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Abstract. While attempting to better understand the 3-dimensional structure of the mam-
malian nucleus as well as a rigid-body kinematics application, the authors encountered a
naturally arising generalized version of the Wahba (1965) problem concerned with bring-
ing multiple sets of labeled points into close coincidence after making appropriate rotations
of these sets of labeled points. Our solution to this generalized problem entails the develop-
ment of a computer algorithm, described and analyzed herein, that generalizes and utilizes an
analytic formula, derived by Grace Wahba (1965), for determining space satellite attitudes,
that task being to find a suitable rotation that brings one set of m labeled points into close
coincidence, in a least-squares sense, with a second set of m labeled points.

1. INTRODUCTION. Given k + 1 sets S0,S1, . . . ,Sk , each consisting of m n-
dimensional labeled points (k ≥ 1, m ≥ 2, n ≥ 2), the task is to independently rotate
each of the latter k sets so as to bring all of the k + 1 sets into close coincidence in a
least-squares sense. If we denote the points in S j by {a j�, � = 1, . . . , m}, j = 0, . . . , k,
then the task is to find k rotation matrices M1, . . . , Mk that simultaneously minimize
the (weighted) loss function

S(M1, . . . , Mk) =
∑

0≤i< j≤k

m∑
�=1

wi j�||Mi ai� − M j a j�||2, (1)

where M0 = In (the n × n identity matrix), and where ||v|| denotes the Euclidean norm
of vector v.

When k = 1, this is known as “the Wahba problem,” thus explaining why we
refer to the problem of minimizing (1) as “the generalized Wahba problem” (GWP).
Grace Wahba [17], as a graduate student, using nothing more than linear algebra and
some clever reasoning, obtained an explicit formula for the rotation matrix M1, while
addressing a compelling need by space scientists, in 1965, to estimate satellite atti-
tudes: given two sets of m labeled n-dimensional points {a1, . . . , am} and {b1, . . . , bm},
find a rotation matrix M that brings the second set into the best least-squares coinci-
dence with the first, i.e., find a rotation matrix M that minimizes Wahba’s (unweighted)
loss function S(M) = ∑m

�=1 ||a� − Mb�||2. See Figure 1 with m = 4 and n = 3, where
the unit vectors a� (� = 1, 2, 3, 4) are representations, in the satellite reference frame,
of the directions of four observed objects, and the unit vectors b� (� = 1, 2, 3, 4) are
representations of the corresponding observations in a known reference frame.

See [4] for an elegant analytic solution for the optimizer M in the Wahba problem,
the direct use of which can sometimes make an accurate computation of M difficult.
Markley [8] provides a computationally more accurate approach based on a singular
value decomposition of an n × n matrix with n = 3 (in the context of satellite attitude
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Figure 1. Known (left) and satellite (right) reference frames.

estimation). (For an essentially trivial description of the required computations, see
http://en.wikipedia.org/wiki/Wahba%27s problem.) Note that the optimization prob-
lem and related computational methods require no restriction on the vectors a� and b�

while they are unit vectors in the context of satellite attitude estimation.
Finally, as a segue into applications, we mention that the Wahba problem was

extended in the robotics literature (cf. Horn [5] and Umeyama [15]) to include a trans-
lation vector in addition to the rotation matrix, which can be easily reduced to the orig-
inal Wahba problem. In our formulation of the GWP, we may also include translation
vectors along with the rotation matrices, one for each set of labeled points. With minor
modifications, our algorithmic approach (to be described and discussed in Section 3)
can also be used to deal with this extended version.

The GWP opens up applications to rigid-body kinematics, with “landmarks.” For
instance, imagine the complicated wrist motion of a baseball pitcher while deliver-
ing a curveball to an awaiting batter. The set of landmarks could be chosen in close
proximity to the largest carpal (wrist) bone, “capitate.” But, in order to secure more
accurate calculations, a better choice would appear to be to choose a landmark in close
proximity to each of the eight carpal bones, thereby providing a broader base, the only
disadvantage being that this collection of landmarks, jointly, is not fully rigid, albeit
nearly so. Further, imagine, by some means that we are able to measure, with good
precision, the 3-dimensional locations of these eight landmarks at consecutive times
t0 < t1 < · · · < tk , for k ≥ 1. The computational task is to describe, as accurately as
possible (in a least-squares sense), the components of linear and rotational motions of
the pitcher’s wrist over each of the time intervals [t0, t1], [t1, t2], . . . , [tk−1, tk]. This
task can easily be formulated as an extended version of the GWP. See Spoor and
Veldpaus [14] and Veldpaus et al. [16] for variant versions of the special case k = 1
modeling (nearly) rigid-body motion.

A simplified rigid-body example for k = 2, m = 4, and n = 3 appears in Figure 2,
with a regular tetrahedron, and with landmarks shown in red, green, yellow and blue
(labeled 1, 2, 3, and 4), located at the four vertices. For additional simplification we are
suppressing any discussion of linear translations (i.e., we assume that the center of the
tetrahedron, shown in black in the figure, is fixed). Thus, there are two rotation matrices
to be computed, M1 and M2, describing, respectively, the rotations from the first to
second and from the first to third “snapshots” (appearing in Figure 2) of the tetrahedron
in rotational motion. Now, if the 3-dimensional data describing the locations of all of
the vertices were error free, then the minimum value of S(M1, M2) would necessarily
be equal to 0, and the minimizer would identify precisely accurate rotation matrices
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Figure 2. Rotations of a regular tetrahedron.

M1 and M2. But measurement errors are to be expected, and the resulting ambiguity
in the data can be resolved by minimizing S(M1, M2) (that is, by seeking a best least-
squares fit of the data, subject to the requirement that M1 and M2 are 3 × 3 rotation
matrices).

For rigid-body applications, it makes sense to adjust the weights wi j� in (1) appro-
priately to reflect the fact that one is dealing with a sequence of contiguous, time-
ordered rotational motions, such as by using larger weights when j − i is small.

Cellular nuclei of eukaryotic organisms, where chromosomes reside, provide the
setting for an entirely different application of the GWP. The focus of attention is on the
ends of chromosomes, called telomeres. While it is known that telomeres are anchored
to the nuclear envelope (cf. Alsheimer et al. [1], Crabbe et al. [2], and Moens et al.
[9]), so as to facilitate the required motion of chromosomes within the cellular nucleus
during the various phases of cellular activity, the anchoring details are not very well
understood. However, specific proteins are being identified as playing key roles in the
association of telomeres with the nuclear envelope (cf. Hou et al. [6], Kind and van
Steensel [7], Postberg et al. [10], and Schmidt et al. [12]). It is tempting to suspect,
but presently it cannot be ascertained, whether the arrangement of anchoring points
is unique, with each telomere occupying a fixed attachment location to the nuclear
envelope relative to all other telomeres, an arrangement that is common to all nuclei
of the given type. We shall refer to this suspected arrangement as the “fixed anchoring
points” (FAP) hypothesis. To be specific, assume that we are observing k + 1 cellu-
lar nuclei. Now, if it is possible to independently rotate the latter k nuclei, together
with their telomere attachments, so as to bring their corresponding telomere locations
into close coincidence with the corresponding telomere locations in the first cellular
nucleus, this would provide strong evidence in support of the FAP hypothesis. To be
even more specific, we might compute a function like S(M1, . . . , Mk) in (1), and if the
minimum possible value of this function is larger than some specified threshold value,
then we might reasonably view this as providing a sound statistical basis for rejecting
the FAP hypothesis.

As a practical matter, it is not presently possible to compute the 3-dimensional
locations of telomeres within their cellular nuclei. So this appealing approach toward
testing the FAP hypothesis is not presently feasible to implement. However, one of
the authors of this paper has experimentally secured 2-dimensional projections of the
missing 3-dimensional data on telomere locations, and, with this incomplete data,
the current authors have been able to convincingly reject the alternative hypothesis that
the attachment points of telomeres to the nuclear envelope occur randomly. Unfortu-
nately, this provides scant evidence for the validity of the FAP hypothesis.
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Besides the GWP discussed here, we should mention that other kinds of generaliza-
tions of the Wahba problem have been discussed in the literature (cf. Shuster [13] and
Psiaki [11]).

Before explaining our successful algorithmic solutions to the GWP, we should point
out that attempts by us to directly minimize S(M1, . . . , Mk) analytically, when k ≥ 2,
have met with failure, a task that appears to be impossible, in general. Something more
than analytical reasoning is needed. But, interestingly, Wahba’s elegant analytic solu-
tion available for k = 1 does play a decisive role in the execution of the algorithmic
solutions for general k. For the task of minimizing the sum in (1) over all possible
rotation matrices M1, . . . , Mk can be accomplished algorithmically via repeated suit-
ably designed applications of the analytic methodology used for minimizing S(M)

over M (the methodology for the case k = 1). The basic idea, in each step, is to hold
k − 1 of the M’s fixed and perform a minimization with respect to the remaining M ,
doing this repeatedly while cycling through all of the M’s. Our experience with the
algorithmic approach has been that we routinely obtain a rapid convergence to the
desired minimum, obtaining, in the process, very accurate limiting values for the rota-
tion matrices M1, . . . , Mk . In Section 3 we describe a couple of specific algorithms for
cycling through the M’s, and establish a convergence result for the second of these.
While neither of the two algorithms is guaranteed to solve the minimization problem,
again our experience has been that convergence to a global minimum routinely occurs
whenever one repeatedly visits all the M’s, even if this cycling is performed randomly.
In short, we have found that our algorithmic approach is efficacious and robust with
respect to cycling variants.

However, as we discuss in Section 3, there are, apparently, rare, exceptional cases
of data for which the convergence of S(M1, . . . , Mk) can be to something other than
the desired global minimum, depending on the starting values of the rotation matrices
M1, . . . , Mk and the cycling methodology employed. A global minimum can always
be found in these cases, but the task is more challenging.

The rest of this paper is organized as follows. As a preliminary to the description
and discussion of our algorithmic approach, we present in Section 2 the solution to the
Wahba problem via singular value decomposition. In Section 3 we present a couple
of algorithms and investigate the convergence issue along with some discussion of
numerical results based on extensive simulation studies. Section 4 contains concluding
remarks. Proofs of three technical lemmas are relegated to an appendix.

2. SOLUTION TO THE WAHBA PROBLEM. In this section we present the
solution to the Wahba problem of minimizing S(M) = ∑m

�=1 ||a� − Mb�||2 over
M ∈ SO(n) via singular value decomposition, where SO(n) denotes the group of all
n × n rotation matrices (orthogonal matrices whose determinants are equal to 1). This
is an extension of Markley’s [8] approach to general n. See also de Ruiter and Forbes
[3] for discussions of different approaches. To solve the Wahba problem, we need the
following lemmas, whose proofs are relegated to the appendix.

Lemma 1. For a diagonal matrix D = diag(δ1, . . . , δn) with δ1 ≥ δ2 ≥ · · · ≥ δn−1 ≥
|δn|, we have maxG∈SO(n) tr(G D) = ∑n

i=1 δi , i.e., the maximum value is attained when
G is the identity matrix.

Lemma 2. For a diagonal matrix D = diag(δ1, . . . , δn) with δ1 ≥ · · · ≥ δn ≥ 0,
the maximum value of tr(G D) over all orthogonal matrices G with determinant −1
equals

∑n−1
i=1 δi − δn, i.e., the maximum value is attained when G = J(−1), the n × n

identity matrtix with its last diagonal element replaced by −1.
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Since S(M) = ∑m
�=1(||a�||2 + ||b�||2) − 2

∑m
�=1 aT

� Mb�, it is apparent that mini-
mizing S(M) is equivalent to maximizing

S̃(M) =
m∑

�=1

aT
� Mb� = tr(AT M B), (2)

where the notations (·)T and tr(·) denote a matrix transpose and a matrix trace, respec-
tively, and where A = (a1, . . . , am) and B = (b1, . . . , bm) are n × m matrices. Given
any n × n (nonnegative-definite) diagonal matrix D = diag(δ1, . . . , δn) with δ1 ≥
δ2 ≥ · · · ≥ δn ≥ 0, it follows from Lemma 1 that tr(G D) = ∑n

i=1 Giiδi is maxi-
mized over all rotation matrices G = (Gi j ) ∈ SO(n) when G = J(1)(= In), the n × n
identity matrix (which attains the maximum value

∑n
i=1 δi ). Moreover, by Lemma 2,

tr(G D) is maximized over all orthogonal matrices G whose determinants are equal to
−1 when G = J(−1), the n × n identity matrix with its last diagonal element replaced
by −1 (which attains the maximum value

∑n−1
i=1 δi − δn). Now, let U DV T be a singular

value decomposition of the matrix product ABT , where the diagonal elements of the
diagonal matrix D satisfy δ1 ≥ δ2 ≥ · · · ≥ δn ≥ 0 and where U and V are appropri-
ately chosen orthogonal matrices of dimension n × n. Observe, for any rotation matrix
M , that

S̃(M) = tr(AT M B) = tr((AT M B)T ) = tr(BT MT A) = tr(MT (ABT ))

= tr(MT (U DV T )) = tr((V T MT U )D) = tr(G D),

where G = V T MT U is orthogonal with determinant det (G) = det (U )det (V ). As M
ranges over all rotation matrices, G ranges over all orthogonal matrices with determi-
nant det (U )det (V ). It follows that S̃(M) is maximized, and S(M) is minimized, over
all rotation matrices M ∈ SO(n) when M = U J(det (U )det (V ))V T . This is the solution to
Wahba’s (unweighted) problem.

3. ALGORITHMS AND CONVERGENCE RESULTS FOR THE GENERAL-
IZED WAHBA PROBLEM. We now consider the generalized Wahba problem of
minimizing S(M1, . . . , Mk) in (1) over (M1, . . . , Mk) ∈ SO(n) × · · · × SO(n). Let-
ting wi j� = w j i� for i > j , we may rewrite (1) as

S(M1, . . . , Mk) =
∑

0≤i< j≤k

m∑
�=1

wi j�(||ai�||2 + ||a j�||2)

−
∑

0≤i �= j≤k

m∑
�=1

wi j�(Mi ai�)
T (M j a j�).

Hence, for each fixed j ∈ {1, . . . , k},

S(M1, . . . , Mk) = −2
∑

i∈{0,...,k}\{ j}

m∑
�=1

wi j�(Mi ai�)
T (M j a j�) + S(− j)

= −2 tr(BT
j M j A j ) + S(− j),

where A j = (a j1, . . . , a jm) (matrix of dimension n × m), the �th column of the n × m
dimensional matrix Bj is

∑
i∈{0,...,k}\{ j} wi j�Mi ai� (� = 1, . . . , m), and S(− j) is a sum of
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Table 1. An example for A2 with k = 5 :

4 5 2 2 2 2 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 2 1 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2 4 4 5 5 5 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 5 1 3 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 5 3 3 1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

terms that do not involve M j . It follows that minimizing S(M1, . . . , Mk) over M j with
the other Mi ’s fixed is equivalent to maximizing tr(BT

j M j A j ) over M j (cf. (2) with A
and B replaced by Bj and A j , respectively), and can be readily solved using any avail-
able algorithm (e.g., Markley’s singular value decomposition method in Section 2). As
described for the fixed index j ∈ {1, . . . , k}, we shall refer to this approach toward
reducing the size of S(M1, . . . , Mk) as a j-step, applied to a general current state
(M1, . . . , Mk). Our algorithm for minimizing S(M1, . . . , Mk) now takes shape: (i) start
with an arbitrary state (configuration) (M0

1 , . . . , M0
k ) ∈ SO(n) × · · · × SO(n), called

the seed; then (ii) update this state through a sequence of j-steps, updating one rotation
matrix at a time, cycling through the possible choices for j in some prescribed manner.
What we will call algorithm A1 uses the trivial cycling strategy: cycling through the
indices {1, . . . , k} repeatedly, starting with the index 1. What we will call algorithm A2

cycles through these indices by choosing at each step a “best possible j-step,” i.e., one
that reduces the current value of S(M1, . . . , Mk) as much as possible. More precisely, if
the current (best possible) j-step is for j = j ′ ∈ {1, . . . , k}, then to determine the next
(best possible) j-step, we need to compare all the j-steps with j ∈ {1, . . . , k} \ { j ′}
and choose one that yields the smallest (updated) value of S(M1, . . . , Mk). It follows
that the two algorithms A1 and A2 coincide for k = 2, while algorithm A2 is more
time consuming for k > 2.

For algorithm A2, unlike for algorithm A1, the frequency distribution of j-steps per-
formed ( j = 1, . . . , k) could become significantly uneven when k ≥ 3. But empirical
evidence indicates otherwise. What we observe is that, after a few j-steps, the pattern
of j values chosen by the algorithm starts to repeat according to some permutation of
the integers 1, . . . , k, continuing in this way until the current values of S(M1, . . . , Mk)

cease to change (apart from round-off errors). Effectively, convergence has occurred.
Table 1 is a typical example for k = 5, with the values of j broken up into 40 ver-
tical blocks of 5, describing a total of 200 j-steps. It can be seen that the process of
repetition of the permutation (5, 3, 2, 4, 1) begins with the 42nd j-step.

Whatever the cycling strategy used, we shall let (Mr
1 , . . . , Mr

k ) denote the state
(rotation matrix configuration) at the end of the r th step, r = 1, 2, . . . . Clearly
S(Mr

1 , . . . , Mr
k ) decreases in r . So two natural questions arise: (1) As r → ∞, does

(Mr
1 , . . . , Mr

k ) converge? and (2) Does

lim
r→∞

S(Mr
1 , . . . , Mr

k ) = min
M1,...,Mk

S(M1, . . . , Mk)

hold? Since these remain open questions for algorithm A1, we shall focus our attention
on algorithm A2, addressing them from a theoretical standpoint as well as we presently
can.

