STOCHASTIC ORDERING FOR BIRTH-DEATH PROCESSES WITH KILLING

SHOOU-REN HSIAU,* National Changhua University of Education
MAY-RU CHEN,** National Sun Yat-sen University
YI-CHING YAO, ${ }^{* * *}$ Academia Sinica

Abstract

We consider a birth-death process with killing where transitions from state i may go to either state $i-1$ or state $i+1$ or an absorbing state (killing). Stochastic ordering results on the killing time are derived. In particular, if the killing rate in state i is monotone in i, then the distribution of the killing time with initial state i is stochastically monotone in i. This result is a consequence of the following one for a non-negative tri-diagonal matrix M : If the row sums of M are monotone, so are the row sums of M^{n} for all $n \geq 2$.

Keywords: Absorbing time, uniformizable chain, birth-death process with catastrophes, tri-diagonal matrix.

2000 Mathematics Subject Classification: Primary 60E15
Secondary 60J10; 60J27

[^0]
1. Introduction

Motivated by genetic studies, Karlin and Tavaré [11] introduced the class of continuous-time birth-death processes with killing (or CBDKs for short) and obtained explicit results on the killing time for the case of linear CBDKs. (Earlier Puri [13] also discussed related processes.) Later, van Doorn and Zeifman $[17,18]$ considered more general CBDKs and derived the eventual killing probability among other things. (See also [1, Chapter 9] and $[2,3,4,5,6,16]$ for work on the closely related topic of birth-death processes with catastrophes.)

A CBDK $\left\{X_{t}\right\}$ is a continuous-time Markov chain with state space $\{0,1, \ldots\} \cup\{e\}$ where e is an absorbing state and transitions from state $i(\neq e)$ may go to either $i-1($ if $i>0)$ or $i+1$ or e with respective transition rates μ_{i} (death rate), λ_{i} (birth rate), γ_{i} (killing rate). We assume that $\left\{X_{t}\right\}$ is non-explosive. See Equations (2) and (3) of [17] for conditions on λ_{i}, μ_{i} and γ_{i} under which $\left\{X_{t}\right\}$ is non-explosive.

Let $T_{e}:=\inf \left\{t \geq 0: X_{t}=e\right\}$, the killing time. (By convention, $\inf \emptyset:=\infty$.) The distribution of T_{e} and the probability of $T_{e}<\infty$ (the eventual killing probability) are of primary interest in the study of CBDKs. Denote by $\mathcal{L}_{i}\left(T_{e}\right)$ the distribution of T_{e} given $X_{0}=i$. We write $\mathcal{L}_{i}\left(T_{e}\right) \leq_{d} \mathcal{L}_{j}\left(T_{e}\right)$ (or equivalently, $\left.\mathcal{L}_{j}\left(T_{e}\right) \geq_{d} \mathcal{L}_{i}\left(T_{e}\right)\right)$ if $\mathcal{L}_{i}\left(T_{e}\right)$ is stochastically smaller than $\mathcal{L}_{j}\left(T_{e}\right)$, i.e.

$$
P\left(T_{e}>t \mid X_{0}=i\right) \leq P\left(T_{e}>t \mid X_{0}=j\right) \text { for all } t>0
$$

CBDKs have found applications in medicine and biology. Nagylaki [12] considered a stochastic model for a progressive chronic disease. For a patient with the disease, it is assumed that there is a useful prognostic indicator for the course of the disease and the survival of the patient. This indicator may be modeled as a birth-death process with killing. (In [12], the indicator is modeled as a pure birth process with killing under the assumption that the condition of the patient cannot improve.) For example, a patient in a coma is given a score $i \in\{3, \ldots, 15\}$ (on the Glasgow Coma Scale) indicating the state of the patient's consciousness. (A lower score corresponds to a more severe condition.) With the absorbing state e denoting the patient's death, the killing time T_{e} is the patient's survival time. A natural question is whether the survival time of the patient with score i is stochastically nondecreasing in i, i.e. $\mathcal{L}_{i}\left(T_{e}\right) \leq{ }_{d} \mathcal{L}_{j}\left(T_{e}\right)$ for $i<j$. Theorem 1 in the next
section answers this question in the affirmative provided the killing rate γ_{i} is nonincreasing in i, regardless of the values of λ_{i} and μ_{i}. In another application of CBDKs, Hadeler [7] considered a situation where a host carries a finite number of parasites. Let X_{t}^{\prime} denote the parasite population size within the host at time t , which may be modeled as a birth-death process. Let T denote the death time of the host, and define the process $\left\{X_{t}\right\}$ by $X_{t}=X_{t}^{\prime}$ for $t<T$ and $X_{t}=e$ for $t \geq T$. Hadeler [7] proposed to model $\left\{X_{t}\right\}$ as a CBDK. Note that $T=T_{e}=\inf \left\{t \geq 0: X_{t}=e\right\}$ is the survival time of the host. Again, Theorem 1 shows that the survival time of the host carrying i parasites is stochastically nonincreasing in i if the killing rate γ_{i} is nondecreasing in i.

The rest of this paper is organized as follows. Section 2 states the main results Theorem 1 for CBDKs and Theorem 2 for the discrete-time counterpart of CBDKs. The proofs of both theorems rely on Lemma 1 concerning the monotonicity of the row sums of powers of non-negative tridiagonal matrices which is of independent interest. Section 3 presents numerical examples. The proofs of Theorems 1 and 2 and Lemma 1 are relegated to Section 4.

2. Main results

For a non-negative matrix $M=\left(M_{i, j}\right)$, let $(M)_{i,+}$ denote the i th row sum of M, i.e. $(M)_{i,+}=$ $\sum_{j} M_{i, j}$. Before presenting the main results Theorems 1 and 2, we state Lemma 1 below which is needed for the proofs of Theorems 1 and 2. All the proofs are given in Section 4.

Lemma 1. Let $\mathbb{S}=\{0,1, \ldots, I\}$ (for some integer $I>0$) or $\mathbb{S}=\{0,1, \ldots\}$ or $\mathbb{S}=\mathbb{Z}:=$ $\{0, \pm 1, \ldots\}$. Suppose $M=\left(M_{i, j}\right)_{i, j \in \mathbb{S}}$ is a non-negative tri-diagonal matrix.
(i) If, for some $i^{*},(M)_{i,+} \leq(M)_{j,+}$ for all $i \leq i^{*}$ and $j>i^{*}$, then we have

$$
\left(M^{n}\right)_{i^{*},+} \leq\left(M^{n}\right)_{i^{*}+1,+} \quad \text { for all } \quad n \geq 2
$$

(ii) If, for some $i^{*},(M)_{i,+} \geq(M)_{j,+}$ for all $i \leq i^{*}$ and $j>i^{*}$, then we have

$$
\left(M^{n}\right)_{i^{*},+} \geq\left(M^{n}\right)_{i^{*}+1,+} \quad \text { for all } n \geq 2
$$

(iii) If the row sums of M are monotone, so are the row sums of M^{n} for all $n \geq 2$.

Theorem 1. Suppose $\left\{X_{t}\right\}$ is a non-explosive $C B D K$.
(i) If, for some $i^{*} \in\{0,1 \ldots\}$, the killing rates satisfy $\gamma_{i} \leq \gamma_{j}$ for all $i \leq i^{*}$ and $j>i^{*}$, then we have $\mathcal{L}_{i^{*}}\left(T_{e}\right) \geq_{d} \mathcal{L}_{i^{*}+1}\left(T_{e}\right)$.
(ii) If, for some $i^{*}, \gamma_{i} \geq \gamma_{j}$ for all $i \leq i^{*}$ and $j>i^{*}$, then we have $\mathcal{L}_{i^{*}}\left(T_{e}\right) \leq_{d} \mathcal{L}_{i^{*}+1}\left(T_{e}\right)$.
(iii) If $\gamma_{i} \leq \gamma_{i+1}$ for all $i \geq 0$, then we have $\mathcal{L}_{i}\left(T_{e}\right) \geq_{d} \mathcal{L}_{i+1}\left(T_{e}\right)$ for all $i \geq 0$.
(iv) If $\gamma_{i} \geq \gamma_{i+1}$ for all $i \geq 0$, then we have $\mathcal{L}_{i}\left(T_{e}\right) \leq_{d} \mathcal{L}_{i+1}\left(T_{e}\right)$ for all $i \geq 0$.

Theorem 1 has a discrete-time analogue concerning a Markov chain $\left\{Y_{n}\right\}$ with state space $\{0,1, \ldots\} \cup\{e\}$ in discrete time $n=0,1, \ldots$. Specifically, $\left\{Y_{n}\right\}$ has transition probabilities satisfying

$$
\begin{equation*}
\sum_{j=\max \{0, i-1\}}^{i+1} P\left(Y_{n+1}=j \mid Y_{n}=i\right)+P\left(Y_{n+1}=e \mid Y_{n}=i\right)=1, \quad i=0,1 \ldots \tag{1}
\end{equation*}
$$

and $P\left(Y_{n+1}=e \mid Y_{n}=e\right)=1$. (Note that $P\left(Y_{n+1}=i \mid Y_{n}=i\right)>0$ is allowed.) We refer to $\left\{Y_{n}\right\}$ as a discrete-time birth-death process with killing (or DBDK for short). Let $T_{e}^{d}:=\inf \{n \geq 0:$ $\left.Y_{n}=e\right\}$, which is the discrete-time counterpart of T_{e}. (By convention, $\inf \emptyset:=\infty$.)

Theorem 2. Let $p_{i, e}:=P\left(Y_{n+1}=e \mid Y_{n}=i\right), i=0,1, \ldots$
(i) If, for some $i^{*}, \quad p_{i, e} \leq p_{j, e}$ for all $i \leq i^{*}$ and $j>i^{*}$, then we have $\mathcal{L}_{i^{*}}\left(T_{e}^{d}\right) \geq_{d} \mathcal{L}_{i^{*}+1}\left(T_{e}^{d}\right)$.
(ii) If, for some $i^{*}, p_{i, e} \geq p_{j, e}$ for all $i \leq i^{*}$ and $j>i^{*}$, then we have $\mathcal{L}_{i^{*}}\left(T_{e}^{d}\right) \leq{ }_{d} \mathcal{L}_{i^{*}+1}\left(T_{e}^{d}\right)$.
(iii) If $p_{i, e} \leq p_{i+1, e}$ for all $i \geq 0$, then we have $\mathcal{L}_{i}\left(T_{e}^{d}\right) \geq_{d} \mathcal{L}_{i+1}\left(T_{e}^{d}\right)$ for all $i \geq 0$.
(iv) If $p_{i, e} \geq p_{i+1, e}$ for all $i \geq 0$, then we have $\mathcal{L}_{i}\left(T_{e}^{d}\right) \leq_{d} \mathcal{L}_{i+1}\left(T_{e}^{d}\right)$ for all $i \geq 0$.

Remark 1. By Theorem 1, we have $\mathcal{L}_{i}\left(T_{e}\right)$ stochastically monotone in i provided the killing rate γ_{i} is monotone in i, regardless of the birth and death rates λ_{i} and μ_{i}. The fact that the process $\left\{X_{t}\right\}$ is skip-free to the left and to the right (apart from jumping into the absorbing state $e)$ is crucial for Theorem 1 to hold. In a different context, Irle and Gani [10] and Irle [9] obtained level-crossing stochastic ordering results for Markov chains and semi-Markov processes which are skip-free to the right.

Remark 2. He and Chavoushi [8] considered queueing systems with customer interjections in which two parameters (denoted by η_{I} and η_{C}) are introduced to describe the interjection behavior. They investigated the effects of the two parameters on the customer's waiting time, and derived some monotonicity properties of the distribution of the waiting time and its mean and variance
in terms of the parameters. (The proof of their Lemma 2.2 contains a special case of our Lemma 1.) In particular, with $W_{n}\left(\eta_{I}, \eta_{C}\right)$ denoting the waiting time of a customer initially in position n in the queue, they showed that $W_{n}\left(\eta_{I}, \eta_{C}\right) \leq_{d} W_{n}\left(\eta_{I}^{\prime}, \eta_{C}^{\prime}\right)$ if $\eta_{I} \leq \eta_{I}^{\prime}$ and $\eta_{C} \leq \eta_{C}^{\prime}$. Note that two different pairs of parameter values $\left(\eta_{I}, \eta_{C}\right)$ and $\left(\eta_{I}^{\prime}, \eta_{C}^{\prime}\right)$ correspond to two different transition rate matrices (with the same state space). In contrast, our results are concerned with a single transition rate matrix with an absorbing state and compare the absorbing time distributions when the Markov chain starts from different states.

3. Numerical examples

In this section we illustrate Theorems 1 and 2 with numerical examples. We first consider a DBDK $\left\{Y_{n}\right\}$ with transition probabilities given by

$$
\begin{aligned}
& P\left(Y_{n+1}=e \mid Y_{n}=i\right)=0.01, \quad i=0,1,2 \\
& P\left(Y_{n+1}=e \mid Y_{n}=i\right)=0.02, \quad i \geq 3 \\
& P\left(Y_{n+1}=1 \mid Y_{n}=0\right)=0.99=1-P\left(Y_{n+1}=e \mid Y_{n}=0\right) \\
& P\left(Y_{n+1}=i+1 \mid Y_{n}=i\right)=0.5, \quad i \geq 1 \\
& P\left(Y_{n+1}=i-1 \mid Y_{n}=i\right)=0.5-P\left(Y_{n+1}=e \mid Y_{n}=i\right), \quad i \geq 1
\end{aligned}
$$

Figure 1 plots the survival probabilities

$$
P\left(T_{e}^{d}>n \mid Y_{0}=i\right)=\left(M^{n}\right)_{i,+}=\sum_{j=0}^{\infty} M_{i, j}^{n}, \text { for } 0 \leq n \leq 160 \text { and } i=0,1,2,3
$$

where the matrix $M=\left(M_{i, j}\right)$ is given by $M_{i, j}=P\left(Y_{1}=j \mid Y_{0}=i\right)$ for $i, j=0,1, \ldots$ It shows that $P\left(T_{e}^{d}>n \mid Y_{0}=i\right)$ decreases as i increases as expected in view of Theorem 2(iii).

For a linear CBDK $\left\{X_{t}\right\}$ with $\mu_{i}=a i, \lambda_{i}=b i+\theta$, and $\gamma_{i}=c i$ where a, b, c and θ are positive constants, Karlin and Tavaré [11] derived the explicit formula

$$
P\left(T_{e}>t \mid X_{0}=i\right)=e^{-\theta\left(1-v_{0}\right) t}\left[\frac{v_{0}\left(v_{1}-1\right)+v_{1} \sigma_{t}\left(1-v_{0}\right)}{v_{1}-1+\sigma_{t}\left(1-v_{0}\right)}\right]^{i}\left[\frac{v_{1}-1+\sigma_{t}\left(1-v_{0}\right)}{v_{1}-v_{0}}\right]^{-\theta / b}
$$

where $0<v_{0}<1<v_{1}$ are the two roots of the equation $b x^{2}-(a+b+c) x+a=0$ and $\sigma_{t}=e^{-b\left(v_{1}-v_{0}\right) t}$. Since γ_{i} is increasing in $i, P\left(T_{e}>t \mid X_{0}=i\right)$ should be decreasing in i by

Figure 1: The survival probabilities $P\left(T_{e}^{d}>n \mid Y_{0}=i\right), i=0,1,2,3$.

Theorem 1(iii). Noting that $v_{0}\left(v_{1}-1\right)+v_{1} \sigma_{t}\left(1-v_{0}\right)<v_{1}-1+\sigma_{t}\left(1-v_{0}\right)$ (since $0<\sigma_{t}<1$), we have $P\left(T_{e}>t \mid X_{0}=i\right)$ decays geometrically in i. Figure 2 plots $P\left(T_{e}>t \mid X_{0}=i\right)$ for $0<t<5$ and $i=0,2,4,6,8$ with $a=b=c=\theta=1$.

Figure 2: The survival probabilities $P\left(T_{e}>t \mid X_{0}=i\right), i=0,2,4,6,8$.

While no explicit formula for $P\left(T_{e}>t \mid X_{0}=i\right)$ is available for general CBDKs, we may use the technique of uniformization (cf. [14, Section 5.10] and [15, Section 6.7]) to compute $P\left(T_{e}>t \mid X_{0}=i\right)$ if $\left\{X_{t}\right\}$ is uniformizable (i.e. $\sup _{i}\left(\lambda_{i}+\mu_{i}+\gamma_{i}\right) \leq C<\infty$ for some constant $C>0)$. Specifically, with $\mu_{0}:=0$, let $\left\{Z_{n}\right\}$ be a DBDK with transition probabilities satisfying $P\left(Z_{n+1}=e \mid Z_{n}=e\right)=1$, and for $i \geq 0$

$$
\begin{aligned}
& P\left(Z_{n+1}=i-1 \mid Z_{n}=i\right)=\frac{\mu_{i}}{C}, P\left(Z_{n+1}=i+1 \mid Z_{n}=i\right)=\frac{\lambda_{i}}{C} \\
& P\left(Z_{n+1}=e \mid Z_{n}=i\right)=\frac{\gamma_{i}}{C}, \quad P\left(Z_{n+1}=i \mid Z_{n}=i\right)=1-\frac{\mu_{i}+\lambda_{i}+\gamma_{i}}{C}
\end{aligned}
$$

Let $\{N(t)\}$ be a Poisson process of constant rate C, independent of $\left\{Z_{n}\right\}$. Then we have the following result:

Given $X_{0}=Z_{0}$, the two processes $\left\{X_{t}\right\}$ and $\left\{Z_{N(t)}\right\}$ have the same distribution.

In other words, the CBDK $\left\{X_{t}\right\}$ may be constructed by placing the transitions of the $\operatorname{DBDK}\left\{Z_{n}\right\}$ at Poisson arrival epochs. It follows from (2) that

$$
\begin{aligned}
P\left(T_{e}>t \mid X_{0}=i\right) & =P\left(X_{t} \neq e \mid X_{0}=i\right) \\
& =P\left(Z_{N(t)} \neq e \mid Z_{0}=i\right) \\
& =\sum_{n=0}^{\infty} P\left(Z_{n} \neq e, N(t)=n \mid Z_{0}=i\right) \\
& =\sum_{n=0}^{\infty} P(N(t)=n) P\left(Z_{n} \neq e \mid Z_{0}=i\right) \\
& =\sum_{n=0}^{\infty} \frac{e^{-C t}(C t)^{n}}{n!}\left(M^{* n}\right)_{i,+},
\end{aligned}
$$

where the matrix $M^{*}=\left(M_{i, j}^{*}\right)$ is given by $M_{i, j}^{*}=P\left(Z_{1}=j \mid Z_{0}=i\right)$. So $P\left(T_{e}>t \mid X_{0}=i\right)$ may be approximated by $\sum_{n=0}^{L(t)} \frac{e^{-C t}(C t)^{n}}{n!}\left(M^{* n}\right)_{i,+}$ for sufficiently large integer $L(t)$ (depending on $t)$. The distributional equivalence of $\left\{X_{t}\right\}$ and $\left\{Z_{N(t)}\right\}$ in (2) will be called for in the proof of Theorem 1 in the next section.

4. Proofs of Theorems 1 and 2 and Lemma 1

To prove Theorem 2, let $M=\left(M_{i, j}\right)_{i, j \in\{0,1, \ldots\}}$ be the transition matrix of $\left\{Y_{n}\right\}$ restricted to the states $0,1, \ldots$ That is,

$$
M_{i, j}=P\left(Y_{n+1}=j \mid Y_{n}=i\right), \quad i, j=0,1, \ldots
$$

By (1), we have that $M_{i, j}=0$ for $|i-j|>1$ and that

$$
\begin{equation*}
(M)_{i,+}=\sum_{j=\max \{0, i-1\}}^{i+1} M_{i, j}=1-P\left(Y_{n+1}=e \mid Y_{n}=i\right)=1-p_{i, e} \tag{3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
P\left(T_{e}^{d}>n \mid Y_{0}=i\right)=\sum_{j=0}^{\infty} P\left(Y_{n}=j \mid Y_{0}=i\right)=\left(M^{n}\right)_{i,+} \tag{4}
\end{equation*}
$$

In view of (3) and (4), Theorem 2 follows immediately from Lemma 1. To prove Theorem 1, one may approximate the $\mathrm{CBDK}\left\{X_{t}\right\}$ by a sequence of DBDKs via time-discretization and argue that T_{e} is the limit of the corresponding T_{e}^{d} 's. Instead of taking this approach, we first consider uniformizable $\left\{X_{t}\right\}$ (i.e. $\left.\sup _{i}\left(\lambda_{i}+\mu_{i}+\gamma_{i}\right)<\infty\right)$ for which the associated (embedded) discrete-time Markov chain is a DBDK, so that the desired results follow from Theorem 2. The general CBDK $\left\{X_{t}\right\}$ is then approximated by a sequence of uniformizable CBDKs. The details are given in the proof below.

Proof of Theorem 1. We first prove part (i) under the additional assumption that $\left\{X_{t}\right\}$ is uniformizable, i.e. $\sup _{i}\left(\lambda_{i}+\mu_{i}+\gamma_{i}\right) \leq C<\infty$ for some $C>0$. Let $\left\{Z_{n}\right\}$ and $\{N(t)\}$ be, respectively, the DBDK and (independent) Poisson process of constant rate C as described in the last paragraph of Section 3. Letting $p_{i, e}^{(Z)}:=P\left(Z_{n+1}=e \mid Z_{n}=i\right)=\gamma_{i} / C$ and $T_{e}^{d(Z)}:=\inf \left\{n \geq 0: Z_{n}=e\right\}$, we have that $\left\{Z_{n}\right\}$ is a DBDK with $p_{i, e}^{(Z)} \leq p_{j, e}^{(Z)}$ for $i \leq i^{*}$ and $j>i^{*}$, so that by Theorem 2(i),

$$
\begin{align*}
P\left(Z_{n} \neq e \mid Z_{0}=i^{*}\right) & =P\left(T_{e}^{d(Z)}>n \mid Z_{0}=i^{*}\right) \\
& \geq P\left(T_{e}^{d(Z)}>n \mid Z_{0}=i^{*}+1\right)=P\left(Z_{n} \neq e \mid Z_{0}=i^{*}+1\right) \tag{5}
\end{align*}
$$

Consequently, for $t>0$,

$$
\begin{aligned}
P\left(T_{e}>t \mid X_{0}=i^{*}\right) & =P\left(Z_{N(t)} \neq e \mid Z_{0}=i^{*}\right) \quad(\text { by }(2)) \\
& =\sum_{n=0}^{\infty} P(N(t)=n) P\left(Z_{n} \neq e \mid Z_{0}=i^{*}\right) \\
& \geq \sum_{n=0}^{\infty} P(N(t)=n) P\left(Z_{n} \neq e \mid Z_{0}=i^{*}+1\right)(\text { by }(5)) \\
& =P\left(Z_{N(t)} \neq e \mid Z_{0}=i^{*}+1\right) \\
& =P\left(T_{e}>t \mid X_{0}=i^{*}+1\right)
\end{aligned}
$$

This proves part (i) for uniformizable $\left\{X_{t}\right\}$.
For general (non-explosive) $\left\{X_{t}\right\}$, to prove $P\left(T_{e}>t_{0} \mid X_{0}=i^{*}\right) \geq P\left(T_{e}>t_{0} \mid X_{0}=i^{*}+1\right.$) for any (fixed) $t_{0}>0$, let

$$
\begin{equation*}
a_{k}:=P\left(T_{k} \leq t_{0} \mid X_{0}=i^{*}\right) \text { and } b_{k}:=P\left(T_{k} \leq t_{0} \mid X_{0}=i^{*}+1\right) \tag{6}
\end{equation*}
$$

where $T_{k}:=\inf \left\{t \geq 0: X_{t}=k\right\}$. For X_{t} to reach a (large) state k starting from i^{*} or $i^{*}+1$, at least $k-i^{*}-1$ transitions are required. Since $\left\{X_{t}\right\}$ is non-explosive, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} a_{k}=0 \text { and } \lim _{k \rightarrow \infty} b_{k}=0 \tag{7}
\end{equation*}
$$

For each $k>i^{*}$, let $\left\{X_{t}^{(k)}\right\}$ be a CBDK whose birth, death and killing rates in state i are given by $\lambda_{i}^{(k)}:=\lambda_{i \wedge k}, \mu_{i}^{(k)}:=\mu_{i \wedge k}, \gamma_{i}^{(k)}:=\gamma_{i \wedge k}$ where $i \wedge k:=\min \{i, k\}$. Clearly, $\left\{X_{t}^{(k)}\right\}$ is uniformizable with the killing rates satisfying $\gamma_{i}^{(k)} \leq \gamma_{j}^{(k)}$ for $i \leq i^{*}$ and $j>i^{*}$. Denote by $\mathcal{L}_{i}\left(T_{k}\right)$ $\left(\mathcal{L}_{i}\left(T_{e} \wedge T_{k}\right)\right.$, resp. $)$ the distribution of $T_{k}\left(T_{e} \wedge T_{k}\right.$, resp.) given $X_{0}=i$. Similarly, denote by $\mathcal{L}_{i}\left(T_{k}^{(k)}\right)\left(\mathcal{L}_{i}\left(T_{e}^{(k)} \wedge T_{k}^{(k)}\right)\right.$, resp.) the distribution of $T_{k}^{(k)}\left(T_{e}^{(k)} \wedge T_{k}^{(k)}\right.$, resp.) given $X_{0}^{(k)}=i$, where $T_{r}^{(k)}:=\inf \left\{t \geq 0: X_{t}^{(k)}=r\right\}$ for $r=k, e$.

For $k>i^{*}$, given $X_{0}=i^{*}$ or $i^{*}+1$, the distributions of T_{k} and $T_{e} \wedge T_{k}$ depend only on the values of $\lambda_{i}, \mu_{i}, \gamma_{i}$ for $i<k$. Similarly, given $X_{0}^{(k)}=i^{*}$ or $i^{*}+1$, the distributions of $T_{k}^{(k)}$ and $T_{e}^{(k)} \wedge T_{k}^{(k)}$ depend only on the values of $\lambda_{i}^{(k)}, \mu_{i}^{(k)}, \gamma_{i}^{(k)}$ for $i<k$. Since $\lambda_{i}=\lambda_{i}^{(k)}, \mu_{i}=\mu_{i}^{(k)}$ and $\gamma_{i}=\gamma_{i}^{(k)}$ for $i \leq k$, we have that

$$
\mathcal{L}_{i}\left(T_{k}\right)=\mathcal{L}_{i}\left(T_{k}^{(k)}\right) \text { and } \mathcal{L}_{i}\left(T_{e} \wedge T_{k}\right)=\mathcal{L}_{i}\left(T_{e}^{(k)} \wedge T_{k}^{(k)}\right) \text { for } i=i^{*}, i^{*}+1 \text { and } k>i^{*}
$$

implying that for $k>i^{*}$,

$$
\begin{gather*}
P\left(T_{k}>t_{0} \mid X_{0}=i\right)=P\left(T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right), \quad i=i^{*}, i^{*}+1 \tag{8}\\
P\left(T_{e} \wedge T_{k}>t_{0} \mid X_{0}=i\right)=P\left(T_{e}^{(k)} \wedge T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right), \quad i=i^{*}, i^{*}+1 \tag{9}
\end{gather*}
$$

Since $\left\{X_{t}^{(k)}\right\}$ is uniformizable with $\gamma_{i}^{(k)} \leq \gamma_{j}^{(k)}$ for $i \leq i^{*}$ and $j>i^{*}$, we have shown that

$$
\begin{equation*}
P\left(T_{e}^{(k)}>t_{0} \mid X_{0}^{(k)}=i^{*}\right) \geq P\left(T_{e}^{(k)}>t_{0} \mid X_{0}^{(k)}=i^{*}+1\right) \text { for } k>i^{*} \tag{10}
\end{equation*}
$$

Also for $k>i^{*}$ and $i=i^{*}, i^{*}+1$,

$$
\begin{aligned}
P\left(T_{e}>t_{0} \mid X_{0}=i\right) & \geq P\left(T_{e} \wedge T_{k}>t_{0} \mid X_{0}=i\right) \\
& =P\left(T_{e}^{(k)} \wedge T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right) \quad(\text { by } \quad(9))
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(T_{e}>t_{0} \mid X_{0}=i\right) & \leq P\left(T_{e} \wedge T_{k}>t_{0} \mid X_{0}=i\right)+P\left(T_{k} \leq t_{0} \mid X_{0}=i\right) \\
& =P\left(T_{e}^{(k)} \wedge T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right)+P\left(T_{k} \leq t_{0} \mid X_{0}=i\right) \quad(\text { by } \quad(9)) \\
& \leq P\left(T_{e}^{(k)} \wedge T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right)+a_{k} \vee b_{k}
\end{aligned}
$$

where a_{k} and b_{k} are as defined in (6) and $a_{k} \vee b_{k}:=\max \left\{a_{k}, b_{k}\right\}$. Consequently, for $k>i^{*}$,

$$
\begin{equation*}
0 \leq P\left(T_{e}>t_{0} \mid X_{0}=i\right)-P\left(T_{e}^{(k)} \wedge T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right) \leq a_{k} \vee b_{k}, \quad i=i^{*}, i^{*}+1 \tag{11}
\end{equation*}
$$

Furthermore, for $k>i^{*}$ and $i=i^{*}, i^{*}+1$,

$$
\begin{aligned}
0 & \leq P\left(T_{e}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right)-P\left(T_{e}^{(k)} \wedge T_{k}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right) \\
& \leq P\left(T_{k}^{(k)} \leq t_{0} \mid X_{0}^{(k)}=i\right) \\
& =P\left(T_{k} \leq t_{0} \mid X_{0}=i\right)(\text { by }(8)) \\
& \leq a_{k} \vee b_{k}
\end{aligned}
$$

which together with (11) implies that for $k>i^{*}$ and $i=i^{*}, i^{*}+1$,

$$
\begin{equation*}
\left|P\left(T_{e}>t_{0} \mid X_{0}=i\right)-P\left(T_{e}^{(k)}>t_{0} \mid X_{0}^{(k)}=i\right)\right| \leq a_{k} \vee b_{k} \tag{12}
\end{equation*}
$$

It follows from (7), (10) and (12) that

$$
P\left(T_{e}>t_{0} \mid X_{0}=i^{*}\right) \geq P\left(T_{e}>t_{0} \mid X_{0}=i^{*}+1\right)
$$

completing the proof of part (i).
Part (ii) can be proved by using a similar argument and invoking Theorem 2(ii). Parts (iii) and (iv) follow immediately from parts (i) and (ii), respectively.

Proof of Lemma 1. Note that part (ii) follows from part (i) by reversing the ordering of the rows and that of the columns, and that part (iii) is a consequence of parts (i) and (ii). It remains to prove part (i). It suffices to deal only with the case $\mathbb{S}=\mathbb{Z}$, since the cases $\mathbb{S}=\{0,1, \ldots, I\}$ and $\mathbb{S}=\{0,1, \ldots\}$ can be treated as special cases of $\mathbb{S}=\mathbb{Z}$. More precisely, for $M=\left(M_{i, j}\right)_{i, j \in\{0,1, \ldots, I\}}$ satisfying $(M)_{i,+} \leq(M)_{j,+}$ for $i \leq i^{*}<j$, define $\widetilde{M}=\left(\widetilde{M}_{i, j}\right)_{i, j \in \mathbb{Z}}$ by

$$
\widetilde{M}_{i, j}=M_{i, j} \mathbf{1}_{\{0 \leq i, j \leq I\}}+(M)_{i^{*},+} \delta_{i, j} \mathbf{1}_{\{i<0\}}+(M)_{i^{*}+1,+} \quad \delta_{i, j} \mathbf{1}_{\{i>I\}},
$$

where $\mathbf{1}_{A}$ denotes the indicator function of a set A and $\delta_{i, j}=1$ if $i=j$ and $\delta_{i, j}=0$ otherwise. We have $(\widetilde{M})_{i,+} \leq(\widetilde{M})_{j,+}$ for $i \leq i^{*}<j$. Moreover, $\left(\widetilde{M}^{n}\right)_{i,+}=\left(M^{n}\right)_{i,+}$ for $i=0,1, \ldots, I$.

We now prove part (i) for $\mathbb{S}=\mathbb{Z}$. Without loss of generality, we assume $i^{*}=0$, so that the tri-diagonal matrix M satisfies $M_{i, j} \geq 0$ for $i, j \in \mathbb{Z}, M_{i, j}=0$ if $|i-j|>1$, and $(M)_{i,+} \leq(M)_{j,+}$ for $i \leq 0<j$. To show that $\left(M^{n}\right)_{0,+} \leq\left(M^{n}\right)_{1,+}$ for any (fixed) $n \geq 2$, note that $\left(M^{n}\right)_{0,+}$ and $\left(M^{n}\right)_{1,+}$ do not depend on the values of $M_{i, i-1}, M_{i, i}$ and $M_{i, i+1}$ for $i \leq-n$ or $i \geq n+1$. Thus $\left(M^{n}\right)_{0,+}=\left(\bar{M}^{n}\right)_{0,+}$ and $\left(M^{n}\right)_{1,+}=\left(\bar{M}^{n}\right)_{1,+}$, where $\bar{M}=\left(\bar{M}_{i, j}\right)$ is defined by

$$
\bar{M}_{i, j}=M_{i, j} \mathbf{1}_{\{-n<i \leq n\}}+(M)_{0,+} \delta_{i, j} \mathbf{1}_{\{i \leq-n\}}+(M)_{1,+} \delta_{i, j} \mathbf{1}_{\{i>n\}}
$$

Note that \bar{M} has bounded row sums and satisfies $(\bar{M})_{i,+} \leq(\bar{M})_{j,+}$ for $i \leq 0<j$. If we can show part (i) of the theorem for non-negative tri-diagonal matrices with bounded row sums, then we have

$$
\left(M^{n}\right)_{0,+}=\left(\bar{M}^{n}\right)_{0,+} \leq\left(\bar{M}^{n}\right)_{1,+}=\left(M^{n}\right)_{1,+}
$$

So it suffices to establish part (i) with M having bounded row sums. We may further assume that the row sums of M are bounded by 1 .

To show that $\left(M^{n}\right)_{0,+} \leq\left(M^{n}\right)_{1,+}$ for $n \geq 2$, we introduce a Markov chain $\left\{X_{n}: n=0,1, \ldots\right\}$ with state space $\mathbb{Z} \cup\{e\}$ and transition probabilities given by

$$
\begin{aligned}
& P\left(X_{n+1}=j \mid X_{n}=i\right)=M_{i, j}, \quad i, j \in \mathbb{Z}, \\
& P\left(X_{n+1}=e \mid X_{n}=i\right)=1-(M)_{i,+}, \quad i \in \mathbb{Z} \\
& P\left(X_{n+1}=e \mid X_{n}=e\right)=1
\end{aligned}
$$

Note that the state e is absorbing. Let $T_{1}=\inf \left\{n \geq 0: X_{n}=1\right\}$ and $T_{e}=\inf \left\{n \geq 0: X_{n}=e\right\}$. (In Theorem 1, T_{e} is defined with respect to the continuous-time process $\left\{X_{t}\right\}$. Here the same notation T_{e} is used with respect to the discrete-time process $\left\{X_{n}\right\}$. This proof does not involve the continuous-time process $\left\{X_{t}\right\}$.)

We write $P_{i}(\cdot)=P\left(\cdot \mid X_{0}=i\right)$, and claim that for $n=1,2, \ldots$, and $j=1,2, \ldots$,

$$
\begin{equation*}
P_{0}\left(T_{1} \geq n, T_{e}>n\right)+\sum_{\ell=1}^{n-1} P_{0}\left(T_{1}=\ell\right) P_{j}\left(T_{e}>n-\ell\right) \leq P_{j}\left(T_{e}>n\right) \tag{13}
\end{equation*}
$$

Note that for $1 \leq \ell<n$,

$$
\begin{align*}
P_{0}\left(T_{1}=\ell, T_{e}>n\right) & =P\left(T_{1}=\ell, T_{e}>n \mid X_{0}=0\right) \\
& =P\left(T_{1}=\ell \mid X_{0}=0\right) P\left(T_{e}>n \mid T_{1}=\ell, X_{0}=0\right) \\
& =P_{0}\left(T_{1}=\ell\right) P\left(T_{e}>n \mid X_{\ell}=1\right) \\
& =P_{0}\left(T_{1}=\ell\right) P\left(T_{e}>n-\ell \mid X_{0}=1\right) \\
& =P_{0}\left(T_{1}=\ell\right) P_{1}\left(T_{e}>n-\ell\right) \tag{14}
\end{align*}
$$

By (14), the left-hand side of (13) with $j=1$ equals

$$
\begin{aligned}
P_{0}\left(T_{1}\right. & \left.\geq n, T_{e}>n\right)+\sum_{\ell=1}^{n-1} P_{0}\left(T_{1}=\ell\right) P_{1}\left(T_{e}>n-\ell\right) \\
& =P_{0}\left(T_{1} \geq n, T_{e}>n\right)+\sum_{\ell=1}^{n-1} P_{0}\left(T_{1}=\ell, T_{e}>n\right) \\
& =P_{0}\left(T_{e}>n\right) .
\end{aligned}
$$

Thus the inequality (13) with $j=1$ is equivalent to

$$
\begin{equation*}
P_{0}\left(T_{e}>n\right) \leq P_{1}\left(T_{e}>n\right) \tag{15}
\end{equation*}
$$

Since $P_{i}\left(T_{e}>n\right)=P\left(X_{n} \in \mathbb{Z} \mid X_{0}=i\right)=\left(M^{n}\right)_{i,+},(15)$ is equivalent to $\left(M^{n}\right)_{0,+} \leq\left(M^{n}\right)_{1,+}$.
We now prove (13) by induction on n. For $n=1$, the left-hand side of (13) equals

$$
P_{0}\left(T_{1} \geq 1, T_{e}>1\right)=P_{0}\left(T_{e}>1\right)=(M)_{0,+}
$$

while the right-hand side equals $P_{j}\left(T_{e}>1\right)=(M)_{j,+}$. Thus the inequality (13) with $n=1$ follows from the assumption that $(M)_{0,+} \leq(M)_{j,+}$ for $j>0$.

