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Abstract

We consider a game with K ≥ 2 players, each having an integer-valued fortune. On each
round, a pair (i, j) among the players with nonzero fortunes is chosen to play and the
winner is decided by flipping a fair coin (independently of the process up to that time).
The winner then receives a unit from the loser. All other players’fortunes remain the same.
(Once a player’s fortune reaches 0, this player is out of the game.) The game continues
until only one player wins all. The choices of pairs represent the control present in the
problem. While it is known that the expected time to ruin (i.e. expected duration of the
game) is independent of the choices of pairs (i, j) (the strategies), our objective is to find
a strategy which maximizes the variance of the time to ruin. We show that the maximum
variance is uniquely attained by the (optimal) strategy, which always selects a pair of
players who have currently the largest fortunes. An explicit formula for the maximum
value function is derived. By constructing a simple martingale, we also provide a short
proof of a result of Ross (2009) that the expected time to ruin is independent of the
strategies. A brief discussion of the (open) problem of minimizing the variance of the
time to ruin is given.
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1. Introduction and results

We consider a game with K ≥ 2 players, each having an integer-valued fortune. On each
round, a pair (i, j) among the players with nonzero fortunes is chosen to play and the winner is
decided by flipping a fair coin (independently of the process up to that time). The winner then
receives a unit from the loser. All other players’ fortunes remain the same. (Once a player’s
fortune reaches 0, this player is out of the game.) The game continues until only one player
wins all. The choices of pairs represent the control present in the problem. It is known [10]
that the expected time to ruin E(T ) (i.e. expected duration of the game) is independent of the
choices of pairs (i, j). It is then meaningful to investigate the relation among possible strategies
of picking the pairs in terms of the variance of the time to ruin.

The gambler’s ruin model (GRM) has been used in genetic algorithms (GAs) [8], where T

is the time of convergence of the GA. Our model is an idealization, which applies as well to the
estimation of the time to reach fixation in an evolutionary model with multiple genotypes. The
players represent the competing genotypes and the time to ruin models the extinction of one
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type or, equivalently, completing an evolutionary step in favor of the type with better fitness.
This is irreversible, as in Muller’s ratchet model [5], [7], motivating the GRM.

Let (�, F , P, {Ft }t≥0) be a filtered probability space on which a sequence of independent
and identically distributed (i.i.d.) Bernoulli random variables with probability of success equal
to 1

2 is defined such that for each t = 1, 2, . . . , the first t Bernoulli random variables are
measurable with respect to Ft and all the later Bernoulli random variables are independent
of Ft . (In particular, all the Bernoulli random variables are independent of F0.)

Thereafter, we shall denote by η = (η1, . . . , ηK) a configuration with ηi the fortune of
player i and ei the K-dimensional vector with entries (components) equal to 0 except at i,
where the entry is 1. In this way

ηij = η + ei − ej (1)

is the transformation occurring when we pick the pair (i, j) and player i wins. Thus, when the
pair (i, j) is chosen, the configuration η will move to either ηij (in the case when i wins) or ηji

(in the case when j wins) with equal probability.
Any sequence of pairs {(i(t), j (t))}t≥0 designating the pair picked at (the end of) time t ≥ 0

(to play at time t + 1) will generate a random process denoted by η(t) = (η1(t), η2(t), . . . ,

ηK(t)), the vector of fortunes ηr(t) of players r , 1 ≤ r ≤ K , at time t by updating the
configuration η(t) to η(t +1) = (η(t))ij if the pair (i, j) is selected at (the end of) time t , plays
at time t + 1, and i wins by sampling the (t + 1)th term of the Bernoulli random sequence.

We shall assume that (i(t), j (t)) ∈ Ft , i.e. the pair to play at time t +1 is selected according
to the information available up to and including time t of the game. Additionally, we assume
that a zero entry in the vector η cannot be selected. Such a random sequence is said to be a
strategy (or policy) and will be generally denoted by S. The set of all strategies is denoted S.
For any such strategy, the process {η(t)}t≥0 is adapted to the filtration. In the case when the
strategy (i(t), j (t)) depends only on η(t) for all t ≥ 0, then {η(t)}t≥0 is a Markov chain.

For any strategy S ∈ S and an initial configuration η, we denote by E
S
η [·] the expected value

of the process starting with fortune η0 = η which follows the strategy S.
Let N = |η| := ∑K

i=1 ηi be the sum of all fortunes in configuration η, and T be the time
to ruin of all but one player (i.e. T is the duration of the game). Note that for any strategy, the
time T to ruin is a stopping time with respect to {Ft }t≥0. We also note that trivially N = |η(t)|
remains constant.

Proposition 1. For any strategy S with T denoting the time to ruin, the process

q1(t) =
K∑

i=1

(ηi(t))
2 − 2t, K ≥ 2, (2)

is an Ft -martingale up to T . For K = 2, there is only one possible strategy, to pick both players
at all times, denoted by S0, and the process

q2(t) = (q1(t))
2 − 1

6 (η1(t) − η2(t))
4 + 8

3 t, K = 2,

is an Ft -martingale up to T .

Proof. It is easily shown that q1(t) is a martingale up to T . Recalling that (i(t), j (t)) ∈ Ft ,
we have almost surely (a.s.) on {t < T },

E
S
η [(q1(t + 1))2 | Ft ] = (q1(t))

2 + 4[ηi(t)(t) − ηj(t)(t)]2, K ≥ 2, (3)
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and

E
S0
η [(η1(t + 1)−η2(t + 1))4 | Ft ] = (η1(t)−η2(t))

4 + 24(η1(t)−η2(t))
2 + 16, K = 2,

from which it follows that q2(t) is a martingale up to T . �
Note that (3) for K > 2, while not needed for the proof of Proposition 1, will be called for

later. Now for K ≥ 2, noting that

q1(0) =
K∑

i=1

(ηi)
2 and q1(T ) = N2 − 2T =

( K∑
i=1

ηi

)2

− 2T ,

the first martingale gives

E
S
η [T ] = 1

2

[( K∑
i=1

ηi

)2

−
K∑

i=1

(ηi)
2
]

=
∑

1≤i<j≤K

ηiηj , (4)

which is independent of the strategy (cf. [10]). For K = 2, the sole strategy S0 is deterministic
and the second martingale yields the following formula for the variance of T :

varS0
η (T ) = η1η2

3
((η1)

2 + (η2)
2 − 2), K = 2. (5)

Hereafter, we write V S(η) = varSη(T ) for notational simplicity.
Since the expected value of T is finite, the stopping time T is finite a.s. While the expected

time to ruin is independent of the strategy, the variance depends on S for K ≥ 3. In this case,
we would like to solve the problems

(i) find S+ such that
V S+(η) = sup

S∈S
V S(η); (6)

(ii) find S− such that
V S−(η) = inf

S∈S
V S(η). (7)

Remark 1. Since E
S
η(T ) does not depend on S, optimizing the variance V S(η) is equivalent

to optimizing the second moment E
S
η(T 2), but it is more convenient to work directly with the

variance. Also, it is not difficult to show (cf. the proof of [10, Lemma 1]) that there exist
0 < ρ < 1 and 0 < C < ∞ such that P

S
η(T > t) ≤ Cρt for all t ≥ 0 and all S ∈ S,

implying that supS∈S V S(η) < ∞. Moreover, V S+(η) and V S−(η) are invariant with respect
to permutations of η.

Adopting the terminology from the literature of dynamic programming and Markov decision
processes (see, e.g. [3]), a stationary strategy S is determined by a (deterministic) mapping s

from the configuration space to the set of pairs {(i, j) : 1 ≤ i < j ≤ K} such that the pair
(i(t), j (t)) is given by s(η(t)). Then the following recurrence holds:

V S(η) = 1
2 (V S(ηij ) + V S(ηji)) + (ηi − ηj )

2, (i, j) = s(η), (8)

which follows from the strong Markov property and the well-known conditional variance
formula

var(X) = E[var(X | G)] + var(E[X | G])
for any σ -field G and random variable X with E(X2) < ∞.
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In particular, when K = 2 the variance (5) satisfies trivially (8).
While any stationary strategy satisfies (8), only the optimal strategy satisfies (9) below.

Proposition 2. The dynamic programming equation for the maximization problem (6) is

V (η) = max
(i,j)

{ 1
2 (V (ηij ) + V (ηji)) + (ηi − ηj )

2}, V (ηf ) = 0, (9)

where the maximum is taken over all pairs (i, j) with ηiηj > 0, and ηf is any final (terminal)
configuration, i.e. with all but one entry equal to 0. The dynamic programming equation for
the minimization problem (7) is (9) with max(i,j) replaced by min(i,j).

Proposition 3. Assume that a real-valued function V (η) defined on the (finite) configuration
space satisfies V (ηf ) = 0 for any final configuration ηf and

V (η) ≥ 1
2 (V (ηij ) + V (ηji)) + (ηi − ηj )

2 for any (i, j) with ηiηj > 0. (10)

Then V (η) ≥ V S(η) for any S ∈ S. If there exists S′ ∈ S such that V (η) = V S′
(η) then

S+ = S′ and V is the solution to the maximization problem (6). The same holds for the
minimization problem (7) by replacing ≥ with ≤ in all inequalities.

Proof. For any real-valued function f (η), by conditional probability, we have

E
S
η [f (η(t + 1)) | Ft ] = 1

2 (f ((η(t))i(t)j (t)) + f ((η(t))j (t)i(t))), 0 ≤ t ≤ T − 1.

Applying this relation to f = V and using (3), the process

M(t) = V (η(t)) + 1
4 (q1(t))

2

is a super-martingale up to T and comparison between the expected values at t = 0 and t = T

shows the claim of the proposition. �
Theorem 1. Let the stationary strategy S+ be defined by s+(η) = (i, j), where ηi and ηj are
the largest two values in η. (In case of ties, any pair corresponding to the largest two values
may be selected.) Then (S+, V S+(η)) solves the maximization problem (6). Furthermore, the
maximum variance of the time to ruin cannot be attained by any strategy that ever selects a
pair which does not correspond to the largest two values in the current configuration.

Proof. By Proposition 3, the proposed strategy S+ solves (6) if V S+(η) satisfies (10). Note
that by (8) and the definition of S+, both sides of (10) with V = V S+ are equal if (i, j) with
ηiηj > 0 is such that ηi and ηj are the largest two values in η. Thus, it suffices to consider
those pairs (i, j) for which ηiηj > 0 and {ηi, ηj } is not the set of the largest two values in η.

Indeed, we will show that V S+(η) satisfies the following (stronger) strict inequality:

V S+(η) > 1
2 (V S+(ηij ) + V S+(ηji)) + (ηi − ηj )

2 (11)

for any pair (i, j) with ηiηj > 0 and {ηi, ηj } �= {ηM1, ηM2}, where ηM1 and ηM2 denote,
respectively, the largest and second largest values in η. Here, {ηi, ηj } and {ηM1, ηM2} are
interpreted as multisets counting multiplicities of elements (cf. [9, p. 483]). (Note that ηM1 and
ηM2 are equal if two or more entries tie for the maximum value in η.) The proof is achieved
by induction on K , and for fixed K , by induction on N as stated in Proposition 7 of Section 5
where the induction step is proven. The most difficult case of the induction step is proven
separately in Section 6. This case requires a lemma, proved in Section 7. The verification step
corresponding to K = 2 is performed in Section 4. Thus the proof is complete. �



AUTHOR(S)’S PERSONAL PDF OFFPRINT COPY

614 I. GRIGORESCU AND Y.-C. YAO

Theorem 1 shows that S+ uniquely attains the maximum variance of the duration of the
game, i.e. S+ along with the corresponding value function V S+(η) solves the maximization
problem (6). However, for the minimization problem (7), we have yet to find a strategy that
attains the minimum variance of the duration of the game. A natural candidate strategy is
the ‘minimal’ strategy S̃ that is stationary, defined by s̃(η) = (i, j), where ηi and ηj are the
smallest two values in η. Unfortunately, this strategy does not attain the minimum variance. As
an example, consider the case η = (η1, η2, η3) = (1, 2, 2). We take the convention that in case
of ties, S̃ picks the lower-indexed players. Then under S̃, players 1 and 2 continue to play until
one of them has fortune 0 (and is out of the game). The survivor (with fortune 3) and player 3
(with fortune 2) then play for the rest of the game. It is readily seen that under S̃, the duration T

can be decomposed as T = T1 +T2, where T1 and T2 are independent and T1 (T2, respectively)
is the duration of a game with K = 2 and configuration (1, 2) ((3, 2), respectively). From (5),
it follows that

V S̃(η) = var(T1) + var(T2) = 1·2
3 (12 + 22 − 2) + 3·2

3 (32 + 22 − 2) = 24.

On the other hand, consider the strategy that selects players 2 and 3 to play at t = 1 and then
selects the loser and player 1 to play at t = 2. At the end of t = 2, only two players survive
with fortunes 2 and 3. Thus, by (5) again, the variance of the duration of the game under this
strategy equals 2·3

3 (22 + 32 − 2) = 22 < 24 = V S̃(η). (The referee of this paper suggests
another candidate strategy S̃′, which always picks the pair (i, j) with ηi the minimal and ηj

the maximal value in η. Since S̃ and S̃′ are identical for η = (1, 2, 2), S̃′ does not attain the
minimum variance in general.) It is also of interest to consider the constrained case where,
once a pair is chosen, it must play until one of the two players is defeated and eliminated from
the game (the player whose fortune reaches 0). After that, another pair is chosen and the game
continues with the new pair until one is defeated, and so on, until all but one are defeated, at
time T . We are interested in finding a ‘constrained’ strategy which maximizes or minimizes
the variance of T . The constrained maximization problem can be readily solved. Indeed, the
optimal ‘constrained’strategy is to pick a pair of players who have currently the largest fortunes
whenever selection of a pair is called for (which may be viewed as the constrained version of
S+). However, as for the minimization problem (7), the constrained minimization problem
does not seem to admit a simple solution.

We conclude this section by reviewing some relevant literature. The so-called K-tower
problem is concerned with the strategy SR that, at each time t , a pair is chosen at random
among all players remaining in the game and the game stops as soon as one player’s fortune
drops to 0. For K = 3, Engel [6] obtained a simple formula for the expected duration with the
help of extensive computer calculations, while Stirzaker [12] used martingale theory to derive
the formula. Bruss et al. [4] later derived the variance and the probability distribution of the
duration for K = 3, and also argued convincingly that no simple formula for the expected
duration can be expected for K ≥ 4. Engel [6] and Stirzaker [12] also considered the ruin
problem where the game stops when one player wins all, and found the expected duration
under SR for general K (cf. (4)). Later Ross [10] showed among other things that the expected
duration is the same for all strategies. We gave a short proof of this result by constructing a
simple martingale (cf. (2)).

There are other versions of the multiplayer gamblers’ ruin problem. In particular, the so-
called multiplayer ante one game consists of K players each with initial (integer-valued) fortune
ηi, i = 1, . . . , K . At each time t = 1, 2, . . . , each player with positive fortune puts one unit in
a pot, which is then won (with equal probability) by one of them. Players whose fortunes drop
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to 0 are eliminated. Let T (i) be the total time player i stays in the game. (Equivalently, T (i)

is the first time when player i’s fortune either drops to 0 or reaches the maximum |η|.) Let
T = maxi T (i) be the duration of the game. Let Tj be the total time when exactly j players are
in the game. Note that T = TK + · · · + T2 and that TK is equivalent to the first time when at
least one player’s fortune drops to 0. Martingale theory has been used to derive E(T ), E(T (i)),
and E(Tj ) for K = 3; see [2], [6], and [11]. No simple formulas are available for K ≥ 4. See
also [1] and [13] for related results.

The rest of this paper is organized as follows. In Section 2 we provide several useful reduction
formulas, which provide an effective way to perform explicit calculations in Section 3 and to
permit the induction argument in Sections 4–7. In particular, an explicit formula for the maximal
value function is presented in Section 3; see Theorem 2.

2. Reduction formulas

Let η = (η1, . . . , ηK) be a configuration with K components and total fortune N = |η|.
A configuration is said to be extremal if all except possibly one component are equal and the
unequal one (if it exists) has a greater value. In other words, a configuration is extremal if
either all the components are equal or all except the (unique) greatest component are equal.
Since the total number N is known, we shall specify only the common value of the smaller
components, so ζc designates the configuration with K − 1 components equal to c and one
component equal to N − (K − 1)c (which is greater than or equal to c). Thus, c must satisfy
the condition Kc ≤ N . In particular, when c = 0, the extremal configuration ζ0 has only one
nonzero component and is referred to as a final configuration.

For notational simplicity, we shall write P
+ for P

S+ and V +(η) for V S+(η) (the variance
of T under the strategy S+ with initial configuration η). Two configurations are said to be
indistinguishable if they are identical up to an ordering (i.e. one is a permutation of the other).
Note that indistinguishability is an equivalence relation, so the equivalence class of η is the set
of all configurations that are indistinguishable from η. Clearly, V +(η) = V +(η′) if η and η′
are indistinguishable, i.e. V + is invariant with respect to permutations. A configuration ζ (or
more precisely, the equivalence class of ζ ) is said to be accessible from η if under the strategy
S+ it is reached before or at the time T to ruin with probability 1, i.e. the hitting time τζ of
(the equivalence class of) ζ has the property P

+
η (τζ ≤ T ) = 1. In what follows, the words ‘the

equivalence class of’ will be omitted unless necessary for clarity purposes.
Among all extremal configurations we single out the one with c = 1. We shall deal separately

with V +(ζ1) = V S+(ζ1). First, we look at m(η) := mini ηi .

Proposition 4. For any η with m(η) ≥ 1, ζ1 is accessible from η.

Proof. The K = 2 case is trivial. Below we assume that K ≥ 3. Under S+, the components
with values equal to m = m(η) will not be touched as long as there exist two larger components.

If η is such that M = M(η) := maxi ηi = m (all flat), we have two possibilities. In case
M = m = 1, η = ζ1 in the special case when N = K . In case M = m ≥ 2 we play one turn
under the strategy S+ and the two resulting configurations will be indistinguishable, denoted η′,
for which we have M(η′) > m(η′) ≥ 1.

Thus we can assume without loss of generality that η has M > m ≥ 1. If there exists exactly
one component greater than m then η = ζm. If there are two or more components greater
than m, we may view m as a baseline and the set of those components greater than the baseline
continues to evolve under S+ until all components (except one) are equal to m. The strategy S+
will simply not look at components equal to m until the process reaches the extremal ζm, which
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shows that ζm is accessible. Note that this process up to the hitting time τζm of ζm is exactly the
same as the ruin problem with the initial configuration η−m = (η1 −m, . . . , ηK −m), where m

is the K-dimensional configuration with all entries equal to m (i.e. τζm has the same distribution
as the time to ruin when the initial configuration is η − m). As such, P

+
η (τζm < T ) = 1.

On the other hand, under S+ with K ≥ 3, we have m(η(t)) − 1 ≤ m(η(t + 1)) ≤ m(η(t))

for 0 ≤ t < T , i.e. m(η(t)) is nonincreasing and can move down by one unit only. Since ζ0 (the
final configuration when the game stops) has m(ζ0) = 0, it follows that a configuration with
m = 1 will be reached a.s., and based on the preceding reasoning on τζm , the configuration ζ1
will be reached before T with probability 1 as well. �
Proposition 5. For any η with m(η) ≥ 1,

V +(η) = V +(η − 1̄) + V +(ζ1). (12)

Proof. By Proposition 4, for a given initial configuration η with m(η) ≥ 1, we have 0 ≤
τζ1 < T < ∞ a.s. under S+. Write T = τζ1 + (T − τζ1). It follows from the strong Markov
property that τζ1 and T − τζ1 are independent. Moreover, τζ1 has the same distribution as the
time to ruin when the initial configuration is η − 1̄, while T − τζ1 has the same distribution as
the time to ruin when the initial configuration is ζ1. So,

V +(η) = varS+
η (T ) = varS+

η (τζ1) + varS+
η (T − τζ1) = V +(η − 1̄) + V +(ζ1),

proving (12). �
Let η be a configuration given in ordered form and let c ≥ 0 with the property

η1 ≤ · · · ≤ ηi ≤ c < ηi+1 ≤ · · · ≤ ηK, (13)

where the strict inequality is to be interpreted that there exists at least one entry strictly larger
than c. We define the configuration flattened up to level c, denoted η|c, by

η|c
r = ηr, 1 ≤ r ≤ i, η|c

r = c, i < r ≤ K − 1, η
|c
K =

K∑
r=i+1

ηr − (K − i − 1)c,

which results from following S+ until all the last K − i entries (except one) are reduced to the
level c. (We remark that the exceptional entry in the resulting configuration has a value equal
to

∑K
r=i+1 ηr − (K − i − 1)c > c, which is not necessarily the Kth entry. Thus, we should

interpret η|c as a configuration up to an ordering.) Let (η− c̄)+ := ((η1 −c)+, . . . , (ηK −c)+),
where (x)+ := max{x, 0}. If the configuration η was restricted to entries ηr (r > i) and shifted
by c to ηr − c, i.e. (η − c̄)+, then the configuration η|c (restricted to the last K − r entries and
shifted by c) coincides, up to an ordering, with the final configuration of the restricted process,
while all other entries ηr , 1 ≤ r ≤ i, are left unchanged. This shows that η|c is accessible
from η.

Proposition 6. Let η be a configuration and c as in (13) such that there is at least one entry
greater than c. Then η|c is accessible from η and

V +(η) = V +((η − c̄)+) + V +(η|c). (14)

In particular, for c = m = m(η) and η not constant, we have η|c = ζm and

V +(η) = V +((η − m)+) + V +(ζm). (15)
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Proof. If there is exactly one entry strictly larger than c then η = η|c and (14) holds since
V +((η − c̄)+) = 0. (Note that (η − c̄)+ is a final configuration.)

Suppose there are at least two entries greater than c. The reasoning is almost identical to
the proofs of Propositions 4 and 5. Since (η − c̄)+ has at least two nonzero components,
the process evolving under the strategy S+ will not touch any entry ηr ≤ c until the entries
above c are flattened out, i.e. until the configuration η|c is reached, which we know happens
with probability 1. So η|c is accessible from η. Now write T = τ+(T −τ), where τ = τη|c is the
hitting time of η|c. By the strong Markov property, τ and T − τ are independent. Moreover, τ

has the same distribution as the time to ruin with initial configuration (η− c̄)+, while T −τ has
the same distribution as the time to ruin with initial configuration η|c, from which (14) follows.
This completes the proof. �

2.1. A reduction formula that gives insight but we do not use in the proof

In the next lemma we show that we can prove (11) for any configuration and pair having
at least two entries dominating the members of the pair by proving it for a simplified con-
figuration η|c. The reader should think of the case c > max{ηi, ηj } and should understand
the condition that there must exist two entries exceeding strictly max{ηi, ηj } + 1, to prevent
interference when we commute the operation of ‘moving’ between two entries and flattening
at level c described formally in (16) and (17) below.