An illustrative example for the algorithms Ai , for i = 1, 2, clarifies what can go
wrong. For k = 2, m = 4, and n = 3, we repeatedly computed the minimizing config-
urations (M∗

1 , M∗
2 ) for randomly generated 3 × 4 data A j , for j = 0, 1, 2, twice with

the same data, starting each trial with a different set of seeds, and checking for possible
disagreement. For simplicity we set all of the weights wi j� in (1) equal to 1. (Note that
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Table 2. An example for A1 = A2 with k = 2 :

Two Distinct Seed-Dependent Limits for the Same Data
A0 A1 A2

0.56 0.42 0.99 0.62 −0.09 −0.36 −0.45 −0.90 0.00 0.83 −0.40 −0.40
0.82 0.91 −0.09 0.79 0.72 −0.59 −0.06 −0.36 −0.91 0.11 −0.54 0.44
0.13 0.00 −0.07 −0.01 −0.69 −0.72 0.89 −0.23 0.40 0.55 −0.74 −0.80

M1 seed M2 seed M1 limit M2 limit
1.000 0.000 0.000 1.000 0.000 0.000 −0.670 −0.529 0.520 0.049 −0.080 −0.996
0.000 1.000 0.000 0.000 1.000 0.000 −0.427 −0.298 −0.854 0.829 0.560 −0.004
0.000 0.000 1.000 0.000 0.000 1.000 0.607 −0.795 −0.026 0.557 −0.825 0.094

M1 seed M2 seed M1 limit M2 limit
0.465 −0.774 −0.429 −0.861 −0.435 0.263 −0.900 0.229 0.370 −0.762 −0.512 −0.396
0.491 0.629 −0.603 0.251 −0.814 −0.525 −0.326 0.209 −0.922 −0.139 −0.468 0.873
0.736 0.070 0.673 0.442 −0.386 0.810 −0.289 −0.951 −0.114 −0.632 0.720 0.285

the two algorithms are the same for k = 2.) On the 302nd repetition of this process, we
finally encountered a case of disagreement, as shown in Table 2. The pair of seeds used
in the second trial are randomly generated rotation matrices. As the table shows, these
give rise to a pair of limiting rotation matrices that differ from those resulting from
the simple pair of seeds (I3, I3) used for the first trial where I3 is the 3 × 3 identity
matrix. The limiting values of S(Mr

1 , Mr
2) (as r → ∞) for this example, are 12.81672

and 12.52939, respectively (with an approximate ratio of 1.02). Extensive empirical
studies of this sort, conducted by the authors with randomly generated data and trial
seeds, have never produced more than two different limiting configurations (M∗

1 , M∗
2 )

when k = 2, m = 4, and n = 3. So we are confident that the smaller value 12.52939,
for this example, corresponds to a genuine global minimum for the sum in (1).

What the two limiting configurations appearing in Table 2 have in common is
important to note. They both have the appearance of being a global-minimum con-
figuration in that no further improvement (reduction of S(M∗

1 , M∗
2 )) is possible by the

application of an additional j-step. But, of course, one truly is and the other is not
a global-minimum configuration. In what follows, we will describe both configura-
tions as “stationary configurations.” This is an important concept for us to consider
at this point because our methodology naturally leads to the discovery of stationary
configurations that might or might not be global-minimum configurations. Whether a
stationary configuration is truly a global-minimum configuration depends on the seed
and the cycling strategy chosen.

A configuration (M∗
1 , . . . , M∗

k ) is said to be stationary in SO(n) × · · · × SO(n)

(with respect to the sets of points {a j�} and the weights wi j�) if for each j = 1, . . . , k,

S(M∗
1 , . . . , M∗

k ) ≤ S(M∗
1 , . . . , M∗

j−1, M j , M∗
j+1, . . . , M∗

k ) for all M j �= M∗
j . (3)

A configuration (M∗
1 , . . . , M∗

k ) is said to be strictly stationary if the inequality (3)
is strict for each j = 1, . . . , k. Note that (M∗

