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Abstract We consider a discrete-time queueing system where the arrival process is
general and each arriving customer brings in a constant amount of work which is
processed at a deterministic rate. We carry out a sample-path analysis to derive an
exact relation between the set of system size values and the set of waiting time values
over a busy period of a given sample path. This sample-path relation is then applied
to a discrete-time G/D/c queue with constant service times of one slot, yielding a
sample-path version of the steady-state distributional relation between system size
and waiting time as derived earlier in the literature. The sample-path analysis of the
discrete-time system is further extended to the continuous-time counterpart, resulting
in a similar sample-path relation in continuous time.
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1 Introduction

With a great many applications in communication and computer networks, discrete-
time queueing systems, including G/D/c queues in particular, have been widely
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studied in the last couple decades. In these systems, time is slotted and servers
are assumed to be deterministic in order to model the constant data transmis-
sion rate of communication channels. See the monographs [1,15,21,24] for exten-
sive discussions of discrete-time queueing models. In what follows, the service
discipline is assumed to be first-come-first-served (FCFS) unless stated other-
wise.

In a G/D/c queue, while the arrival process is general (possibly serially correlated
and/or nonstationary), service times are assumed constant equal to k slots for some
fixed positive integer k. When the arrival process is discrete autoregressive of order 1
(and the queue is usually denoted by D AR(1)/D/c), Hwang et al. [11] and Hwang and
Sohraby [12] obtained, for the case c = 1 (single-server) and k = 1 (service times of
one slot), the steady-state distributions of waiting time and system size, respectively.
Choi et al. [4] later extended these results to the case c > 1 (multiserver) and k = 1.
On the other hand, for a G/D/c queue with k = 1 (service times of one slot), Xiong
et al. [25] derived an exact steady-state distributional relation between system size
and waiting time, which requires no knowledge of the nature of the arrival process.
More recently, by introducing the so-called partial system contents Gao et al. [7] have
generalised the distributional relation of Xiong et al. [25] to the case k > 1 (constant
service times of multiple slots). See also [3,2,6,8] for related results under different
model assumptions.

In this paper, we propose a new discrete-time queueing system, to be referred to
as the discrete-time (c, k)-system and defined in the next section. When either c = 1
or k = 1, the (c, k)-system is equivalent to the G/D/c queue with constant service
times of k slots. But the two systems differ when both c > 1 and k > 1. For a
further comparison between the two systems, see Remark 1 in Sect. 2. In this section,
we also carry out a sample-path analysis to derive a simple and exact (sample-path)
relation between the set of system size values and the set of waiting time values
over a busy period of a given sample path. This sample-path relation is then applied
in Sect. 3 to the discrete-time G/D/c queue with constant service times of k slots
with either c = 1 or k = 1, yielding the sample-path version of the distributional
relation of Xiong et al. [25]. In Sect. 4, the sample-path analysis of the discrete-time
(c, k)-system is extended to the continuous-time counterpart, resulting in a similar
sample-path relation. Section 5 contains concluding remarks. There is an appendix
containing some technical lemmas and proofs that are needed for deriving the main
results in Sect. 2.

We close this section with a brief discussion of some sample-path results on gen-
eral queueing systems. As remarked on p. 236 of the review article Whitt [22], to
express fundamental queueing relations such as Little’s law L = λW and its exten-
sions (including H = λG and Miyazawa’s rate conservation law), there are two
frameworks: a deterministic framework involving individual sample paths and a sta-
tionary framework involving steady-state distributions. The deterministic framework
(under which a sample-path analysis is performed) is appealing because it requires
only elementary arguments and minimal conditions for the fundamental queueing rela-
tions to hold. For example, Stidham [19], Heyman and Stidham [9] and Sigman [18]
established the sample-path versions of L = λW , H = λG and the rate conservation
law, respectively. For a comprehensive review of sample-path analysis, the reader is
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referred to the monograph [5]. See also the more recent review articles [14,20,23] with
an emphasis on sample-path analysis. More closely related in spirit to the present study
is the work of Sakasegawa and Wolff [16] who showed for the G/G/1 queue in con-
tinuous time that the empirical distribution of the workload values over a busy period
of a given sample path is identical to that of the attained waiting time values over the
same period. This sample-path result complements and strengthens Sengupta’s [17]
invariance relation for the G/G/1 queue that the workload and attained waiting time
of a customer in service have the same stationary distribution. See [26,27] for related
sample-path results in the multiserver case.

2 The discrete-time (c, k)-system

We consider a discrete-time queueing system in which the arrival process of customers
is general, each customer brings k units of work to the system, the server completes
up to c units of work in each slot, and the service discipline is FCFS. Here, c and k are
fixed positive integers. For convenience, we refer to the system as the (discrete-time)
(c, k)-system. As an example, suppose that students enter a testing service centre to
take a test of k questions. Upon completing the test, they wait for their scores when
a grader grades (up to) c questions every half an hour (including a break of 5 min).
This example may be viewed as a (c, k)-system where a slot is half an hour, the grader
is the server and students are customers. As another example, consider a small resort
island where tourists fly to a nearby airport and then take a shuttle bus to a boat station
in order to take a shuttle boat to the island. Suppose that a shuttle bus of capacity k
leaves the airport as soon as it is fully loaded, and stays at the boat station until each
of the k passengers boards a shuttle boat of capacity c (which runs every 20 min). In
this example as a (c, k)-system, a slot is 20 min, shuttle boats are the server and shuttle
buses are customers.

For a given sample path, let An and Dn denote the arrival and departure times of
the nth customer Cn , n = 1, 2, . . . , with An ≤ Dn for all n and 1 = A1 ≤ A2 ≤ · · · ,
implying that the first busy period begins at slot 1 and batch arrivals are allowed. By
our convention, An = t1 and Dn = t2 means that Cn enters the system at the beginning
of slot t1, and completes service and departs at the end of slot t2. So Cn’s waiting time
Wn equals Dn − An + 1 (the number of slots spent in system by Cn). Note that the
server may serve more than one customer in a slot. For example, with c = 2, k = 3
and A1 = A2 = 1, the server completes two units of C1’s work in slot 1 and completes
the remaining unit of C1’s work and one unit of C2’s work in slot 2 (so that C1 departs
at the end of slot 2).

Remark 1 It is worthwhile to compare in some detail the (c, k)-system with the
(discrete-time) G/D/c queue with constant service times of k slots (which for con-
venience will be denoted by G/Dk/c here). For the (c, k)-system with c > 1, the
server may be viewed as a group of c sub-servers where each sub-server completes
one unit of work in a slot and sub-servers can serve the same customer in a slot if
the customer’s work is more than one unit (i.e. k > 1). Thus it is readily seen that
when either c = 1 or k = 1, the (c, k)-system is equivalent to the G/Dk/c queue.
However, the two systems differ in general when both c > 1 and k > 1. Note that
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there is an equivalence relation in the class of all (c, k)-systems. For example, the
(c, k)-system with c = k is equivalent to the (1, 1)-system by identifying k units of
work as a new single unit of work. More generally, for c′ = rc and k′ = rk with r > 1
an integer, by defining a new unit of work as r (original) units of work, it follows that
the (c′, k′)-system is equivalent (reduces) to the (c, k)-system. Such an equivalence
relation does not hold for the class of G/Dk/c queues. It may also be of interest to
compare the (c, k)-system with a batch service queue where customers are served in
batches by a single-server, the size of the batch being either c or the size of the queue,
whichever is smaller. The batch service time is assumed to be k slots independent of
the batch size. Clearly, the two systems are equivalent if either c = 1 or k = 1, but not
equivalent otherwise. For the special case of c = k, if exactly c(=k) customers are
in the queue waiting for service, they depart one at a time in the next k slots for the
(c, k)-system whereas the customers depart together after k slots in the batch service
queue.