Recall (1) that the transformation of η consisting of a move from entry j to entry i is denoted
ηij = η + ei − ej .

Lemma 1. Let η, c ≥ 0, and (i, j) be such that max{ηi, ηj } < c and there exist at least two
entries of η greater than c. Then

(η − c̄)+ = (ηij − c̄)+ = (ηji − c̄)+,

V +(ηij ) = V +((ηij − c̄)+) + V +((ηij )|c) = V +((η − c̄)+) + V +((η|c)ij ), (16)

V +(ηji) = V +((ηji − c̄)+) + V +((ηji)|c) = V +((η − c̄)+) + V +((η|c)ji). (17)

Proof. The operation η → η|c involves only entries exceeding c. The lemma follows from
Proposition 6 and the fact that η, ηij , and ηji differ only in the ith and j th entries, which are
all less than or equal to c since max{ηi, ηj } < c. �

3. Explicit formula for the maximal value function

For given K (the number of entries) and N (the total sum of entries) for 0 ≤ c ≤ N/K ,
recall that ζc is the extremal configuration being all flat at c except possibly one maximal value.
We may write ζc = (N − Kc + c, c, c, . . . , c) up to an ordering. The values of V + at these
extremal configurations will allow us to calculate V +(η) for general η. In some sense, we need
to develop a rudimentary calculus for these structures as presented below.

To make the dependence on K and N explicit, we write

ζc = ζc,K,N = (N − Kc + c, c, c, . . . , c)

(with K entries summing up to N ), and introduce the convenient notation

WK(N, c) := V +(ζc,K,N ) = V +(N − Kc + c, c, c, . . . , c), Kc ≤ N. (18)
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We start writing a formula for WK(N, c). Based on (12), we have

WK(N, c) = V +(N − Kc + c, c, . . . , c)

= V +(N − Kc + c − 1, c − 1, . . . , c − 1) + V +(N − K + 1, 1, . . . , 1),

= WK(N − K, c − 1) + WK(N, 1).

Repeating the same argument,

WK(N − K, c − 1) = WK(N − 2K, c − 2) + WK(N − K, 1),
...

WK(N − (c − 2)K, 2) = WK(N − (c − 1)K, 1) + WK(N − (c − 2)K, 1).

Summing up yields

WK(N, c) =
c−1∑
r=0

WK(N − rK, 1). (19)

In these formulas the parameter K does not change. The simpler function WK(d, 1) with d ≥ K

can be obtained by applying the recurrence formula (8) for V S to V + = V S+ as follows. For
d ≥ K , we have, by (8),

WK(d, 1) = V +(d − K + 1, 1, . . . , 1)

= 1
2V +(d − K + 2, 0, 1, . . . , 1) + 1

2V +(d − K, 2, 1, . . . , 1) + (d − K)2

= 1
2WK−1(d, 1) + 1

2V +(d − K, 2, 1, . . . , 1) + (d − K)2. (20)

By (12), we have for d > K ,

V +(d − K, 2, 1, . . . , 1) = V +(d − K − 1, 1, 0, . . . , 0) + V +(d − K + 1, 1, . . . , 1)

= V +(d − K − 1, 1, 0, . . . , 0) + WK(d, 1),

which together with (20) implies that

WK(d, 1) = WK−1(d, 1) + V +(d − K − 1, 1, 0, . . . , 0) + 2(d − K)2. (21)

By (5) for the two-player case for which there is only one strategy denoted S0, we have

V +(d − K − 1, 1, 0, . . . , 0) = V S0(d − K − 1, 1)

= 1
3 (d − K − 1)((d − K − 1)2 + 1 − 2)

= 1
3 (d − K)(d − K − 1)(d − K − 2).

From (21), it follows that for d > K ,

WK(d, 1) = WK−1(d, 1) + Q(d − K), (22)

where Q(x) = 1
3x(x − 1)(x − 2) + 2x2 = 1

3x(x + 1)(x + 2).
Note that for d = K , we have, by (20),

WK(K, 1) = 1
2WK−1(K, 1) + 1

2WK−1(K, 1) + (K − K)2

= WK−1(K, 1)

= WK−1(K, 1) + Q(K − K),
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so (22) also holds for d = K . Applying (22) repeatedly yields

WK(d, 1) = W2(d, 1) +
K∑

r=3

Q(d − r) =
K∑

r=2

Q(d − r), (23)

where we have used the fact that W2(d, 1) = V S0(d − 1, 1) = Q(d − 2).

Remark 2. For convenience, we define

W1(d, 1) := 0 for all d, V +(η) := 0 for all η of dimension 1, (24)

which is consistent with (18).

We are now ready to derive a formula for V +(η) for general η. Let 0 < η′
1 < η′

2 < · · · < η′
p

be the distinct values present in η, in increasing order. Let 1 ≤ p = p(η) ≤ K be the total
number of such values and let �k, 1 ≤ k ≤ p be the multiplicities of the values η′

k . Note that

p∑
k=1

�k = K, |η| :=
p∑

k=1

�kη
′
k = N. (25)

Here we have assumed that η has no zero entries, i.e. m(η) ≥ 1. In case m(η) = 0, we simply
reduce η to a lower-dimensional configuration by deleting all zero entries. By (15) with m = η′

1
and (18), we have

V +(η) = V +(η − η′
1) + V +(ζη′

1,K,N ) = V +(η − η′
1) + WK(N, η′

1).

Since with all zero entries removed, η − η′
1 reduces to a lower-dimensional configuration with

K − �1 entries summing up to N − Kη′
1 and the minimal entry value being η′

2 − η′
1, we have,

by (15) with m = η′
2 − η′

1,

V +(η − η′
1) = V +((η − η′

2)+) + V +(ζη′
2−η′

1,K−�1,N−Kη′
1
)

= V +((η − η′
2)+) + WK−�1(N − Kη′

1, η
′
2 − η′

1).

Repeating this argument, we have for r = 0, . . . , p − 1,

V +((η − η′
r )+) = V +((η − η′

r+1)+) + V +(ζη′
r+1−η′

r ,Kr ,Nr
)

= V +((η − η′
r+1)+) + WKr (Nr, η

′
r+1 − η′

r ), (26)

where η′
0 := 0, V +((η − η′

p)+) := 0, and

Kr := K −
r∑

i=1

�i,

Nr := N −
p∑

i=1

�i min{η′
i , η

′
r} =

p∑
i=r+1

�i(η
′
i − η′

r ), r = 0, . . . , p − 1.

(27)

Note that K0 = K and N0 = N . Summing up (26) over r = 0, . . . , p − 1 yields the following
formula for V +(η).
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Theorem 2. The maximal value function is given by (5) if K = 2. For K ≥ 3 and for η with p

distinct nonzero values 0 < η′
1 < · · · < η′

p and multiplicities �r , r = 1, . . . , p satisfying (25),
we have

V +(η) =
p−1∑
r=0

WKr (Nr, η
′
r+1 − η′

r ),

where Kr and Nr are given in (27) and WK(N, c) is given in (19), which can be reduced to the
special case c = 1, as shown in (23) for WK(d, 1).

4. Cases K = 2 and K = 3

Case K = 2. In this case, (11) is trivially satisfied, since there is only one pair (1, 2) and,
hence, there is no (i, j) such that {ηi, ηj } �= {ηM1, ηM2} = {η1, η2}. It is useful to look at the
next simplest case K = 3, which can be calculated explicitly.

Case K = 3. Let η = (a, b, c) with min{a, b} ≥ c ≥ 1 and N = a + b + c. By (15) and
(19), we have

V +(a, b, c) = V +(a − c, b − c, 0) + W3(N, c)

= V +(a − c, b − c, 0) +
c−1∑
r=0

W3(N − 3r, 1). (28)

By (5) and (23), we have

V +(a − c, b − c, 0) = 1
3 (a − c)(b − c)[(a − c)2 + (b − c)2 − 2],

W3(N − 3r, 1) = Q(N − 3r − 2) + Q(N − 3r − 3)

= 1
3 (N − 3r − 2)(N − 3r − 1)(2N − 6r − 3),

implying, by (28), that for min{a, b} ≥ c ≥ 1 and N = a + b + c,

V +(a, b, c) = U(a − c, b − c) + 1

3

c−1∑
r=0

(N − 3r − 2)(N − 3r − 1)(2N − 6r − 3), (29)

where

U(x, y) := 1
3xy(x2 + y2 − 2). (30)

For a ≥ b ≥ c > 0, let

	23 := V +(a, b, c) − 1
2 [V +(a, b + 1, c − 1) + V +(a, b − 1, c + 1)] − (b − c)2,

which is the difference between the two sides of (11) with (i, j) = (2, 3). Now for a ≥ b ≥
c + 2, letting α := a − c and β := b − c, we have, by (29),

	23 = U(α, β) − 1
2 (U(α + 1, β + 2) + U(α − 1, β − 2)) − β2

+ 1
6 ((N − 3c + 1)(N − 3c + 2)(2N − 6c + 3)

− (N − 3c − 2)(N − 3c − 1)(2N − 6c − 3))
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= U(α, β) − 1
2 (U(α + 1, β + 2) + U(α − 1, β − 2)) − β2

+ 1
6 ((α + β + 1)(α + β + 2)(2α + 2β + 3)

− (α + β − 2)(α + β − 1)(2α + 2β − 3))

= α2 + αβ

> 0.

For a ≥ b = c + 1 and a > b = c, it can be shown that 	23 = (a − c)(a − c + 1) > 0. Let

	13 := V +(a, b, c) − 1
2 [V +(a + 1, b, c − 1) + V +(a − 1, b, c + 1)] − (a − c)2,

which is the difference between the two sides of (11) with (i, j) = (1, 3). Similarly, by (29)
for a ≥ b > c, it can be shown that 	13 = (a − c)(b− c)+ (b− c)2 > 0. This proves that (11)
holds for K = 3. (It should be noted that the induction step in the next section covers K = 3.)

5. The induction step

Let S(K) be the following induction statement: for any K ′ ≤ K and any N > 0, the function
V +(·) satisfies

V +(η) > 1
2 (V +(ηij ) + V +(ηji)) + (ηi − ηj )

2 (31)

for any pair (i, j) with ηiηj > 0 and {ηi, ηj } �= {ηM1, ηM2}, where ηM1 and ηM2 denote the
largest two values in η.

Note that (31) is (11) where V + = V S+ . As remarked before, by the definition of the strategy
S+, both sides of (31) are equal if (i, j) is such that ηiηj > 0 and {ηi, ηj } = {ηM1, ηM2}.

For K = 2, S(K) holds trivially. The next result concludes the proof of Theorem 1.

Proposition 7. For each K ≥ 3, if S(K ′) holds for all K ′ < K then it holds for K .

Proof. For K ≥ 3 fixed, we start an induction on N . Note that for m = m(η) = 0, η has at
least one zero entry, which reduces to a K ′-dimensional configuration for some K ′ < K , so that
(31) holds by the induction hypothesis. Furthermore, if m = m(η) = M = M(η) := maxr ηr

then all entries in η are equal, so there is no (i, j) such that {ηi, ηj } �= {ηM1, ηM2}, implying
that (31) holds trivially. Thus, it suffices to consider the case M > m ≥ 1 (implying that
N > K). In light of (12), we shall prepare by observing that for pair (i, j), ηij + 1̄ = (η + 1̄)ij

is well defined if m ≥ 1, and ηij − 1̄ = (η − 1̄)ij is well defined if m ≥ 2. With this in mind
we now proceed by induction on N (with K ≥ 3 fixed).

Assume that (31) holds for all N ′ < N (N > K) and we want to prove it for N .

Case m ≥ 2. We have m(ηij ) ≥ 1 and m(ηji) ≥ 1 for any pair (i, j), so, by (12),

V +(η) = V +(η − 1̄) + V +(ζ1), (32)

V +(ηij ) = V +(ηij − 1̄) + V +(ζ1) = V +((η − 1̄)ij ) + V +(ζ1), (33)

V +(ηji) = V +(ηji − 1̄) + V +(ζ1) = V +((η − 1̄)ji) + V +(ζ1). (34)

This gives, for any pair (i, j) with {ηi, ηj } �= {ηM1, ηM2},
V +(η) − 1

2 (V +(ηij ) + V +(ηji)) = V +(η − 1̄) − 1
2 (V +((η − 1̄)ij ) + V +((η − 1̄)ji))

> ((ηi − 1) − (ηj − 1))2

= (ηi − ηj )
2, (35)
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where the inequality is due to the induction hypothesis applied to the configuration η − 1̄ for
which the total fortune is N − K < N and

{(η − 1̄)i , (η − 1̄)j } = {ηi − 1, ηj − 1} �= {ηM1 − 1, ηM2 − 1} = {(η − 1̄)M1, (η − 1̄)M2}.

Case m = 1. If the pair (i, j) does not contain any minimum (i.e. min{ηi, ηj } ≥ 2), the
above argument for m ≥ 2 (i.e. (32)–(35)) works identically. Also recall that it suffices to
consider M > m ≥ 1. Thus, it is the case M > m = 1 and min{ηi, ηj } = 1 that will be done
separately in Section 6. �

Remark 3. The case m = 1 stands apart from all others because either (33) or (34) cannot be
applied when the pair (i, j) contains a minimal value, say ηi = m = 1. It is perfectly correct
to drop one unit on all entries based on (12) which is done in (32). Applying the transformation
ηij which increases the ith entry to 2 and shifting by 1̄ is possible as they clearly commute.
However, the transformation ηji which lowers the ith entry to 0 would not commute with the
one unit shift as (η − 1̄)ji is not properly defined. Moreover, (12) does not apply to ηji since
m(ηji) = 0. Thus, (34) does not hold. As a result, the induction step (35) breaks down.

6. The case m = 1 < M and min{ηi, ηj } = 1

In this section we consider the case m = 1 < M and min{ηi, ηj } = 1. We shall assume
without loss of generality that i = 1 and η1 = 1. Thus j ≥ 2 and ηj ≥ 1. With � denoting
the multiplicity of 1 in η, we write the configuration η = (1̄�, ξ), where the subscript to the
vector of 1s marks its dimension. (This notation is sometimes suppressed when no danger of
confusion can arise.) Then ξ is a (K − �)-dimensional vector with the total sum of entries
|ξ | = |η| − |1̄�| = N − � and the minimum value m(ξ) ≥ 2. (Note that � < K since
m(η) = 1 < M(η).)

We write V +
K (η) = V +(η) with the subscript K denoting the dimension of the argument η.

This is necessary in order to keep track of the reduction formulas of the type (39) below.

Case � ≥ 2 and ηj = 1. This treats the case when we pick two minima. Without loss of
generality, assume that η1 = η2 = 1, j = 2. (Note that {η1, η2} = {1, 1} �= {ηM1, ηM2} since
M = ηM1 > 1.)

We need to prove (31), i.e.

V +
K (η) − 1

2 (V +
K (η − e1 + e2) + V +

K (η + e1 − e2)) > 0. (36)

The inequality contains no (ηi − ηj )
2 term since the two entries are equal. As η − e1 + e2

and η + e1 − e2 are indistinguishable, (36) reduces to

V +
K (1̄�, ξ) > V +

K (2, 0, 1̄�−2, ξ) = V +
K−1(2, 1̄�−2, ξ), (37)

where we have used the projection identity V +
K (ξ, 0̄�) = V +

K−�(ξ) which removes the zero
entries by lowering the dimension K correspondingly.

We have, by (12) (recalling WK(N, c) := V +(ζc,K,N ) in (18)),

V +
K (η) = V +

K (1̄�, ξ) = V +
K (0̄�, ξ − 1̄) + WK(N, 1) = V +

K−�(ξ − 1̄) + WK(N, 1), (38)

where for notational simplicity we have suppressed the subscript K −� to the vector 1̄ in ξ − 1̄.
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Similarly, by (12),

V +
K (2, 0, 1̄�−2, ξ) = V +

K−1(2, 1̄�−2, ξ)

= V +
K−1(1, 0̄�−2, ξ − 1̄) + WK−1(N, 1)

= V +
K−�+1(1, ξ − 1̄) + WK−1(N, 1)

= V +
K−�+1(0, ξ − 2̄) + WK−�+1(N − K + 1, 1) + WK−1(N, 1)

= V +
K−�(ξ − 2̄) + WK−�+1(N − K + 1, 1) + WK−1(N, 1)

= V +
K−�(ξ − 1̄) − WK−�(N − K, 1) + WK−�+1(N − K + 1, 1)

+ WK−1(N, 1). (39)

The last expression has replaced V +
K−�(ξ − 2̄) by V +

K−�(ξ − 1̄)−WK−�(N−K, 1). This follows
from (12) applied to V +

K−�(ξ − 1̄), where |ξ −1̄| = |ξ |−(K−�) = (N−�)−(K−�) = N−K .
Note that if K − � = 1, we have V +

K−�(ξ − 2̄) = V +
K−�(ξ − 1̄) = WK−�(N − K, 1) := 0 (cf.

(24)).
The advantage is that both the last expressions in (38) and (39) contain V +

K−�(ξ − 1̄), and
the rest are known computable quantities. Now (37) is equivalent to

WK(N, 1) − WK−1(N, 1) > WK−�+1(N − K + 1, 1) − WK−�(N − K, 1),

which by (23) is equivalent to

Q(N − K) > Q(N − K − 1).

This holds since Q(x) is an increasing function for x ≥ 0.

Case � ≥ 2 and ηj > 1. Note that (i, j) = (1, j), η = (1̄�, ξ), ηij = (1̄�, ξ) − ej + e1, and
ηji = (1̄�,ξ) + ej − e1. Note also that the entry ηj > 1 is an entry of ξ . We show (31) using
the following terms. First,

V +
K (1̄�, ξ) = V +

K (0̄�, ξ − 1̄) + WK(N, 1) = V +
K−�+1(0, ξ − 1̄) + WK(N, 1),

where we have intentionally kept one zero entry resulting in the dimension K − � + 1. This
can be expressed as

V +
K (1̄�, ξ) = V +

K−�+1(1, ξ) − WK−�+1(N − � + 1, 1) + WK(N, 1), (40)

where we have used the identity V +
K−�+1(1, ξ) = V +

K−�+1(0, ξ − 1̄) + WK−�+1(N − � + 1, 1)

which follows from (12).
Second, with e′

j denoting the (K − �)-dimensional vector of 0s except for a 1 at the location
where ηj appears in ξ ,

V +
K ((1̄�, ξ) − ej + e1) = V +

K (2, 1̄�−1, ξ − e′
j )

= V +
K (1, 0̄�−1, ξ − e′

j − 1̄) + WK(N, 1)

= V +
K−�+1(1, ξ − e′

j − 1̄) + WK(N, 1)

= V +
K−�+1(2, ξ − e′

j ) − WK−�+1(N − � + 1, 1) + WK(N, 1)

= V +
K−�+1((1, ξ) − e′′

j + e1) − WK−�+1(N − � + 1, 1)

+ WK(N, 1), (41)
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where e′′
j = (0, e′

j ) (the (K − � + 1)-dimensional vector of 0s except for a 1 at the location
where ηj appears in (1, ξ)), and the fourth equality follows from

V +
K−�+1(2, ξ − e′

j ) = V +
K−�+1(1, ξ − e′

j − 1̄) + WK−�+1(N − � + 1, 1).

Third,

V +
K ((1̄�, ξ) + ej − e1) = V +

K (0, 1̄�−1, ξ + e′
j )

= V +
K−1(1̄�−1, ξ + e′

j )

= V +
K−1(0̄�−1, ξ + e′

j − 1̄) + WK−1(N, 1)

= V +
K−�(ξ + e′

j − 1̄) + WK−1(N, 1)

= V +
K−�(ξ + e′

j ) − WK−�(N − � + 1, 1) + WK−1(N, 1)

= V +
K−�+1(0, ξ + e′

j ) − WK−�(N − � + 1, 1) + WK−1(N, 1)

= V +
K−�+1((1, ξ) + e′′

j − e1) − WK−�(N − � + 1, 1)

+ WK−1(N, 1), (42)

where e′′
j = (0, e′

j ). Note that we have brought the same terms in terms of K → K − � + 1.
Since the pair (i, j) = (1, j) satisfies {η1, ηj } �= {ηM1, ηM2}, it follows that the two entries 1
and ηj in (1, ξ) are not the pair consisting of the largest two values in (1, ξ). By the induction
hypothesis applied to the configuration (1, ξ) of dimension K − � + 1 < K , we have

V +
K−�+1(1, ξ) − 1

2 (V +
K−�+1((1, ξ) − e′′

j + e1) + V +
K−�+1((1, ξ) + e′′

j − e1)) − (1 − ηj )
2 > 0.

It remains to show that the extra terms that appear in (40)–(42) add up to a nonnegative term,
which means that

[−WK−�+1(N − � + 1, 1) + WK(N, 1)] − 1
2 ([−WK−�+1(N − � + 1, 1) + WK(N, 1)]

+ [−WK−�(N − � + 1, 1) + WK−1(N, 1)])
≥ 0

or, equivalently,

WK(N, 1) − WK−1(N, 1) ≥ WK−�+1(N − � + 1, 1) − WK−�(N − � + 1, 1). (43)

By (22), the left- and right-hand sides of (43) both equal Q(N − K). Thus, (43) holds as an
equality.

Case � = 1 and ηj ≥ 3. This treats a subcase of ηr ≥ 2 for all r > 1. The subcase ηj = 2
is treated in the next subsection. The reason we adopt ηj ≥ 3 is (45) where we reduce the
configuration by two units. Writing η = (1, ξ), note that all entries of ξ are greater than 1.
Since ηj ≥ 3, all entries in ξ − e′

j − 2̄ are nonnegative, where e′
j denotes the vector of all

entries equal to 0 except for a 1 at the location where ηj appears in ξ .
First,

V +
K (1, ξ) = V +

K (0, ξ − 1̄) + WK(N, 1) = V +
K−1(ξ − 1̄) + WK(N, 1). (44)
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Second, using ηj ≥ 3,

V +
K ((1, ξ) − ej + e1) = V +

K (2, ξ − e′
j )

= V +
K (0, ξ − e′

j − 2̄) + WK(N, 2) (by (15) with m = 2)

= V +
K−1(ξ − e′

j − 2̄) + WK(N, 2)

= V +
K−1(ξ − 1̄ − e′

j ) − WK−1(N − K − 1, 1) + WK(N, 2), (45)

where we have used the identity

V +
K−1(ξ − 1̄ − e′

j ) = V +
K−1(ξ − e′

j − 2̄) + WK−1(N − K − 1, 1).

Third,

V +
K ((1, ξ) + ej − e1) = V +

K (0, ξ + e′
j )

= V +
K−1(ξ + e′

j )

= V +
K−1(ξ − 1̄ + e′

j ) + WK−1(N, 1). (46)

We need to establish that

V +
K (1, ξ) − 1

2 (V +
K ((1, ξ) − ej + e1) + V +

K ((1, ξ) + ej − e1)) − (ηj − 1)2 > 0. (47)

By (44)–(46), the left-hand side of (47) equals A + B, where

A = V +
K−1(ξ − 1̄) − 1

2 (V +
K−1(ξ − 1̄ + e′

j ) + V +
K−1(ξ − 1̄ − e′

j )) − (ηj − 1)2 (48)

and

B = WK(N, 1) − 1
2 (−WK−1(N − K − 1, 1) + WK(N, 2) + WK−1(N, 1)). (49)

By (19), (23), and (49),

2B = 2WK(N, 1) − (−WK−1(N − K − 1, 1) + WK(N, 1) + WK(N − K, 1)

+ WK−1(N, 1))

= (WK(N, 1) − WK−1(N, 1)) − (WK(N − K, 1) − WK−1(N − K − 1, 1))

= Q(N − K) − Q(N − K − 2)

= 2(N − K)2.

So we have
B = (N − K)2. (50)

By (48) and (50), (47) is equivalent to

V +
K−1(ξ − 1̄) − 1

2 (V +
K−1(ξ − 1̄ + e′

j ) + V +
K−1(ξ − 1̄ − e′

j )) − (ηj − 1)2 + (N − K)2 > 0,

which follows from Lemma 2 in Section 7 (and concludes the proof of the most difficult case).
Note that N − K, K − 1, ξ − 1̄, ηj − 1, and e′

j here should be identified, respectively, with
N, K, η, ηj , and ej in (56) of Lemma 2. Note also that m(ξ) ≥ 2 implies that m(ξ − 1̄) ≥ 1
and N − K ≥ K − 1 as required by Lemma 2.
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We are left with the case � = 1 and ηj = 2. Without loss of generality, assume that j = 2.
Let �′ be the multiplicity of η2 = 2.

Case � = 1, ηj = 2, and �′ = 1. Write η = (1, 2, ξ) where all entries in ξ are greater
than 2. (Note that ξ cannot be vacuous since K ≥ 3.) We have, by (12),

V +
K (1, 2, ξ) = V +

K (0, 1, ξ − 1̄) + WK(N, 1)

= V +
K−1(1, ξ − 1̄) + WK(N, 1)

= V +
K−1(0, ξ − 2̄) + WK−1(N − K, 1) + WK(N, 1)

= V +
K−2(ξ − 2̄) + WK−1(N − K, 1) + WK(N, 1), (51)

and, by (15) (with m = 3),

V +
K (0, 3, ξ) = V +

K−1(3, ξ)

= V +
K−1(0, ξ − 3̄) + WK−1(N, 3)

= V +
K−2(ξ − 3̄) + WK−1(N, 3)

= V +
K−2(ξ − 2̄) − WK−2(N − 2K + 1, 1) + WK−1(N, 3), (52)

where the last line follows from

V +
K−2(ξ − 2̄) = V +

K−2(ξ − 3̄) + WK−2(N − 2K + 1, 1).

Since V +
K ((1, 2, ξ) − e1 + e2) = V +

K (0, 3, ξ) and V +
K ((1, 2, ξ) + e1 − e2) = V +

K (1, 2, ξ),
(31) is equivalent to V +

K (1, 2, ξ) > V +
K (0, 3, ξ) + 2. By (19), we have

WK−1(N, 3) = WK−1(N, 1) + WK−1(N − K + 1, 1) + WK−1(N − 2K + 2, 1).

By (23), (51), and (52),

V +
K (1, 2, ξ) − V +

K (0, 3, ξ)

= [WK(N, 1) − WK−1(N, 1)]
− [WK−1(N − K + 1, 1) − WK−1(N − K, 1)]
− [WK−1(N − 2K + 2, 1) − WK−2(N − 2K + 1, 1)]

= Q(N − K) − [Q(N − K − 1) − Q(N − 2K + 1)] − Q(N − 2K)

= [Q(N − K) − Q(N − K − 1)] + [Q(N − 2K + 1) − Q(N − 2K)]
≥ 12

> 2,

since Q(x) − Q(x − 1) = x(x + 1) ≥ 12 for x ≥ 3 and N − K ≥ 3.

Case � = 1, ηj = 2, and �′ ≥ 2. Let η = (1, 2, 2̄�′−1,ξ), where ξ is possibly vacuous.
We single out one 2 to explicitly carry out the transform corresponding to the pair (1, 2). Note
that ξ is of dimension K − �′ − 1 with |ξ | = N − 2�′ − 1. We have, by (12),

V +
K (1, 2, 2̄�′−1, ξ) = V +

K (0, 1, 1̄�′−1, ξ − 1̄) + WK(N, 1)

= V +
K−1(1, 1̄�′−1, ξ − 1̄) + WK(N, 1)

= V +
K−1(0, 0̄�′−1, ξ − 2̄) + WK−1(N − K, 1) + WK(N, 1)

= V +
K−�′−1(ξ − 2̄) + WK−1(N − K, 1) + WK(N, 1) (53)
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and

V +
K (0, 3, 2̄�′−1, ξ) = V +

K−1(3, 2̄�′−1, ξ)

= V +
K−1(1, 0̄�′−1, ξ − 2̄) + WK−1(N, 2)

= V +
K−�′(1, ξ − 2̄) + WK−1(N, 2)

= V +
K−�′(0, ξ − 3̄) + WK−�′(N − 2K + 2, 1) + WK−1(N, 2)

= V +
K−�′−1(ξ − 3̄) + WK−�′(N − 2K + 2, 1) + WK−1(N, 2)

= V +
K−�′−1(ξ − 2̄) − WK−�′−1(N − 2K + 1, 1)

+ WK−�′(N − 2K + 2, 1) + WK−1(N, 2), (54)

where the last equality follows from

V +
K−�′−1(ξ − 2̄) = V +

K−�′−1(ξ − 3̄) + WK−�′−1(N − 2K + 1, 1).

(Note that if ξ is vacuous, V +
K (1, 2, 2̄�′−1, ξ) and V +

K (0, 3, 2̄�′−1, ξ) reduce to WK−1(N −
K, 1)+WK(N, 1) and WK−1(N, 2), respectively.) As in the preceding case, (31) is equivalent to

V +
K (1, 2, 2̄�′−1, ξ) > VK(0, 3, 2̄�′−1, ξ) + 2. (55)

Noting by (19) that WK−1(N, 2) = WK−1(N, 1) + WK−1(N − K + 1, 1), we have, by (53)
and (54),

V +
K (1, 2, 2̄�′−1, ξ) − V +

K (0, 3, 2̄�′−1, ξ)

= [WK(N, 1) − WK−1(N, 1)] + [WK−1(N − K, 1) − WK−1(N − K + 1, 1)]
− [WK−�′(N − 2K + 2, 1) − WK−�′−1(N − 2K + 1, 1)]

= Q(N − K) + [Q(N − 2K + 1) − Q(N − K − 1)] − Q(N − 2K) (by (23))

≥ Q(N − K) − Q(N − K − 1)

= (N − K)(N − K + 1)

≥ 6,

since N − K ≥ 2, establishing (55). This completes the proof. �

7. Lemma 2

In this section we have the same notation V +
K (η) for the value function under S+ in dimension

K as in Section 6.

Lemma 2. For N ≥ K ≥ 2, for configuration η with m(η) ≥ 1 and N = |η|,
V +

K (η) − 1
2 (V +

K (η + ej ) + V +
K (η − ej )) − η2

j + N2 > 0. (56)

Proof. We first consider the special case N = K ≥ 2 and η = 1̄K . By (23),

2V +
K (η) − V +

K (η + ej ) − V +
K (η − ej )

= 2WK(K, 1) − WK(K + 1, 1) − WK−1(K − 1, 1)

= [WK(K, 1) − WK−1(K − 1, 1)] − [WK(K + 1, 1) − WK(K, 1)]
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= Q(K − 2) − Q(K − 1)

= −K(K − 1)

> 2(1 − K2)

= 2(η2
j − N2),

establishing (56) for this case. Next for the case K = 2, note by (5) that V +
K (η1, η2) =

U(η1, η2), where U(x, y) = ( 1
3 )xy(x2 + y2 − 2) as defined in (30). Then for N ≥ K = 2, the

left-hand side of (56) (with j = 1) can be expressed as

V +
K (η) − 1

2 (V +
K (η + e1) + V +

K (η − e1)) − η2
1 + N2

= U(η1, η2) − 1
2 (U(η1 + 1, η2) + U(η1 − 1, η2)) − η2

1 + (η1 + η2)
2

= −η1η2 − η2
1 + (η1 + η2)

2

= η1η2 + η2
2 > 0,

establishing (56). (The case with j = 2 is done by symmetry.) Thus, we have shown that (56)
holds for all 2 ≤ K ≤ N with either K = 2 or N = K .

To prove the general case withN > K ≥ 3 in a similar fashion as in the proof of Proposition 7,
we perform induction on K , and for fixed K , induction on N . Specifically, with 3 ≤ K < N

fixed, suppose that (56) holds for all 2 ≤ K ′ ≤ N ′ with either K ′ < K or K ′ = K and N ′ < N .
Then we need to prove that (56) holds for (K, N).

Case m = m(η) ≥ 2 or m = 1 < ηj . As in (32)–(34), if m ≥ 2 or m = 1 < ηj , we may
apply the induction step immediately for η − 1̄ for which K ′ (the number of nonzero entries in
η − 1̄) is at most K and N ′ := |η − 1̄| = N − K < N . Clearly, N ′ ≥ K ′ ≥ 1. In the special
case K ′ = 1 (arising when m = 1 < ηj and ηi = 1 for all i �= j ) for which the induction
hypothesis does not apply, we note that η, η + ej , and η − ej are, respectively, the extremal
configurations ζ1,K,N , ζ1,K,N+1, and ζ1,K,N−1, so

V +
K (η) = WK(N, 1), V +

K (η + ej ) = WK(N + 1, 1), V +
K (η − ej ) = WK(N − 1, 1).

The left-hand side of (56) equals C + D, where C := −η2
j + N2 = −(N − K + 1)2 + N2

(since ηj = N − K + 1), and

D : = WK(N, 1) − 1
2 (WK(N + 1, 1) + WK(N − 1, 1)) (57)

= 1
2 ([WK(N, 1) − WK(N − 1, 1)] − [WK(N + 1, 1) − WK(N, 1)])

= 1
2 ([Q(N − 2) − Q(N − K − 1)] − [Q(N − 1) − Q(N − K)]) (by (23))

= 1
2 ([Q(N − K) − Q(N − K − 1)] − [Q(N − 1) − Q(N − 2)])

= 1
2 (N − K)(N − K + 1) − 1

2N(N − 1). (58)

It follows that C + D = g(N) − g(N − K + 1) > 0, where

g(x) := x2 − 1
2x(x − 1) (59)

is an increasing function in x > 0. This establishes (56) for K ′ = 1.
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We now consider N ′ ≥ K ′ ≥ 2. Let η′ denote the K ′-dimensional vector derived from η− 1̄
by deleting all zero entries, and let e′

j be the K ′-dimensional vector of 0s except for a 1 at the
location where ηj − 1 appears in η′. Then m(η′) ≥ 1 and |η′| = N − K = N ′ ≥ K ′ ≥ 2. By
the induction hypothesis applied to η′ (for which either 2 ≤ K ′ < K or K ′ = K and N ′ < N ),
we have

α : = V +
K (η − 1̄) − 1

2 (V +
K (η − 1̄ + ej ) + V +

K (η − 1̄ − ej ))

= V +
K ′(η′) − 1

2 (V +
K ′(η′ + e′

j ) + V +
K ′(η′ − e′

j ))

> (ηj − 1)2 − (N − K)2. (60)

Since, by (12),

V +
K (η) = V +

K (η − 1̄) + WK(N, 1), V +
K (η + ej ) = V +

K (η − 1̄ + ej ) + WK(N + 1, 1),

V +(η − ej ) = V +
K (η − 1̄ − ej ) + WK(N − 1, 1),

the left-hand side of (56) can be expressed as

α + WK(N, 1) − 1
2 (WK(N + 1, 1) + WK(N − 1, 1)) − η2

j + N2

> ((ηj − 1)2 − (N − K)2) + D − η2
j + N2 (by (57) and (60))

= D + N2 − (N − K)2 − 2ηj + 1

≥ D + N2 − (N − K)2 − 2(N − K + 1) + 1 (since ηj ≤ N − K + 1)

= 1
2 (N − K)(N − K + 1) − 1

2N(N − 1) + N2 − (N − K + 1)2 (by (58))

= g(N) − g(N − K + 1)

> 0 (by (59)).

This completes the proof for the case m ≥ 2 or m = 1 < ηj .

Case m = 1 = ηj . Let � be the multiplicity of the minimum value 1. Without loss of
generality, assume that j = 1. Write η = (1̄�,ξ) = (1, 1̄�−1,ξ), where ξ is a vector of
dimension K −� with m(ξ) ≥ 2. Note that ξ cannot be vacuous (since N > K), so K −� > 0.

By (12),

V +
K (1, 1̄�−1, ξ) = V +

K (0, 0̄�−1, ξ − 1̄) + WK(N, 1) = V +
K−�(ξ − 1̄) + WK(N, 1), (61)

V +
K (0, 1̄�−1, ξ) = V +

K−1(1̄�−1, ξ) = V +
K−1(0̄�−1, ξ − 1̄) + WK−1(N − 1, 1)

= V +
K−�(ξ − 1̄) + WK−1(N − 1, 1), (62)

V +
K (2, 1̄�−1, ξ) = V +

K (1, 0̄�−1, ξ − 1̄) + WK(N + 1, 1)

= V +
K−�+1(1, ξ − 1̄) + WK(N + 1, 1)

= V +
K−�+1(0, ξ − 2̄) + WK−�+1(N − K + 1, 1) + WK(N + 1, 1)

= V +
K−�(ξ − 2̄) + WK−�+1(N − K + 1, 1) + WK(N + 1, 1)

= V +
K−�(ξ − 1̄) − WK−�(N − K, 1) + WK−�+1(N − K + 1, 1)

+ WK(N + 1, 1), (63)

where the last equality follows from the identity

V +
K−�(ξ − 1̄) = V +

K−�(ξ − 2̄) + WK−�(N − K, 1).
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(Note that, by (24), ifK−� = 1, we haveV +
K−�(ξ−2̄) = V +

K−�(ξ−1̄) = WK−�(N−K, 1) = 0.)
By (61)–(63),

β : = V +
K (1, 1̄�−1, ξ) − 1

2 (V +
K (0, 1̄�−1, ξ) + V +

K (2, 1̄�−1, ξ))

= WK(N, 1) − 1
2 (WK−1(N − 1, 1) − WK−�(N − K, 1)

+ WK−�+1(N − K + 1, 1) + WK(N + 1, 1))

= D + 1
2 (WK(N − 1, 1) − WK−1(N − 1, 1))

− 1
2 (WK−�+1(N − K + 1, 1) − WK−�(N − K, 1)) (by (57))

= D + 1
2Q(N − K − 1) − 1

2Q(N − K − 1)

= D.

Thus, the left-hand side of (56) is β − η2
1 + N2, which can be expressed as

D − 1 + N2 ≥ D − (N − K + 1)2 + N2

= 1
2 (N − K)(N − K + 1) − 1

2N(N − 1) − (N − K + 1)2 + N2 (by (58))

= g(N) − g(N − K + 1)

> 0 (by (59)).

This concludes the proof of the lemma. �
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