1 , . . . , M∗
k ) is a (strictly) stationary

configuration if and only if for each j = 1, . . . , k, M∗
j is the (unique) minimizer

of S(M∗
1 , . . . , M∗

j−1, M j , M∗
j+1, . . . , M∗

k ) over M j . Note also that if (M∗
1 , . . . , M∗

k )

minimizes S(M1, . . . , Mk), then it is a stationary configuration. To address the con-
vergence issues, we need to impose a metric on the (compact) space SO(n) × · · · ×
SO(n). For convenience, we adopt the norm |M | := max1≤i, j≤n |Mi j | and the metric
d((M1, . . . , Mk), (M ′

1, . . . , M ′
k)) := max{|M j − M ′

j | : j = 1, . . . , k}.
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Theorem 1. Let P = {P1, . . . , Pν} be the set of all stationary configurations which
is assumed to be finite with cardinality ν. Further assume that for each pair Pi and
Pj with i �= j , either S(Pi ) �= S(Pj ) or one of Pi and Pj is strictly stationary. Then
the sequence of configurations Qr := (Mr

1 , . . . , Mr
k ) generated by algorithm A2 con-

verges to a stationary configuration (which may depend on the initial configuration
(M0

1 , . . . , M0
k )).

To prove Theorem 1, we need the following lemma whose proof is relegated to the
appendix.

Lemma 3. Suppose that a subsequence {Qr�} converges to Q ′ = (M ′
1, . . . , M ′

k). Then
Q ′ is stationary and S(Q ′) = limr→∞ S(Qr ).

Proof of Theorem 1. To prove that Qr = (Mr
1 , . . . , Mr

k ) converges, it suffices by com-
pactness of SO(n) × · · · × SO(n) to show that any two convergent subsequences
{Qr�} and {Qr ′

u
} with respective limits Q ′ = (M ′

1, . . . , M ′
k) and Q ′′ = (M ′′

1 , . . . , M ′′
k )

satisfy Q ′ = Q ′′. By Lemma 3, Q ′ = Pi and Q ′′ = Pj for some i and j , and S(Q ′) =
S(Q ′′) = c := limr→∞ S(Qr ). Suppose i �= j , i.e., Q ′ = Pi �= Pj = Q ′′. We will show
that this leads to a contradiction. Since S(Pi) = c = S(Pj ), we have by the assumption
of the theorem that one of Pi and Pj is strictly stationary. Without loss of generality,
assume i = 1, j = 2, and P1 is strictly stationary. Let P ′ = {Ph ∈ P : S(Ph) = c}.
Without loss of generality, further assume P ′ = {P1, P2, . . . , Pν′ } where 2 ≤ ν ′ ≤ ν.
For each h = 2, . . . , ν ′, P1 and Ph differ in at least two components since P1 is strictly
stationary and S(P1) = S(Ph). Write Ph = (M (h)

1 , . . . , M (h)

k ), for h = 1, . . . , ν ′. (Note
that (M ′

1, . . . , M ′
k) = Q ′ = P1 = (M (1)

1 , . . . , M (1)

k ) and (M ′′
1 , . . . , M ′′

k ) = Q ′′ = P2 =
(M (2)

1 , . . . , M (2)

k ).) Let ε > 0 be the smallest one among all nonzero values of |M (1)

i −
M (h)

i |, for i = 1, . . . , k and h = 2, . . . , ν ′. Consider the neighborhood

Rh := {(O1, . . . , Ok) ∈ SO(n) × · · · × SO(n) :

d((O1, . . . , Ok), (M (h)

1 , . . . , M (h)

k )) < ε/2},

for h = 1, . . . , ν ′. Clearly R1 ∩ Rh = ∅, for h = 2, . . . , ν ′. Furthermore, since P1 and
Ph differ in at least two components for h = 2, . . . , ν ′, every configuration in R1 must
differ in two or more components from any configuration in R2 ∪ · · · ∪ Rν′ . By Lemma
3, every convergent subsequence of {Qr } converges to some Ph ∈ P ′. It follows that
for some K > 0,

Qr ∈ R1 ∪ R2 ∪ · · · ∪ Rν′ for all r > K (4)

(since otherwise there would be a convergent subsequence with a limit /∈ R1 ∪ R2 ∪
· · · ∪ Rν′). Since Qr� converges to Q ′ = P1, there is an �′ such that r�′ > K and
Qr�′ ∈ R1. We claim that (Mr