Now let Nt and Vt denote, respectively, the number of customers and the amount
of work (in work units) in system at t (or more precisely, at the beginning of slot t).
Then we have for t = 1, 2, . . . ,

Nt = |{n : An ≤ t ≤ Dn}| = |{n : An ≤ t}| − |{n : Dn < t}|, (2.1)

Vt = (Vt−1 − c)+ + k |{n : An = t}| (V0 := 0), (2.2)

k(Nt − 1) < Vt ≤ k Nt (implying Nt = �Vt/k�), (2.3)

where |S| denotes the cardinality of a set S, x+ = max{x, 0} and �x� denotes the
smallest integer not less than x . We assume |{n : An ≤ t}| < ∞ for all t , so that
Nt < ∞ and Vt < ∞ for all t .

We also adopt the following definition of the j th busy period, j = 1, 2, . . . . The
first busy period begins at T1 = 1 and ends at

T ′
1 = min{t ≥ T1 : |{n : An ≤ t}| = |{n : Dn ≤ t}|}.

The j th busy period for j > 1 begins at

Tj = min{t > T ′
j−1 : t = An for some n}

and ends at

T ′
j = min{t ≥ Tj : |{n : An ≤ t}| = |{n : Dn ≤ t}|}.

Note that there may be no idle period between two consecutive busy periods. As an
example, if An = T ′

1 + 1 for some n, then T2 = T ′
1 + 1, i.e. the second busy period

immediately follows the first busy period. (In this example, the system empties at the
end of slot T ′

1 and a customer arrives at the beginning of the next slot.)
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Remark 2 For a busy period in which n customers enter the system, let (ti , di ), i =
1, . . . , n, be the n pairs of arrival and departure times with t1 ≤ t2 ≤ · · · ≤ tn .
(So ti = A�+i , i = 1, . . . , n, for some � ≥ 0.) Then exactly c units of work is
performed in each slot except possibly for the last one when all of the n customers
have completed service. It follows that di = t1 + �ki/c� − 1, i = 1, . . . , n. Also,
ti+1 ≤ di , i = 1, . . . , n − 1.

The main results of this section are concerned with the relation between the set of
system size values and the set of waiting time values in a busy period. Before stating
the results, we need to define a B(n) set and introduce some set notations. An (ordered)
set of n pairs of integers P = {(t1, d1), . . . , (tn, dn)} is said to be a B(n) set (with
respect to the (c, k)-system), if t1 ≤ t2 ≤ · · · ≤ tn , di = t1 + � ki

c � − 1, i = 1, . . . , n,
and ti+1 ≤ di , i = 1, . . . , n − 1. Let

NP (t) = |{i : ti ≤ t ≤ di }| for t1 ≤ t ≤ dn,

SP = {NP (t) : t = t1, t1 + 1, . . . , dn}, (2.4)

WP = {di − ti + 1 : i = 1, . . . , n}.

Remark 3 By Remark 2, for a busy period with n customers, the set of the n
pairs of arrival and departure times is a B(n) set. Consider a general B(n) set
P = {(t1, d1), . . . , (tn, dn)}. By definition, {(t1, d1), . . . , (t j , d j )} is a B( j) set for
j < n. Suppose that the (c, k)-system is empty right before t1, and in the time interval
consisting of slots t1, . . . , dn , exactly n customers enter the system at t1, . . . , tn . Then
di = t1 + �ki/c� − 1, i = 1, . . . , n are the corresponding departure times of the n
customers. The condition ti+1 ≤ di , i = 1, . . . , n − 1, implies that the system is not
empty before dn . So the time interval of slots t1, . . . , dn is a busy period, i.e. t1 = Tj

and dn = T ′
j for some j . For t = t1, . . . , dn , NP (t) is the number of customers in

system at time t (more precisely, at the beginning of slot t), SP is the set of dn − t1 +1
system size values, and WP is the set of n waiting time values.

To introduce some set notations, note that in this section the multiplicity of each
element α in a set S, denoted m(α; S), is counted. Such a set is sometimes referred to
as a multiset (cf. p. 483 of [13]). Denote ν copies of α by α(ν). For example, {α(0)} =
∅, {α(0), β(1), γ(2)} = {β(1), γ(2)} = {β, γ, γ } 	= {β, γ }. For n sets S1, . . . , Sn , let

n

i=1Si = S1 
 · · · 
 Sn denote the set consisting of those elements in at least one of
S1, . . . , Sn with multiplicities given by

m(α; 
n
i=1Si ) =

n∑

i=1

m(α; Si ),

where m(α; S) := 0 if α /∈ S. As an example,

{α(2), β(3)} 
 {β, γ(4)} 
 {α(5)} = {α(7), β(4), γ(4)}.

Now for given positive integers s and δ, we define a set s[δ] as follows:

123



288 Queueing Syst (2014) 76:283–308

(i) If s ≤ δ, define s[δ] := {1(s)};
(ii) If s > δ, define s[δ] := {�(δ−r), (� + 1)(r)}, where integers � ≥ 1 and 1 ≤ r ≤ δ

are uniquely determined by s = �δ + r , i.e. � = � s
δ
�− 1 and r = s − (� s

δ
� − 1

)
δ.

Next for a set S of positive integers, define S[δ] := 
s∈Ss[δ]. Note that S[1] = S.

Remark 4 Observe that the number of elements in s[δ] (counting multiplicities)
is min{s, δ} and the sum of the elements in s[δ] equals s. For example, the set
123[15] = {8(12), 9(3)} consists of 15 elements the sum of which equals 123. For
the set S = {2(2), 5}, we have S[1] = S, S[2] = {1(4), 2, 3}, S[3] = {1(5), 2(2)}, S[4] =
{1(7), 2}, S[δ] = {1(9)} for δ ≥ 5. To see the meaning of s[δ] with s ≥ δ, note that
there is a unique way to write s as a sum of δ integers which differ by at most 1. These
(unique) δ integers form the set s[δ]. (For s < δ, the above interpretation still applies
if we change the definition of s[δ] = {1(s)} to s[δ] = {0(δ−s), 1(s)}.)
Theorem 1 Let P = {(t1, d1), . . . , (tn, dn)} be a B(n) set with respect to the discrete-
time (c, k)-system. Then S[c]

P = W [k]
P .

Proof We proceed by induction on n. For P = {(t1, d1)} a B(1) set, we have d1 =
t1 + �k/c� − 1, so SP = {1(ν)} and WP = {ν} where ν = �k/c� ≤ k. Thus,
S[c]

P = W [k]
P = {1(ν)}. Suppose that S[c]

Q = W [k]
Q for all B(n) sets Q (n ≥ 1). Let

P = {(ti , di ) : i = 1, . . . , n + 1} be a B(n + 1) set. We need to show S[c]
P = W [k]

P .
Let Q = {(ti , di ) : i = 1, . . . , n}, which is a B(n) set. By the induction hypothesis,
S[c]

Q = W [k]
Q . Since P is a B(n + 1) set, we have tn ≤ tn+1 ≤ dn . For each j =

tn, tn + 1, . . . , dn , let

P( j) = {(t1, d1), . . . , (tn, dn), ( j, dn+1)},

which is a B(n + 1) set. In particular, P = P(tn+1).
We claim (i) S[c]

P(dn) = W [k]
P(dn) and (ii) S[c]

P( j+1) = W [k]
P( j+1) implies S[c]

P( j) = W [k]
P( j)

for j = tn, . . . , dn−1. (Claim (ii) is vacuous if tn = dn .) Claims (i) and (ii) follow from
Lemmas 1 and 2 in the Appendix, respectively. By Claims (i) and (ii), S[c]

P( j) = W [k]
P( j)

for j = tn, . . . , dn , which includes S[c]
P = W [k]

P for j = tn+1. This completes the
proof. �

As an illustration for Theorem 1, we present in Fig. 1 a busy period of a sam-
ple path for the (c, k)-system with c = 2, k = 3. In the busy period, there
are 7 customers entering the system. In the figure, each circle represents a unit
of work and the number inside a circle is the customer i.d. belonging to the set
{1, 2, . . . , 7}. The (ordered) set of the 7 pairs of arrival and departure times is
P = {(1, 2), (2, 3), (3, 5), (3, 6), (6, 8), (7, 9), (8, 11)} which is a B(7) set. For this
busy period, the sets of system size values and waiting time values are

SP = {1, 2, 3, 2, 2, 2, 2, 3, 2, 1, 1} = {1(3), 2(6), 3(2)},
WP = {2, 2, 3, 4, 3, 3, 4} = {2(2), 3(3), 4(2)}.

It is readily verified that S[2]
P = W [3]

P = {1(17), 2(2)} as claimed in Theorem 1.
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Fig. 1 A busy period of a sample path in the (c, k)-system with c = 2 and k = 3

Remark 5 Let S and W be, respectively, the set of system size values and the set of
waiting time values in a given busy period. By Theorem 1, we have S[c] = W [k]. Since
S[c] = S for c = 1 and W [k] = W for k = 1, it follows that in a busy period the set of
system size values is identical to the set of waiting time values provided c = k = 1.
However, when either c or k (or both) is greater than 1, the physical interpretation of
S[c] and W [k] is not so clear and requires further investigation.

We now apply Theorem 1 to a sample path with the arrival and departure times
Ai , Di of the i th customer Ci , i = 1, 2, . . . . Recall that Nt and Vt denote, respectively,
the number of customers and the amount of work (in work units) in system at time t .
Recall also that [Tj , T ′

j ] denotes the j th busy period. Let I j = {i : Tj ≤ Ai ≤ T ′
j },

the set of the indices of customers entering the system in the j th busy period. Then
Pj := {(Ai , Di ) : i ∈ I j } is a B(|I j |) set. By (2.4), for Tj ≤ t ≤ T ′

j , NPj (t) = {i ∈
I j : Ai ≤ t ≤ Di }, which agrees with Nt (cf. (2.1)). Also,

SPj = {NPj (t) : Tj ≤ t ≤ T ′
j } = {Nt : Tj ≤ t ≤ T ′

j },
WPj = {Di − Ai + 1 : i ∈ I j }.

Thus SPj and WPj are, respectively, the set of system size values and the set of waiting
time values in the j th busy period. For τ > 0, let Sτ = {Nt : Nt > 0 and 1 ≤ t ≤ τ },
the set of positive system size values in {N1, . . . , Nτ }, and Wτ = {Di − Ai + 1 :
Ai ≤ τ }, the set of waiting time values of customers entering the system at or before
time τ .
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With T ′
0 := 0, let ν = max{ j : T ′

j ≤ τ } ≥ 0, the number of busy periods ending at
or before τ . Then T ′

ν ≤ τ < T ′
ν+1, and

Sτ = 
ν
j=1SPj 
 {Nt : Tν+1 ≤ t ≤ τ }, (2.5)

Wτ = 
ν
j=1WPj 
 {Di − Ai + 1 : Tν+1 ≤ Ai ≤ τ }. (2.6)

If Vτ = 0, then the system is empty at τ , implying τ < Tν+1. If 0 < Vτ ≤ c, the
system empties at the end of slot τ , implying τ = T ′

ν < Tν+1. So Vτ ≤ c if and only
if τ < Tν+1. If Vτ ≤ c, then it follows from (2.5), (2.6) and τ < Tν+1 that

Sτ = 
ν
j=1SPj and Wτ = 
ν

j=1WPj .

By Theorem 1,

S
[c]
τ = 
ν

j=1S[c]
Pj

= 
ν
j=1W [k]

Pj
= W

[k]
τ . (2.7)

If Vτ > c (i.e. τ ≥ Tν+1), let i1 = min{i : Ai = Tν+1}, since there is (at least) a
customer arriving at the beginning of the (ν + 1)th busy period. Let i2 = max{i :
Ai ≤ τ }. Then τ ≥ Tν+1 implies i1 ≤ i2. Let Q = {(Ai , Di ) : i1 ≤ i ≤ i2}, which is
a B(i2 − i1 + 1) set. (Note that Q ⊂ Pν+1.) We have

WQ = {Di − Ai + 1 : i1 ≤ i ≤ i2}
= {Di − Ai + 1 : Tν+1 ≤ Ai ≤ τ },

so by (2.6)

Wτ = 
ν
j=1WPj 
 WQ . (2.8)

Noting that Tν+1 = Ai1 and NQ(t) = Nt for Tν+1 ≤ t ≤ τ , we have

SQ = {NQ(t) : Tν+1 ≤ t ≤ Di2}
= {Nt : Tν+1 ≤ t ≤ τ } 
 {NQ(t) : τ < t ≤ Di2},

which together with (2.5) yields

Sτ 
 {NQ(t) : τ < t ≤ Di2} = 
ν
i=1SPj 
 SQ . (2.9)

The set {NQ(t) : τ < t ≤ Di2} can be expressed in terms of Vτ as follows. At
(the beginning of) each of slots τ + 1, τ + 2, . . . , the amount of work remaining (in
work units) among customers Ci , i1 ≤ i ≤ i2, equals Vτ − c, Vτ − 2c, . . . , so that
NQ(τ + 1) = � Vτ −c

k �, NQ(τ + 2) = � Vτ −2c
k �, . . . (cf. (2.3)). It follows that

{NQ(t) : τ < t ≤ Di2} =
{⌈

Vτ − ic

k

⌉
: 1 ≤ i ≤

⌈
Vτ

c

⌉
− 1

}
.
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By (2.9),

Sτ 

{⌈

Vτ − ic

k

⌉
: 1 ≤ i ≤

⌈
Vτ

c

⌉
− 1

}
= 
ν

j=1SPj 
 SQ . (2.10)

By (2.8), (2.10) and Theorem 1,

S
[c]
τ 


{⌈
Vτ − ic

k

⌉
: 1 ≤ i ≤

⌈
Vτ

c

⌉
− 1

}[c]
= 
ν

j=1S[c]
Pj


 S[c]
Q

= 
ν
j=1W [k]

Pj

 W [k]

Q

= W
[k]
τ . (2.11)

By (2.7) and (2.11), we have the following result.

Theorem 2 For τ > 0,

W
[k]
τ = S

[c]
τ 


{⌈
Vτ − ic

k

⌉
: 1 ≤ i ≤

⌈
Vτ

c

⌉
− 1

}[c]
,

where the second set on the right-hand side is empty if Vτ ≤ c. Equivalently, for
� = 1, 2, . . . ,


(τ)∑

i=1

m(�; (Di − Ai + 1)[k]) =
τ∑

t=1

m(�; N [c]
t ) +

�Vτ /c�−1∑

i=1

m

(
�;

⌈
Vτ − ic

k

⌉[c])
,

where 
(τ) := max{i : Ai ≤ τ } and 0[c] := ∅.

3 Applications to G/D/c queues

Xiong et al. [25] investigated in great detail the G/D/c queue with constant service
times of one slot which is equivalent to the discrete-time (c, k)-system with k = 1.
Assuming that the system reaches a steady-state (which implies that the mean number
λ of arrivals per slot is less than c), they derived the relation (cf. Eq. (19) in [25])

λFw{�} =
c−1∑

i=0

(i Fs{(� − 1)c + i} + (c − i)Fs{�c + i}), � = 1, 2, . . . , (3.1)

where Fw and Fs denote the steady-state waiting time and system size distributions,
respectively. Note that no knowledge of the exact nature of the arrival process is
required in order to derive (3.1). As a simple application of Theorem 2, we will derive
the sample-path version of (3.1) without assuming that the system is in steady-state.

Fix a sample path ω in which customers enter the system at 1 = A1 ≤ A2 ≤ · · ·
and depart at D1 ≤ D2 ≤ · · · . Recall 
(τ) = max{i : Ai ≤ τ }, the number of
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customers entering the system at or before τ . Assume the following limits exist for
the sample path ω:

λ(ω) = lim
τ→∞ 
(τ)/τ(0 < λ(ω) < c),

F (ω)
w {�} = lim

n→∞
1

n

n∑

i=1

1{Di −Ai +1=�} = lim
n→∞

1

n

n∑

i=1

1{Wi =�}, � = 1, 2, . . . ,

F (ω)
s {�} = lim

τ→∞
1

τ

τ∑

t=1

1{Nt =�}, � = 0, 1, . . . ,

where Wi = Di − Ai + 1, and 1E denotes the indicator of an event E , which equals
1 or 0 according to whether or not E occurs.

By Theorem 2, for � = 1, 2, . . . ,


(τ)∑

i=1

m(�; W [k]
i ) =

τ∑

t=1

m(�; N [c]
t ) +

�Vτ /c�−1∑

i=1

m

(
�;

⌈
Vτ − ic

k

⌉[c])
.

Since

sup
0<τ<∞

�Vτ /c�−1∑

i=1

m

(
�;

⌈
Vτ − ic

k

⌉[c])
≤ k

∞∑

j=1

m(�; j [c])

= k
c(�+1)−1∑

j=c(�−1)+1

m(�; j [c]) = kc2 < ∞,

we have

lim
τ→∞

1

τ

⎧
⎨

⎩


(τ)∑

i=1

m(�; W [k]
i ) −

τ∑

t=1

m(�; N [c]
t )

⎫
⎬

⎭ = 0. (3.2)

Note that

m(�; j [α]) =
⎧
⎨

⎩

r, for j = (� − 1)α + r, r = 1, . . . , α − 1,

α − r, for j = �α + r, r = 0, 1, . . . , α − 1,

0, for j ≤ (� − 1)α or j ≥ (� + 1)α.

(3.3)
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By (3.3) with α = k, we have

lim
τ→∞

1

τ


(τ)∑

i=1

m(�; W [k]
i ) = lim

τ→∞
1

τ


(τ)∑

i=1

{
k−1∑

r=0

(r1{Wi =(�−1)k+r} + (k − r)1{Wi =�k+r})
}

= lim
τ→∞


(τ)

τ

k−1∑

r=0

⎛

⎝ r


(τ)


(τ)∑

i=1

1{Wi =(�−1)k+r}

+k − r


(τ)


(τ)∑

i=1

1{Wi =�k+r}

⎞

⎠

= λ(ω)
k−1∑

r=0

(
r F (ω)

w {(� − 1)k + r} + (k − r)F (ω)
w {�k + r}

)
.

By (3.3) with α = c, we have

lim
τ→∞

1

τ

τ∑

t=1

m(�; N [c]
t ) = lim

τ→∞
1

τ

τ∑

t=1

{
c−1∑

r=0

(
r1{Nt =(�−1)c+r} + (c − r)1{Nt =�c+r}

)
}

= lim
τ→∞

c−1∑

r=0

(
rτ−1

τ∑

t=1

1{Nt =(�−1)c+r}

+(c − r)τ−1
τ∑

t=1

1{Nt =�c+r}

)

=
c−1∑

r=0

(
r F (ω)

s {(� − 1)c + r} + (c − r)F (ω)
s {�c + r}

)
.

It then follows from (3.2) that for � = 1, 2, . . . ,

λ(ω)
k−1∑

r=0

(
r F (ω)

w {(� − 1)k + r} + (k − r)F (ω)
w {�k + r}

)

=
c−1∑

r=0

(
r F (ω)

s {(� − 1)c + r} + (c − r)F (ω)
s {�c + r}

)
. (3.4)

For k = 1, (3.4) reduces to

λ(ω)F (ω)
w {�} =

c−1∑

r=0

(
r F (ω)

s {(� − 1)c + r} + (c − r)F (ω)
s {�c + r}

)
, � = 1, 2, . . . ,
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which is the sample-path version of (3.1). For c = 1, (3.4) reduces to

F (ω)
s {�} = λ(ω)

k−1∑

r=0

(
r F (ω)

w {(� − 1)k + r} + (k − r)F (ω)
w {�k + r}

)
, (3.5)

which is a sample-path distributional relation between system size and waiting time
for the discrete-time G/D/1 queue with constant service times of k slots.

For the single-server case (c = 1), (3.1) reduces to a simple formula

Fs{�} = λFw{�}, � = 1, 2, . . . , (3.6)

which indicates a particularly close connection between the stationary distributions
of system size and waiting time in this special case. In fact, this relation has been
presented in Humblet et al. [10] (p. 85) for an nD/D/1 queue where the arrival
process is a superposition of n deterministic sources. (The assumption on the arrival
process is not necessary since (3.1) holds for general arrival processes.) To gain further
insights into (3.6) from the sample-path point of view, by Theorem 1 with c = k = 1,
we have SP = WP for any B(n) set P . It follows that for a busy period of a sample
path, the set of system size values is identical to that of waiting time values. (This
implies implicitly that the number of customers entering the system during a busy
period equals the length of the busy period.) Consequently, when the system is in
steady-state, the conditional distribution of system size given that the system is not
empty is the same as the distribution of waiting time. Since λ is the (long-run) fraction
of time that the system is not empty, we get Fs{�}/λ = Fw{�}, � = 1, 2, . . . , which is
(3.6).

4 The continuous-time (c, k)-system

In this section, we consider the following continuous-time analogue of the discrete-
time (c, k)-system. The arrival process of customers is general, each customer brings
k units of work to the system, the service rate is c units of work per unit time, and
the service discipline is FCFS. Here, c and k are fixed positive values (not necessarily
integers). Again we are concerned with the relation between the set of system size
values and the set of waiting time values in a busy period. The results and their proofs
are similar to (and simpler than) the discrete-time counterparts. In particular, the result
in Theorem 3 below depends on c and k only through k′ := k/c. The main difference
between the continuous- and discrete-time cases is that the (multi)set of system size
values (which are positive integers) in a busy period in continuous time is uncountable,
which will be characterised via the amount of time the system size equals � in the busy
period for � = 1, 2, . . . .

Remark 6 It is indicated in Remark 1 that there is an equivalence relation for the
class of discrete-time (c, k)-systems. A similar equivalence relation also holds for
the class of continuous-time (c, k)-systems. Specifically, for c∗ = rc and k∗ = rk
with r > 0, by defining a new unit of work as r (original) units of work, it is readily
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seen that the (continuous-time) (c∗, k∗)-system is equivalent to the (c, k)-system. In
particular, the (c, k)-system is equivalent to the (1, k′)-system where k′ = k/c. It
follows easily that the (c, k)-system is equivalent to the (continuous-time) G/D/1
queue with deterministic service time k′ = k/c.

Now for a given sample path in the continuous-time (c, k)-system, let An < Dn be
the arrival and departure times of the nth customer Cn , n = 1, 2, . . . , with 0 = A1 ≤
A2 ≤ · · · , indicating that the first busy period begins at time 0 and batch arrivals are
allowed. Note that D1 = k′(= k/c); D2 = 2k′ if A2 < D1, or = A2 + k′ if A2 ≥ D1.
In general, for n > 1, Dn = Dn−1 + k′ if An < Dn−1, or = An + k′ if An ≥ Dn−1.
So Dn = max{Dn−1,An} + k′ for n > 1. Note that Dn − An ≥ k′ with equality
holding if and only if customer Cn finds the system empty upon arrival. Let Nt and Vt

denote, respectively, the number of customers and the amount of work (in work units)
in system at time t . Then

Nt = �Vt/k� and Nt = |{n : An ≤ t < Dn}|. (4.1)

At each arrival epoch, Vt jumps up with the jump size equal to k times the number of
arrivals at the epoch. Between jumps, Vt decreases linearly at the rate of c whenever
Vt > 0. The first busy period begins at T1 = 0 and ends at T ′

1 = min{t > T1 : Nt =
0}. The j th busy period for j > 1 begins at

T j = min{t > T ′
j−1 : t = An for some n},

and ends at

T ′
j = min{t > T j : Nt = 0}.

