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Abstract One version of Little’s law, written as L = λw, is a relation between aver-
ages along a sample path. There are two others in a stochastic setting; they readily
extend to the case where the average waiting time w is infinite. We investigate condi-
tions for the sample-path version of this case to hold. