈ Z ,

P (Xn+1 = e | Xn = e) = 1 .

Note that the state e is absorbing. Let T1 = inf{n ≥ 0 : Xn = 1} and Te = inf{n ≥ 0 : Xn = e}.

(In Theorem 1, Te is defined with respect to the continuous-time process {Xt}. Here the same

notation Te is used with respect to the discrete-time process {Xn}. This proof does not involve

the continuous-time process {Xt}.)

We write Pi( · ) = P ( · | X0 = i), and claim that for n = 1, 2, . . . , and j = 1, 2, . . . ,

P0(T1 ≥ n, Te > n) +

n−1∑
`=1

P0(T1 = `) Pj(Te > n− `) ≤ Pj(Te > n). (13)

Note that for 1 ≤ ` < n,

P0(T1 = `, Te > n) = P (T1 = `, Te > n | X0 = 0)

= P (T1 = ` | X0 = 0) P (Te > n | T1 = `, X0 = 0)

= P0(T1 = `) P (Te > n | X` = 1)

= P0(T1 = `) P (Te > n− ` | X0 = 1)

= P0(T1 = `) P1(Te > n− `) . (14)

By (14), the left-hand side of (13) with j = 1 equals

P0(T1 ≥ n, Te > n) +

n−1∑
`=1

P0(T1 = `) P1(Te > n− `)

= P0(T1 ≥ n, Te > n) +

n−1∑
`=1

P0(T1 = `, Te > n)

= P0(Te > n) .

Thus the inequality (13) with j = 1 is equivalent to

P0(Te > n) ≤ P1(Te > n) . (15)
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Since Pi(Te > n) = P (Xn ∈ Z | X0 = i) = (Mn)i,+ , (15) is equivalent to (Mn)0,+ ≤ (Mn)1,+.

We now prove (13) by induction on n. For n = 1, the left-hand side of (13) equals

P0(T1 ≥ 1, Te > 1) = P0(Te > 1) = (M)0,+,

while the right-hand side equals Pj(Te > 1) = (M)j,+. Thus the inequality (13) with n = 1 follows

from the assumption that (M)0,+ ≤ (M)j,+ for j > 0.

For m ≥ 1, suppose (13) holds for n = 1, . . . ,m and j = 1, 2, . . .. In particular, the induction

hypothesis implies (cf. (15)) that

P0(Te > `) ≤ P1(Te > `) , ` = 1, . . . ,m . (16)

We need to show that for j = 1, 2, . . . ,

P0(T1 ≥ m+ 1, Te > m+ 1) +

m∑
`=1

P0(T1 = `) Pj(Te > m+ 1− `) ≤ Pj(Te > m+ 1) . (17)

Note that for j = 1, 2, . . . ,

P0(T1 ≥ m, Te > m) +

m−1∑
`=1

P0(T1 = `) Pj−1(Te > m− `) ≤ Pj−1(Te > m) , (18)

P0(T1 ≥ m, Te > m) +

m−1∑
`=1

P0(T1 = `) Pj(Te > m− `) ≤ Pj(Te > m) , (19)

P0(T1 ≥ m, Te > m) +

m−1∑
`=1

P0(T1 = `) Pj+1(Te > m− `) ≤ Pj+1(Te > m) . (20)

Except for j = 1 in (18), (18)–(20) follow immediately from the induction hypothesis. By (16),

P0(Te > m − `) ≤ P1(Te > m − `) for ` = 1, . . . ,m − 1, so that the left-hand side of (18) with

j = 1 equals

P0(T1 ≥ m, Te > m) +

m−1∑
`=1

P0(T1 = `) P0(Te > m− `)

≤ P0(T1 ≥ m, Te > m) +

m−1∑
`=1

P0(T1 = `) P1(Te > m− `)

= P0(T1 ≥ m, Te > m) +

m−1∑
`=1

P0(T1 = `, Te > m) (by (14))

= P0(Te > m) ,
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establishing (18) for j = 1.