For a busy period in which n customers enter the system, let (ti , di ), i = 1, . . . , n,
be the corresponding n pairs of arrival and departure times with t1 ≤ t2 ≤ · · · ≤ tn .
Then di = t1 + k′i , i = 1, . . . , n, and ti+1 ≤ di , i = 1, . . . , n − 1. This motivates
the following definition of a B(n) set. An (ordered) set of n pairs of numbers P =
{(t1, d1), . . . , (tn, dn)} is said to be a B(n) set (with respect to the continuous-time
(c, k)-system) if t1 ≤ t2 ≤ · · · ≤ tn , di = t1 + k′i , i = 1, . . . , n, and ti+1 ≤ di ,
i = 1, . . . , n − 1. Let

NP (t) = |{1 ≤ i ≤ n : ti ≤ t < di }|, t1 ≤ t < dn, (4.2)

SP (�) = μ({t1 ≤ t < dn : NP (t) = �}), � = 1, 2, . . . , (4.3)

WP = {di − ti : i = 1, . . . , n}, (4.4)

where μ(S) denotes the Lebesgue measure of a (measurable) subset S of the real
line. It will be convenient to define NP (t) = 0 for t ≥ dn . As an illustration for
NP (t), SP (�) and WP defined above, Fig. 2 presents the sample path of a B(5)

set with respect to the continuous-time (c, k)-system with c = 1 and k = 4 where
t2 = t3 = t1 + 2, t4 = t1 + 7, t5 = t1 + 13 and di = t1 + 4i, i = 1, . . . , 5.
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Fig. 2 Sample path of a B(5) set P with respect to the continuous-time (c, k)-system with c = 1 and
k = 4

Remark 7 For a busy period with n customers, the set of n pairs of arrival and departure
times is a B(n) set. Consider a general B(n) set P = {(t1, d1), . . . , (tn, dn)}. By
definition, {(t1, d1), . . . , (t j , d j )} is a B( j) set for 1 ≤ j < n. Suppose that the
system is empty right before t1, and n customers enter the system at t1, . . . , tn . Then
di = t1 + k′i , i = 1, . . . , n, are the corresponding departure times. For t1 ≤ t < dn ,
NP (t) is the number of customers in system at t , SP (�) is the amount of time (in
[t1, dn]) exactly � customers are in system, and WP is the set of n waiting time values.

For a positive number δ and a set S consisting of numbers greater than or equal to
δ, we define S<δ>(�), � = 1, 2, . . . , as follows.

For each s ∈ S, if s = δ, let

s〈δ〉(�) =
{

δ, for � = 1,

0, for � > 1.

If s > δ, let

s〈δ〉(�) =
⎧
⎨

⎩

s − δ(�s/δ� − 1), for � = �s/δ�,
δ�s/δ� − s, for � = �s/δ� − 1,

0, for � 	= �s/δ�, �s/δ� − 1.

Define S〈δ〉(�) = ∑
s∈S s〈δ〉(�), � = 1, 2, . . . .

Remark 8 To see the meaning of s〈δ〉, note that there is a unique sequence (a1, a2, . . . )

such that (i) a� ≥ 0 for all �, (ii) ai a j > 0 implies |i − j | ≤ 1, (iii)
∑∞

�=1 a� = δ

123



Queueing Syst (2014) 76:283–308 297

and (iv)
∑∞

�=1 �a� = s. Then a� = s〈δ〉(�) for all �. A similar interpretation of s[δ] is
given in Remark 4.

Theorem 3 Let P = {(t1, d1), . . . , (tn, dn)} be a B(n) set with respect to the
continuous-time (c, k)-system. Then SP ≡ W

〈k/c〉
P , i.e. SP (�) = W

〈k/c〉
P (�), � =

1, 2, . . . .

Proof We proceed by induction on n. For P = {(t1, d1)}, a B(1) set, since NP (t) = 1
for t1 ≤ t < d1, SP (1) = d1 − t1 = k/c = k′ and SP (�) = 0 for � > 1. Also,

WP = {d1 − t1} = {k′}, implying that W 〈k′〉
P (1) = k′ and W 〈k′〉

P (�) = 0 for � > 1. So

SP ≡ W 〈k′〉
P .

Now suppose that SQ ≡ W 〈k′〉
Q for all B(n) sets Q (n ≥ 1). Let P = {(t1, d1), . . . ,

(tn, dn), (tn+1, dn+1)} be a B(n + 1) set. We need to show SP ≡ W 〈k′〉
P . Let Q =

{(t1, d1), . . . , (tn, dn)}, which is aB(n) set. By the induction hypothesis,SQ ≡ W 〈k′〉
Q .

Noting that tn ≤ tn+1 ≤ dn , let I ∈ {1, . . . , n + 1} be such that dI−1 ≤ tn+1 < dI

where d0 := t1. (If I = n + 1, we must have tn+1 = dn since P being a B(n + 1) set
implies tn+1 ≤ dn .) It is readily shown that

NP (t) = NQ(t) = |{1 ≤ i ≤ n : ti ≤ t < di }|, for t1 ≤ t < tn+1, (4.5)

NP (t) = NQ(t) + 1 =
{

n − I + 2, for tn+1 ≤ t < dI ,

n − j + 1, for d j ≤ t < d j+1, j = I, . . . , n,
(4.6)

where NQ(t) := 0 for t ≥ dn . By (4.5) and (4.6), if I ≤ n,

SP (�) − SQ(�) =
⎧
⎨

⎩

dI − tn+1, for � = n − I + 2,

tn+1 − dI−1, for � = n − I + 1,

0, for � 	= n − I + 1, n − I + 2.

(4.7)

If I = n + 1 (implying tn+1 = dn),

SP (�) − SQ(�) =
{

k′, for � = 1,

0, for � > 1.
(4.8)

Since WP = WQ 
 {dn+1 − tn+1}, we have

W 〈k′〉
P (�) − W 〈k′〉

Q (�) = (dn+1 − tn+1)
〈k′〉(�), � = 1, 2, . . . . (4.9)

Noting that dn+1 − dI < dn+1 − tn+1 ≤ dn+1 − dI−1, if I ≤ n,

(dn+1 − tn+1)
〈k′〉(�) =

⎧
⎨

⎩

dI − tn+1, for � = n − I + 2,

tn+1 − dI−1, for � = n − I + 1,

0, for � 	= n − I + 1, n − I + 2.

(4.10)
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If I = n + 1 (i.e. tn+1 = dn),

(dn+1 − tn+1)
〈k′〉(�) =

{
k′, for � = 1,

0, for � > 1.
(4.11)

It follows from SQ ≡ W 〈k′〉
Q and (4.7)–(4.11) that SP ≡ W 〈k′〉

P . This completes the
proof. �
Remark 9 Note that the continuous-time (c, k)-system can be approximated by a
discrete-time (1, k∗)-system for a suitably chosen (large) k∗. More precisely, let time
be divided into slots of (small) length Δ. Then the server completes cΔ units of
work per slot. Define a D-unit of work to be cΔ units of work (D standing for dis-
crete), so the server completes one D-unit of work per slot. Each customer brings
to the system k units of work which is approximately k∗ D-units of work where
k∗ = �k/(cΔ)� = �k′/Δ�. Furthermore, since Δ is small, the arrival time Ai of
customer Ci is (approximately) slot Ai where Ai = �Ai/Δ�. This shows that the
continuous-time (c, k)-system and the discrete-time (1, k∗)-system are approximately
the same provided Δ is sufficiently small. While it is easier to prove Theorem 3 directly
as we have done, one can in fact establish Theorem 3 by making use of Theorem 1
along with a limiting argument as Δ → 0.

To apply Theorem 3 to a sample path with the arrival and departure times Ai , Di of
the ith customer Ci , i = 1, 2, . . . , recall thatNt andVt denote, respectively, the number
of customers and the amount of work in system at time t . Recall also that [T j ,T

′
j ]

denotes the j th busy period. Let I j = {i : T j ≤ Ai < T ′
j }, the set of the indices of

customers entering the system in the j th busy period. Then P j := {(Ai ,Di ) : i ∈ I j }
is a B(|I j |) set. By (4.2), for T j ≤ t < T ′

j , NP j (t) = |{i ∈ I j : Ai ≤ t < Di }|,
which agrees with Nt (cf. (4.1)). Also, for � = 1, 2, . . . ,

SP j (�) = μ({T j ≤ t < T ′
j : NP j (t) = �}) = μ({T j ≤ t < T ′

j : Nt = �}),
WP j = {Di − Ai : i ∈ I j }.

For τ > 0, let Sτ (�) = μ({0 ≤ t ≤ τ : Nt = �}), � = 1, 2, . . . , and Wτ =
{Di − Ai : Ai ≤ τ }. With T ′

0 := 0, let ν = max{ j : T ′
j ≤ τ } ≥ 0, the number of

busy periods ending at or before τ . Then T ′
ν ≤ τ < T ′

ν+1, and

Sτ (�) =
ν∑

j=1

SP j (�) + μ({Tν+1 ≤ t ≤ τ : Nt = �}), � = 1, 2, . . . , (4.12)

Wτ = 
ν
j=1WP j 
 {Di − Ai : Tν+1 ≤ Ai ≤ τ }. (4.13)

If Vτ = 0 (implying Nτ = 0), then τ < Tν+1, so that

Sτ ≡
ν∑

j=1

SP j and Wτ = 
ν
j=1WP j ,
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from which and Theorem 3, it follows that

Sτ (�) =
ν∑

j=1

SP j (�) =
ν∑

j=1

W 〈k′〉
P j

(�) = W〈k′〉
τ (�), � = 1, 2, . . . . (4.14)

If Vτ > 0, then τ ≥ Tν+1. Let ι1 = min{i : Ai = Tν+1} and ι2 = max{i : Ai ≤ τ }.
Consider Q = {(Ai ,Di ) : ι1 ≤ i ≤ ι2} which is a B(ι2 − ι1 + 1) set. (Note that
Q ⊂ Pν+1 and no (t, d) in Q has t > τ .) Since WQ = {Di − Ai : ι1 ≤ i ≤ ι2} =
{Di − Ai : Tν+1 ≤ Ai ≤ τ }, we have by (4.13)

Wτ = 
ν
j=1WP j 
 WQ . (4.15)

Noting that Tν+1 = Aι1 and NQ(t) = Nt for Tν+1 ≤ t ≤ τ , we have

SQ(�) = μ({Tν+1 ≤ t < Dι2 : NQ(t) = �})
= μ({Tν+1 ≤ t ≤ τ : Nt = �}) + μ({τ < t < Dι2 : NQ(t) = �}),

which together with (4.12) yields

Sτ (�) + μ({τ < t < Dι2 : NQ(t) = �}) =
ν∑

j=1

SP j (�) + SQ(�). (4.16)

Here μ({τ < t < Dι2 : NQ(t) = �}) can be expressed in terms of Vτ as follows.
Write Vτ = qk + r where

q := �Vτ /k� − 1 and 0 < r := Vτ − k(�Vτ /k� − 1) ≤ k. (4.17)

Note that no (t, d) in Q has t > τ . In the case that no arrivals occur after time τ ,
Vt (t ≥ τ) decreases linearly at the rate of c whenever Vt > 0, so

(i) for t ∈ (τ, τ + r/c), we have qk < Vt ≤ (q + 1)k and Nt = q + 1;
(ii) for t ∈ [τ + r/c + (q − n)k′, τ + r/c + (q − n + 1)k′) with n = q, q − 1, . . . , 1,

we have (n − 1)k < Vt ≤ nk and Nt = n. (Part (ii) is vacuous if q = 0.)

It follows that

μ({τ < t < Dι2 : NQ(t) = �}) =
⎧
⎨

⎩

k′, for � = 1, . . . , q,

r/c, for � = q + 1,

0, for � > q + 1.

(4.18)
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By (4.15)–(4.18) and Theorem 3,

W〈k′〉
τ (�) − Sτ (�) =

ν∑

j=1

W 〈k′〉
P j

(�) + W 〈k′〉
Q (�) − Sτ (�)

=
ν∑

j=1

SP j (�) + SQ(�) − Sτ (�)

= μ({τ < t < Dι2 : NQ(t) = �})

=
⎧
⎨

⎩

k′, for � = 1, . . . , �Vτ /k� − 1,

Vτ /c − k′(�Vτ /k� − 1), for � = �Vτ /k�,
0, for � > �Vτ /k�.

(4.19)

(The case � = 1, . . . , �Vτ /k� − 1 is vacuous if 0 < Vτ ≤ k.) Combining (4.14) for
Vτ = 0 and (4.19) for Vτ > 0 yields the following result.

Theorem 4 (i) If Vτ = 0, Sτ (�) = W〈k′〉
τ (�), � = 1, 2, . . . .

(ii) If 0 < Vτ ≤ k,

W〈k′〉
τ (�) − Sτ (�) =

{
Vτ /c, f or � = 1,

0, f or � > 1.

(iii) If Vτ > k,

W〈k′〉
τ (�) − Sτ (�) =

⎧
⎨

⎩

k/c, f or � = 1, . . . , �Vτ /k� − 1,

{Vτ − k(�Vτ /k� − 1)}/c, f or � = �Vτ /k�,
0, f or � > �Vτ /k�.

In Sect. 3, we derived a sample-path distributional relation between system size
and waiting time for the discrete-time (c, k)-system. We now apply Theorem 4 to
show a similar result for the continuous-time (c, k)-system. Fix a sample path ω in
which customer Ci arrives and departs at Ai and Di , respectively, with waiting time
Wi := Di −Ai , i = 1, 2, . . . . Let 
(τ) = max{i : Ai ≤ τ }, the number of customers
arriving at or before τ . Assume the following limits exist for the sample path ω:

λ(ω) = lim
τ→∞ 
(τ)/τ, 0 < λ(ω) < 1/k′,

F (ω)
w (x) = lim

n→∞
1

n
|{1 ≤ i ≤ n : Di − Ai ≤ x}|

= lim
n→∞

1

n
|{1 ≤ i ≤ n : Wi ≤ x}|, 0 < x < ∞,

F (ω)
s {�} = lim

τ→∞
1

τ
Sτ (�) = lim

τ→∞
1

τ
μ({0 ≤ t ≤ τ : Nt = �}), � = 1, 2, . . . .
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By Theorem 4, we have

0 ≤ W〈k′〉
τ (�) − Sτ (�) =


(τ)∑

i=1

W 〈k′〉
i (�) − Sτ (�) ≤ k′,

which implies

F (ω)
s (�) = lim

τ→∞
1

τ
Sτ (�) = lim

τ→∞
1

τ


(τ)∑

i=1

W 〈k′〉
i (�). (4.20)

We claim that for � = 1, 2, . . . ,

lim
n→∞

1

n

n∑

i=1

W 〈k′〉
i (�) =

(�+1)k′∫

(�−1)k′
(k′ − |t − �k′|)dF (ω)

w (t), (4.21)

which together with (4.20) implies

F (ω)
s (�) = λ(ω)

(�+1)k′∫

(�−1)k′
(k′ − |t − �k′|)dF (ω)

w (t). (4.22)

This sample-path distributional relation between system size and waiting time is the
continuous-time counterpart of the discrete-time result (3.5).

It remains to prove the claim (4.21). Fix an � ≥ 1, and divide the interval ((� −
1)k′, (� + 1)k′] into 2R subintervals each of length k′/R, i.e. Jr := ((� − 1)k′ + (r −
1)k′/R, (�− 1)k′ + rk′/R], r = 1, . . . , 2R. Note that W 〈k′〉

i (�) = 0 if Wi ≤ (�− 1)k′
or Wi ≥ (� + 1)k′. If Wi ∈ Jr , then

(r − 1)k′/R ≤ W 〈k′〉
i (�) ≤ rk′/R, for r = 1, . . . , R,

(2R − r)k′/R ≤ W 〈k′〉
i (�) ≤ (2R − r + 1)k′/R, for r = R + 1, . . . , 2R.

It follows that for i = 1, 2, . . . ,

Li,R ≤ W 〈k′〉
i (�) ≤ Li,R + k′/R, (4.23)

where

Li,R :=
R∑

r=1

k′(r − 1)

R
1{Wi ∈Jr } +

2R∑

r=R+1

k′(2R − r)

R
1{Wi ∈Jr }.
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Then

1

n

n∑

i=1

W 〈k′〉
i (�) ≥ 1

n

n∑

i=1

Li,R =
R∑

r=1

k′(r − 1)

R

[
1

n

n∑

i=1

1{Wi ∈Jr }

]

+
2R∑

r=R+1

k′(2R − r)

R

[
1

n

n∑

i=1

1{Wi ∈Jr }

]
,

(4.24)

which converges as n → ∞ to

L∗
R :=

R∑

r=1

k′(r − 1)

R
F (ω)

w (Jr ) +
2R∑

r=R+1

k′(2R − r)

R
F (ω)

w (Jr ), (4.25)

where

F (ω)
w (Jr ) := F (ω)

w ((� − 1)k′ + rk′/R) − F (ω)
w ((� − 1)k′ + (r − 1)k′/R).

So, by (4.23)–(4.25),

lim inf
n→∞

1

n

n∑

i=1

W 〈k′〉
i (�) ≥ L∗

R .

Noting that a standard argument in calculus yields

lim
R→∞ L∗

R =
(�+1)k′∫

(�−1)k′
(k′ − |t − �k′|)dF (ω)

w (t) =: H(�),

we have lim infn→∞ 1
n

∑n
i=1 W 〈k′〉

i (�) ≥ H(�). Similarly using the upper bound in

(4.23) yields lim supn→∞ 1
n

∑n
i=1 W 〈k′〉

i (�) ≤ H(�). This proves the claim (4.21).

5 Concluding remarks

We introduced a discrete-time queueing system called the (c, k)-system where the
arrival process is general and each arriving customer brings k units of work to the
system which is processed by a single-server at a deterministic rate of c units of work
per slot. It was indicated that an equivalence relation holds for the class of all (c, k)-
systems. It was also pointed out that the (c, k)-system is equivalent to the G/D/c
queue with constant service times of k slots when either c = 1 or k = 1, but the two
systems differ when both c > 1 and k > 1.

By a detailed sample-path analysis together with the notion of multiset, we derived
an exact sample-path relation between the set of system size values and the set of
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waiting time values over a busy period of a given sample path. When c = k = 1,
this relation simply implies that the multiset of system size values is identical to the
multiset of waiting time values over a busy period. However, when either c or k (or
both) is greater than 1, the physical interpretation of this relation is not so clear and
requires further investigation.

This sample-path relation was applied to the discrete-time G/D/c queue with
constant service times of k slots with either c = 1 or k = 1, yielding the sample-path
version of the steady-state distributional relation between system size and waiting time
in Xiong et al. [25]. When c and k are both greater than 1, the G/D/c queue with
constant service times of k slots is harder to analyze than the (c, k)-system. It remains
an open problem to derive a sample-path distributional relation between system size
and waiting time for this more challenging case.

We also considered the continuous-time analogue of the discrete-time (c, k)-system
and carried out a similar sample-path analysis to derive a sample-path relation between
system size and waiting time in continuous time.
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improved presentation. The first author acknowledges support from the National Science Council of Taiwan.
The second author acknowledges the support from Academia Sinica, Taiwan for his visits to the Institute
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6 Appendix

6.1 Lemmas and proofs

In this appendix, we state and prove a few lemmas that are needed for the proof of
Theorem 1 in Sect. 2.

Lemma 1 For the discrete-time (c, k)-system, let Q = {(t1, d1), . . . , (tn, dn)} be a
B(n) set, and let P = {(t1, d1), . . . , (tn, dn), (tn+1, dn+1)} with tn+1 = dn and dn+1 =
t1 + �k(n + 1)/c� − 1 (which is a B(n + 1) set ). If S[c]

Q = W [k]
Q , then S[c]

P = W [k]
P .

Proof Consider the setting where the (c, k)-system is empty right before t1, and n +1
customers C1, . . . , Cn+1 enter the system at t1, . . . , tn+1, respectively. Since P is a
B(n + 1) set, the Ci depart at di = t1 + �ki/c� − 1, i = 1, . . . , n + 1, and exactly c
units of work is performed at each of the slots t1, . . . , dn+1 − 1. Let � = NQ(dn) =
|{i ≤ n : di = dn}|, the number of those in C1, . . . , Cn who are in system at dn (and
also depart at the end of slot dn), and v = the number of units of work remaining for
these � customers at (the beginning of) slot dn . We have (cf. (2.3)),

(� − 1)k + 1 ≤ v ≤ min{�k, c} and � = �v/k�. (6.1)

Also NP (t) = NQ(t) for t1 ≤ t < dn , since tn+1 = dn . We consider the three cases
(c ≥ 1, k = 1), (c = 1, k ≥ 1) and (c ≥ 2, k ≥ 2) separately.

Case (i): c ≥ 1, k = 1. By (6.1), � = �v/k� = v. Write n = qc + r with q =
�n/c�−1 ≥ 0 and 0 < r ≤ c. With k = 1, the total number of work units for customers
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C1, . . . , Cn is n. Since exactly c units of work is performed at t ∈ {t1, . . . , dn − 1} and
since Cn departs at dn , we must have r = v = �. Two subcases are considered below.

Subcase (i.1): 0 < r < c. In this case, the total number of work units (including
the work of Cn+1) at dn equals r + 1 ≤ c, so that dn+1 = dn . It follows that

SQ = {NQ(t) : t1 ≤ t < dn} 
 {r},
SP = {NQ(t) : t1 ≤ t < dn} 
 {r + 1},

WP = WQ 
 {1}.

Since {r}[c] = {1(r)} and {r + 1}[c] = {1(r+1)} and S[c]
Q = W [k]

Q = WQ ,

S[c]
P = S[c]

Q 
 {1} = WQ 
 {1} = WP .

Subcase (i.2): r = c. The total number of work units (including the work of Cn+1)
at dn equals c + 1, so that dn+1 = dn + 1. It follows that

SQ = {NQ(t) : t1 ≤ t < dn} 
 {c},
SP = {NQ(t) : t1 ≤ t < dn} 
 {1, c + 1},

WP = WQ 
 {2}.

Since {1, c + 1}[c] = {1(c), 2} and {c}[c] = {1(c)} and S[c]
Q = WQ ,

S[c]
P = S[c]

Q 
 {2} = WQ 
 {2} = WP .

This completes the proof for case (i).
Case (ii): c = 1, k ≥ 1. Since c = 1, all of C1, . . . , Cn−1 must have departed before

dn , and Cn has just one unit of work remaining at dn . So � = v = 1. When Cn+1 enters
the system at tn+1 = dn , it takes k additional slots to complete the work of Cn+1. So
dn+1 = dn + k. It follows that

SQ = {NQ(t) : t1 ≤ t < dn} 
 {1},
SP = {NQ(t) : t1 ≤ t < dn} 
 {1(k), 2},

WP = WQ 
 {k + 1}.

Since {k + 1}[k] = {1(k−1), 2} and SQ = S[c]
Q = W [k]

Q ,

W [k]
P = W [k]

Q 
 {1(k−1), 2}
= SQ 
 {1(k−1), 2}
= {NQ(t) : t1 ≤ t < dn} 
 {1} 
 {1(k−1), 2}
= SP ,

completing the proof for case (ii).
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Case (iii): c ≥ 2, k ≥ 2. We further consider the following three subcases.
Subcase (iii.1): dn+1 = dn . Necessarily, c ≥ v + k (the amount of work at dn ,

including the work of Cn+1), which together with (6.1) implies c > �k ≥ 2�. Also we
have WP = WQ 
 {1}, SQ = {NQ(t) : t1 ≤ t < dn} 
 {�}, and SP = {NQ(t) : t1 ≤
t < dn}
{�+1}. Since �+1 ≤ 2� < c, we have {�}[c] = {1(�)}, {�+1}[c] = {1(�+1)},
so that

S[c]
P = S[c]

Q 
 {1} = W [k]
Q 
 {1} = W [k]

P .

Subcase (iii.2): dn+1 = dn + 1. Necessarily, v + k ≤ 2c, which together with
(6.1) implies 2c ≥ v + k > �k ≥ 2�, i.e. c > �. Then WP = WQ 
 {2} (implying
W [k]

P = W [k]
Q 
 {1(2)}),

SQ = {NQ(t) : t1 ≤ t < dn} 
 {�}, SP = {NQ(t) : t1 ≤ t < dn} 
 {1, � + 1},

from which and c > � it follows that

S[c]
P = S[c]

Q 
 {1(2)} = W [k]
Q 
 {1(2)} = W [k]

P .

Subcase (iii.3): dn+1 ≥ dn + 2. Necessarily � = 1. Since Cn+1 is the only customer
in system after dn and since exactly c units of work is performed at each of the slots
dn + 1, . . . , dn+1 − 1, we have k ≥ c(dn+1 − dn − 1) + 1 ≥ dn+1 − dn + 1. So
WP = WQ 
 {dn+1 − dn + 1} (implying W [k]

P = W [k]
Q 
 {1(dn+1−dn+1)}),

SQ = {NQ(t) : t1 ≤ t < dn} 
 {�}, SP = {NQ(t) : t1 ≤ t < dn} 
 {� + 1, 1(dn+1−dn)}.

It follows that

S[c]
P = S[c]

Q 
 {1(dn+1−dn+1)} = W [k]
Q 
 {1(dn+1−dn+1)} = W [k]

P .

This completes the proof for case (iii). The proof of Lemma1 is complete. �
Lemma 2 For the discrete-time (c, k)-system, let Q = {(t1, d1), . . . , (tn, dn)} be
a B(n) set with tn < dn. Let j satisfy tn ≤ j < j + 1 ≤ dn, and let P =
{(t1, d1), . . . , (tn, dn), ( j, dn+1)}and P ′ = {(t1, d1), . . . , (tn, dn), ( j+1, dn+1)} (with
dn+1 = t1 + �(n + 1)k/c� − 1), which are both B(n + 1) sets. Then

S[c]
P = W [k]

P i f and only i f S[c]
P ′ = W [k]

P ′ .

Proof Consider the setting where the (c, k)-system is empty right before t1, and n +1
customers C1, . . . , Cn+1 enter the system at t1, . . . , tn, tn+1, respectively, where tn+1 =
j or j +1. Since P and P ′ are both B(n +1) sets, the Ci depart at di = ti +�ki/c�−1,
i = 1, . . . , n+1, and exactly c units of work is done at each of the slots t1, . . . , dn+1−1.
Let � = NQ( j), the number of those in C1, . . . , Cn who are in system at j , and v =
the number of units of work remaining at j for the � customers Cn−�+1, . . . , Cn . Since
none of Cn−�+2, . . . , Cn begins service before time j , we have (�−1)k +1 ≤ v ≤ �k,
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implying � = �v/k� (cf. (2.3)). On the other hand, with tn+1 = j , v + k units of work
(including Cn+1’s work) needs to be completed at dn+1, so (dn+1 − j)c +1 ≤ v + k ≤
(dn+1 − j + 1)c, implying dn+1 − j + 1 = � v+k

c �. We have shown

� + 1 =
⌈v

k

⌉
+ 1 =

⌈
v + k

k

⌉
and dn+1 − j + 1 =

⌈
v + k

c

⌉
. (6.2)

Since Cn+1 departs at dn+1 for both cases tn+1 = j and tn+1 = j + 1, the waiting
time of Cn+1 is dn+1 − j + 1 for the former case and dn+1 − j for the latter. As the
waiting times of C1, . . . , Cn do not depend on tn+1, we have

WP 
 {dn+1 − j} = WP ′ 
 {dn+1 − j + 1}. (6.3)

Also, Cn+1 begins service at the same time for the two cases tn+1 = j and tn+1 = j +1.
In particular, for tn+1 = j , Cn+1 cannot begin service at j (< dn). It follows that

NP (t) = NP ′(t) for t 	= j, NP ( j) = � + 1, NP ′( j) = �.

So,

SP 
 {�} = SP ′ 
 {� + 1}. (6.4)

By (6.2)–(6.4),

SP 

{⌈

v + k

k

⌉
− 1

}
= SP ′ 


{⌈
v + k

k

⌉}
, (6.5)

WP 

{⌈

v + k

c

⌉
− 1

}
= WP ′ 


{⌈
v + k

c

⌉}
. (6.6)

By Lemma 3 below, ��(v + k)/k�/c� = ��(v + k)/c�/k�, which is denoted by ρ. We
consider ρ = 1 and ρ > 1 separately.

Case (i): ρ = 1. We have �(v + k)/k� ≤ c and �(v + k)/c� ≤ k, so

{⌈
v + k

k

⌉}[c]
=

{⌈
v + k

k

⌉
− 1

}[c]

 {1}, (6.7)

{⌈
v + k

c

⌉}[k]
=

{⌈
v + k

c

⌉
− 1

}[k]

 {1}, (6.8)

By (6.5)–(6.8),

S[c]
P = S[c]

P ′ 
 {1} and W [k]
P = W [k]

P ′ 
 {1}.

It follows that S[c]
P = W [k]

P if and only if S[c]
P ′ = W [k]

P ′ .
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Case (ii): ρ > 1. It is readily seen that {� v+k
k �}[c] has one more copy of ρ and one

fewer copy of ρ − 1 than {� v+k
k � − 1}[c], and {� v+k

c �}[k] has one more copy of ρ and
one fewer copy of ρ − 1 than {� v+k

c � − 1}[k]. It follows from (6.5) and (6.6) that

S[c]
P 
 {ρ − 1} = S[c]

P ′ 
 {ρ} and W [k]
P 
 {ρ − 1} = W [k]

P ′ 
 {ρ},

which implies that S[c]
P = W [k]

P if and only if S[c]
P ′ = W [k]

P ′ . This completes the proof.
�

Lemma 3 For positive integers i, j and �, we have

���/ i�/j� = ���/j�/ i�.

Proof Let ρ = ��/ i�. Then � ≤ iρ, and ��/j� ≤ �iρ/j� ≤ i�ρ/j�, implying
���/j�/ i� ≤ �ρ/j� = ���/ i�/j�. By symmetry, ���/ i�/j� ≤ ���/j�/ i�. This com-
pletes the proof. �
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