1 , . . . , Mr
k ) ∈ R1 for all r ≥ r�′ > K , which contradicts

(M
r ′
u

1 , . . . , M
r ′
u

k ) → P2. To establish the claim, we proceed by induction. The claim
holds for r = r�′ . Suppose Qr ∈ R1 for r ≥ r�′ > K . We need to show that Qr+1 ∈ R1.
Note by (4) that Qr+1 ∈ R1 ∪ R2 ∪ · · · ∪ Rν′ . Also by the definition of A2, Qr and
Qr+1 differ only in one component. As noted earlier, every configuration in R1 must
differ in two or more components from any configuration in R2 ∪ · · · ∪ Rν′ , implying
that Qr+1 ∈ R1. This completes the proof.
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While for technical reasons we can only address the convergence issue for algo-
rithm A2 (instead of A1) as in Theorem 1, this result provides theoretical support of
convergence for A1 as the two algorithms are close cousins. (Recall that A1 = A2 for
k = 2.) Indeed, we have performed extensive simulation studies with n = 3, and for
most of the simulation studies we have used algorithm A1 (instead of A2), and always
observed apparent convergence of (Mr

1 , . . . , Mr
k ) as r gets large. It should be remarked

that if the sequence of (Mr
1 , . . . , Mr

k ) generated by algorithm A1 converges, then the
limiting configuration is necessarily stationary.

Theorem 1 assumes that the number of stationary configurations is finite. To get
some idea of how many stationary configurations there can be in the worst possible
data situation, we carried out extensive simulation studies for m = 4, n = 3, and
k = 2, . . . , 10, and found that the maximum numbers of stationary configurations
are 2, 2, 3, 3, 4, 4, 4, 4, 5, respectively. This is of practical importance when one is
worried that the stationary configuration found is not a global-minimum configura-
tion. One can simply use algorithm A1 repeatedly with randomly generated seeds. For
k = 5, m = 4, and n = 3 as an example, one is very likely to end up with the same
stationary configuration over and over again, because there is only one stationary con-
figuration (which is necessarily the global-minimum configuration). But if one finds
a second stationary configuration, then the configuration that yields the larger value
of S(M1, . . . , M5) can be discarded. Continuing, no new stationary configuration is
likely to be found, but if a third stationary configuration is encountered, one can again
discard the configuration corresponding to the larger value of S(M1, . . . , M5). At this
point, one can continue with randomly generated seeds, but this table says that, based
on an enormous number of examples we have checked, the maximum number of sta-
tionary configurations for k = 5 is 3, and new ones will not be found by continuing.
So as a practical matter, one is bound by persistence (even in the worst possible data
situation) to find the global minimum one seeks. Lest it seem to the reader that this
process, as outlined (to make certain that the true global minimum is found), will be
time consuming, the actual computational time on a PC will be a few minutes at most,
and probably considerably less, simply because algorithm A1 converges so rapidly.
We concede that the above discussion is based solely on empirical evidence without
rigorous theoretical justification.

Due to the possible presence of multiple stationary configurations, one can never
know for sure if the limiting (stationary) configuration of (Mr

1 , . . . , Mr
k ) corresponds

to the global minimum of S(M1, . . . , Mk). However, it appears to us that this issue is
likely to be insignificant in practice for the following reasons:

• for the vast majority of the simulated data sets, there appears to be only one
stationary configuration which would necessarily correspond to the global minimum
of S(M1, . . . , Mk);

• in the rare cases when multiple stationary configurations arise, evidence suggests
that the k + 1 sets of labeled points in the corresponding data set {a j�, � = 1, . . . , m},
for j = 0, . . . , k, cannot be brought into very close coincidence by properly cho-
sen rotation matrices M1, . . . , Mk , which, of course, is the objective. In view of the
rather large size of the global minimum for the example described in Table 2, an
inability to obtain a close coincidence of the corresponding labeled points is evi-
dent;

• for these exceptional simulated cases of multiple stationary configurations, we
have observed that the largest of the S(M∗

1 , . . . , M∗
k ) values is only a few percent-

age points larger than the smallest, namely the one corresponding to the global
minimum of S(M1, . . . , Mk); cf. the ratio of 1.02 for the example described in
Table 2.
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4. CONCLUSION. The well-known Wahba problem is to find an optimal rotation
that brings one set of labeled points into close coincidence, in a least-squares sense,
with a second set of labeled points, which was solved by Wahba [17] analytically.
Later several effective algorithms were proposed to obtain the solution numerically. In
this paper we formulated a generalized version of the Wahba problem which is to find
optimal rotations that bring multiple sets of labeled points into close coincidence in a
weighted least-squares sense. While there appears to be no analytic solution for this
generalized optimization problem, we proposed a couple of algorithms (A1 and A2)
to solve it numerically. The basic idea, in each step, is to reduce the problem to one
that is equivalent to the original Wahba problem and so can be readily solved. While
there is no guarantee for the algorithms to find the optimal rotations, we established
some convergence results and carried out extensive simulation studies in support of
the algorithms. Finally, we note that the Wahba problem was extended in the robotics
literature (cf. Horn [5] and Umeyama [15]) to include a translation vector in addition to
the rotation matrix, which can be easily reduced to the original Wahba problem. In our
formulation, we may also include translation vectors along with the rotation matrices,
one for each set of labeled points. With minor modifications, the algorithms A1 and
A2 can also be used to deal with this extended version.