For $m \geq 1$, suppose (13) holds for $n=1, \ldots, m$ and $j=1,2, \ldots$ In particular, the induction hypothesis implies (cf. (15)) that

$$
\begin{equation*}
P_{0}\left(T_{e}>\ell\right) \leq P_{1}\left(T_{e}>\ell\right), \quad \ell=1, \ldots, m \tag{16}
\end{equation*}
$$

We need to show that for $j=1,2, \ldots$,

$$
\begin{equation*}
P_{0}\left(T_{1} \geq m+1, T_{e}>m+1\right)+\sum_{\ell=1}^{m} P_{0}\left(T_{1}=\ell\right) P_{j}\left(T_{e}>m+1-\ell\right) \leq P_{j}\left(T_{e}>m+1\right) \tag{17}
\end{equation*}
$$

Note that for $j=1,2, \ldots$,

$$
\begin{align*}
& P_{0}\left(T_{1} \geq m, T_{e}>m\right)+\sum_{\ell=1}^{m-1} P_{0}\left(T_{1}=\ell\right) P_{j-1}\left(T_{e}>m-\ell\right) \leq P_{j-1}\left(T_{e}>m\right), \tag{18}\\
& P_{0}\left(T_{1} \geq m, T_{e}>m\right)+\sum_{\ell=1}^{m-1} P_{0}\left(T_{1}=\ell\right) P_{j}\left(T_{e}>m-\ell\right) \leq P_{j}\left(T_{e}>m\right) \tag{19}\\
& P_{0}\left(T_{1} \geq m, T_{e}>m\right)+\sum_{\ell=1}^{m-1} P_{0}\left(T_{1}=\ell\right) P_{j+1}\left(T_{e}>m-\ell\right) \leq P_{j+1}\left(T_{e}>m\right) . \tag{20}
\end{align*}
$$

Except for $j=1$ in (18), (18)-(20) follow immediately from the induction hypothesis. By (16), $P_{0}\left(T_{e}>m-\ell\right) \leq P_{1}\left(T_{e}>m-\ell\right)$ for $\ell=1, \ldots, m-1$, so that the left-hand side of (18) with $j=1$ equals

$$
\begin{align*}
P_{0}\left(T_{1}\right. & \left.\geq m, T_{e}>m\right)+\sum_{\ell=1}^{m-1} P_{0}\left(T_{1}=\ell\right) P_{0}\left(T_{e}>m-\ell\right) \\
& \leq P_{0}\left(T_{1} \geq m, T_{e}>m\right)+\sum_{\ell=1}^{m-1} P_{0}\left(T_{1}=\ell\right) P_{1}\left(T_{e}>m-\ell\right) \\
& =P_{0}\left(T_{1} \geq m, T_{e}>m\right)+\sum_{\ell=1}^{m-1} P_{0}\left(T_{1}=\ell, T_{e}>m\right) \quad(\text { by } \tag{14}\\
& =P_{0}\left(T_{e}>m\right)
\end{align*}
$$

establishing (18) for $j=1$.
Note that for $\ell=m$,

$$
\begin{aligned}
P_{0}\left(T_{1}\right. & \left.\wedge T_{e} \geq m+1\right)+P_{0}\left(T_{1}=\ell\right) P_{j-1}\left(T_{e}>m-\ell\right) \\
& =P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right)+P_{0}\left(T_{1}=m\right) P_{j-1}\left(T_{e}>0\right) \\
& =P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right)+P_{0}\left(T_{1}=m\right) \\
& =P_{0}\left(T_{1} \geq m, T_{e}>m\right)
\end{aligned}
$$

so that (18) is equivalent to

$$
\begin{equation*}
P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right)+\sum_{\ell=1}^{m} P_{0}\left(T_{1}=\ell\right) P_{j-1}\left(T_{e}>m-\ell\right) \leq P_{j-1}\left(T_{e}>m\right) \tag{21}
\end{equation*}
$$

Similarly, (19) and (20) are, respectively, equivalent to

$$
\begin{align*}
& P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right)+\sum_{\ell=1}^{m} P_{0}\left(T_{1}=\ell\right) P_{j}\left(T_{e}>m-\ell\right) \leq P_{j}\left(T_{e}>m\right) \tag{22}\\
& P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right)+\sum_{\ell=1}^{m} P_{0}\left(T_{1}=\ell\right) P_{j+1}\left(T_{e}>m-\ell\right) \leq P_{j+1}\left(T_{e}>m\right) \tag{23}
\end{align*}
$$

Letting $a_{j}=M_{j, j-1}, b_{j}=M_{j, j}$ and $c_{j}=M_{j, j+1}$, we have

$$
\begin{align*}
P_{j}\left(T_{e}>m+1\right)= & P\left(T_{e}>m+1 \mid X_{0}=j\right) \\
= & P\left(X_{1} \neq e, T_{e}>m+1 \mid X_{0}=j\right) \\
= & \sum_{r=j-1}^{j+1} P\left(X_{1}=r, T_{e}>m+1 \mid X_{0}=j\right) \\
= & a_{j} P\left(T_{e}>m+1 \mid X_{1}=j-1\right)+b_{j} P\left(T_{e}>m+1 \mid X_{1}=j\right) \\
& +c_{j} P\left(T_{e}>m+1 \mid X_{1}=j+1\right) \\
= & a_{j} P_{j-1}\left(T_{e}>m\right)+b_{j} P_{j}\left(T_{e}>m\right)+c_{j} P_{j+1}\left(T_{e}>m\right) \tag{24}
\end{align*}
$$

Similarly, for $1 \leq \ell \leq m$,

$$
\begin{equation*}
P_{j}\left(T_{e}>m+1-\ell\right)=a_{j} P_{j-1}\left(T_{e}>m-\ell\right)+b_{j} P_{j}\left(T_{e}>m-\ell\right)+c_{j} P_{j+1}\left(T_{e}>m-\ell\right) \tag{25}
\end{equation*}
$$

In view of (24) and (25), it follows from (21)-(23) that

$$
\begin{align*}
\left(a_{j}+b_{j}+c_{j}\right) P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right) & +\sum_{\ell=1}^{m} P_{0}\left(T_{1}=\ell\right) P_{j}\left(T_{e}>m+1-\ell\right) \\
& \leq P_{j}\left(T_{e}>m+1\right) \tag{26}
\end{align*}
$$

Note that given $X_{0}=0,\left\{T_{1} \geq m+1, T_{e}>m+1\right\}=\left\{X_{1}<1, \ldots, X_{m}<1, X_{m+1} \neq e\right\}$ and

$$
\left\{X_{1}<1, \ldots, X_{m}<1\right\}=\left\{X_{\ell} \in\{0,-1,-2, \ldots\}, \ell=1, \ldots, m\right\}=\left\{T_{1} \wedge T_{e} \geq m+1\right\}
$$

We have

$$
\begin{align*}
& P_{0}\left(T_{1} \geq m+1, T_{e}>m+1\right) \\
& =P\left(X_{1}<1, \ldots, X_{m}<1, X_{m+1} \neq e \mid X_{0}=0\right) \\
& =P\left(X_{1}<1, \ldots, X_{m}<1 \mid X_{0}=0\right) P\left(X_{m+1} \neq e \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right) \\
& =P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right) P\left(X_{m+1} \neq e \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right) \\
& \leq P_{0}\left(T_{1} \wedge T_{e} \geq m+1\right)\left(a_{j}+b_{j}+c_{j}\right) \tag{27}
\end{align*}
$$

The above inequality follows since

$$
\begin{aligned}
& P\left(X_{m+1} \neq e \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right) \\
& \quad=\sum_{i \leq 0} P\left(X_{m}=i, X_{m+1} \neq e \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right) \\
& \quad=\sum_{i \leq 0} P\left(X_{m}=i \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right) P\left(X_{m+1} \neq e \mid X_{m}=i\right) \\
& \quad=\sum_{i \leq 0} P\left(X_{m}=i \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right)\left(a_{i}+b_{i}+c_{i}\right) \\
& \quad \leq \sum_{i \leq 0} P\left(X_{m}=i \mid X_{0}=0, X_{1}<1, \ldots, X_{m}<1\right)\left(a_{j}+b_{j}+c_{j}\right) \\
& \quad=a_{j}+b_{j}+c_{j}
\end{aligned}
$$

where the inequality is due to the assumption that $a_{i}+b_{i}+c_{i} \leq a_{j}+b_{j}+c_{j}$ for $i \leq 0<j$.
Finally (17) follows from (26) and (27). The proof is complete.

Acknowledgment. The authors are grateful to the Editor and two reviewers for their helpful comments leading to an improved presentation. The authors also gratefully acknowledge support by the Ministry of Science and Technology, Taiwan, ROC.

References

[1] Anderson, W.J. (1991). Continuous-Time Markov Chains. Springer, New York.
[2] Brockwell, P.J. (1985). The extinction time of a birth, death and catastrophe process and a related diffusion model. Adv. Appl. Probab. 17, 42-52.
[3] Brockwell, P.J. (1986). The extinction time of a general birth and death process with catastrophes. J. Appl. Probab. 23, 851-858.
[4] Chao, X. and Zheng, Y. (2003). Transient analysis of immigration birth-death processes with total catastrophes. Probab. Engin. Inform. Sci. 17, 83-116.
[5] Chen, A., Zhang, H., Liu, K. and Rennolls, K. (2004). Birth-death processes with disasters and instantaneous resurrection. Adv. Appl. Probab. 36, 267-292.
[6] Di Crescenzo, A., Giorno, V., Nobile, A.G. and Ricciardi, L.M. (2008). A note on birth-death processes with catastrophes. Statist. Probab. Lett. 78, 2248-2257.
[7] Hadeler, K.P. (1986). Birth and death processes with killing and applications to parasitic infections. In Stochastic Spatial Processes (P. Tautu, ed.), Lecture Notes in Mathematics 1212, 175-186, Springer-Verlag, Heidelberg.
[8] He, Q.-M. and Chavoushi, A.A. (2013). Analysis of queueing systems with customer interjections. Queueing Systems 73, 79-104.
[9] Irle, A. (2003). Stochastic ordering for continuous-time processes. J. Appl. Probab. 40, 361375.
[10] Irle, A. and Gani, J. (2001). The detection of words and an ordering for Markov chains. J. Appl. Probab. 38A, 66-77.
[11] Karlin, S. and Tavaré, S. (1982). Linear birth and death processes with killing. J. Appl. Probab. 19, 477-487.
[12] Nagylaki, T. (2005). A stochastic model for a progressive chronic disease. J. Math. Biology 51, 268-280.
[13] Puri, P.S. (1972). A method for studying the integral functionals of stochastic processes with applications III. Proc. Sixth Berkeley Symp. Math. Stat. Prob. Vol. III, 481-500, UCLA Press.
[14] Resnick, S.I. (1992). Adventures in Stochastic Processes. Birkhäuser, Boston, MA.
[15] Ross, S.M. (2007). Introduction to Probabilty Models (9th edition). Academic Press, New York.
[16] Stirzaker, D. (2006). Processes with catastrophes. Math. Scientist 31, 107-118.
[17] Van Doorn, E.A. and Zeifman, A.I. (2005a). Extinction probability in a birth-death process with killing. J. Appl. Probab. 42, 185-198.
[18] Van Doorn, E.A. and Zeifman, A.I. (2005b). Birth-death processes with killing. Statist. Probab. Lett. 72, 33-42.

[^0]: * Email address: srhsiau@cc.ncue.edu.tw
 * Postal address: Department of Mathematics, National Changhua University of Education, No. 1, Jin-De Rd., Changhua 500, Taiwan, R.O.C.
 ** Email address: mayru@faculty.nsysu.edu.tw
 ** Postal address: Department of Applied Math., National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 804, Taiwan, R.O.C.
 *** Email address: yao@stat.sinica.edu.tw
 *** Postal address: Institute of Statistical Science, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, R.O.C.