Note that for ` = m,

P0(T1 ∧ Te ≥ m+ 1) + P0(T1 = `) Pj−1(Te > m− `)

= P0(T1 ∧ Te ≥ m+ 1) + P0(T1 = m) Pj−1(Te > 0)

= P0(T1 ∧ Te ≥ m+ 1) + P0(T1 = m)

= P0(T1 ≥ m, Te > m) ,

so that (18) is equivalent to

P0(T1 ∧ Te ≥ m+ 1) +

m∑
`=1

P0(T1 = `) Pj−1(Te > m− `) ≤ Pj−1(Te > m) . (21)

Similarly, (19) and (20) are, respectively, equivalent to

P0(T1 ∧ Te ≥ m+ 1) +

m∑
`=1

P0(T1 = `) Pj(Te > m− `) ≤ Pj(Te > m) , (22)

P0(T1 ∧ Te ≥ m+ 1) +

m∑
`=1

P0(T1 = `) Pj+1(Te > m− `) ≤ Pj+1(Te > m) . (23)

Letting aj = Mj,j−1 , bj = Mj,j and cj = Mj,j+1, we have

Pj(Te > m+ 1) = P (Te > m+ 1 | X0 = j)

= P (X1 6= e, Te > m+ 1 | X0 = j)

=

j+1∑
r=j−1

P (X1 = r, Te > m+ 1 | X0 = j)

= ajP (Te > m+ 1 | X1 = j − 1) + bjP (Te > m+ 1 | X1 = j)

+ cjP (Te > m+ 1 | X1 = j + 1)

= ajPj−1(Te > m) + bjPj(Te > m) + cjPj+1(Te > m) . (24)

Similarly, for 1 ≤ ` ≤ m,

Pj(Te > m+ 1− `) = ajPj−1(Te > m− `) + bjPj(Te > m− `) + cjPj+1(Te > m− `) . (25)

In view of (24) and (25), it follows from (21)–(23) that

(aj + bj + cj)P0(T1 ∧ Te ≥ m+ 1) +

m∑
`=1

P0(T1 = `)Pj(Te > m+ 1− `)

≤ Pj(Te > m+ 1). (26)
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Note that given X0 = 0, {T1 ≥ m+ 1, Te > m+ 1} = {X1 < 1, . . . , Xm < 1, Xm+1 6= e} and

{X1 < 1, . . . , Xm < 1} = {X` ∈ {0,−1,−2, . . . }, ` = 1, . . . ,m} = {T1 ∧ Te ≥ m+ 1}.

We have

P0(T1 ≥ m+ 1, Te > m+ 1)

= P (X1 < 1, . . . , Xm < 1, Xm+1 6= e | X0 = 0)

= P (X1 < 1, . . . , Xm < 1 | X0 = 0) P (Xm+1 6= e | X0 = 0, X1 < 1, . . . , Xm < 1)

= P0(T1 ∧ Te ≥ m+ 1) P (Xm+1 6= e | X0 = 0, X1 < 1, . . . , Xm < 1)

≤ P0(T1 ∧ Te ≥ m+ 1) (aj + bj + cj) . (27)

The above inequality follows since

P (Xm+1 6= e | X0 = 0, X1 < 1, . . . , Xm < 1)

=
∑
i≤0

P (Xm = i,Xm+1 6= e | X0 = 0, X1 < 1, . . . , Xm < 1)

=
∑
i≤0

P (Xm = i | X0 = 0, X1 < 1, . . . , Xm < 1) P (Xm+1 6= e | Xm = i)

=
∑
i≤0

P (Xm = i | X0 = 0, X1 < 1, . . . , Xm < 1) (ai + bi + ci)

≤
∑
i≤0

P (Xm = i | X0 = 0, X1 < 1, . . . , Xm < 1) (aj + bj + cj)

= aj + bj + cj ,

where the inequality is due to the assumption that ai + bi + ci ≤ aj + bj + cj for i ≤ 0 < j.

Finally (17) follows from (26) and (27). The proof is complete.
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