5. APPENDIX. In the appendix we prove Lemmas 1, 2, and 3.

Proof of Lemma 1. The case δn ≥ 0 is trivial. We now assume δn < 0. Since the
function

F(δ1, . . . , δn) := max
G∈SO(n)

tr(G D)

is continuous in δ1, . . . , δn , it suffices to prove F(δ1, . . . , δn) = ∑n
i=1 δi for δ1 > · · · >

δn−1 > −δn > 0. Let M ∈ SO(n) maximize tr(G D) over G ∈ SO(n), i.e.,

F(δ1, . . . , δn) = tr(M D) =
n∑

i=1

Miiδi . (5)

We claim that Mi j = 0 for i �= j , from which it follows easily that Mii = 1 for all i
and F(δ1, . . . , δn) = ∑n

i=1 δi .
It remains to establish the claim. For each pair (i, j) with i �= j , let Ri j (θ) be the

identity matrix with the elements at the four locations (i, i), (i, j), ( j, i), and ( j, j)
replaced by cos θ , − sin θ , sin θ , and cos θ , respectively. Since Ri j (θ) ∈ SO(n), we
have M Ri j (θ) ∈ SO(n), and

fi j (θ) : = tr(M Ri j(θ)D)

= δi(Mii cos θ + Mi j sin θ) + δ j (M j j cos θ − M ji sin θ)

+
∑

h∈{1,...,n}\{i, j}
δh Mhh.

As M maximizes tr(G D) over G ∈ SO(n), fi j (θ) attains the maximum value at θ = 0,
implying that

0 = d

dθ
fi j (θ)|θ=0 = δi Mi j − δ j M ji , i.e., δi Mi j = δ j M ji . (6)
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By (6) with i = 1, we have

δ2
1 =

n∑
j=1

δ2
1 M2

1 j =
n∑

j=1

δ2
j M2

j1,

which together with δ2
1 > δ2

j for j �= 1 and
∑n

j=1 M2
j1 = 1 implies that M2

11 = 1, which
in turn implies that M1 j = M j1 = 0 for j �= 1. Applying (6) repeatedly shows that
Mi j = 0 for i �= j . The proof is complete.

Proof of Lemma 2. Note that tr(G D) = tr(G J(−1) J(−1) D) = tr(G ′ D′), where
G ′ = G J(−1) and D′ = J(−1) D = diag(δ1, . . . , δn−1, −δn). As G ranges over all
orthogonal matrices with determinant −1, G ′ ranges over all rotation matrices. The
desired result now follows from Lemma 1.

Proof of Lemma 3. Since S(Qr ) is decreasing in r , we have

c := lim
r→∞

S(Qr ) = lim
�→∞

S(Qr�) = S(Q ′).

To show that Q ′ is stationary, suppose to the contrary that for some 1 ≤ j ≤ k and
some M∗

j ∈ SO(n),

c∗ := S(M ′
1, . . . , M ′

j−1, M∗
j , M ′

j+1, . . . , M ′
k) < S(M ′

1, . . . , M ′
k) = S(Q ′) = c.

With ε = c − c∗ > 0, a standard continuity argument shows that there exists a δ > 0
such that S(M1, . . . , M j−1, M∗

j , M j+1, . . . , Mk) < c − ε/2 whenever |Mi − M ′
i | < δ

for all i ∈ {1, . . . , k} \ { j}. Since Qr� → Q ′, there is an �′ such that d(Qr�′ , Q ′) < δ,
i.e., |Mr�′

i − M ′
i | < δ for all 1 ≤ i ≤ k. By the definition of algorithm A2,

S(Qr�′+1) ≤ min
M j

S(M
r�′
1 , . . . , M

r�′
j−1, M j , M

r�′
j+1, . . . , M

r�′
k )

≤ S(M
r�′
1 , . . . , M

r�′
j−1, M∗

j , M
r�′
j+1, . . . , M

r�′
k )

< c − ε/2 < c,

which contradicts the fact that S(Qr ) monotonically decreases to c, completing the
proof.
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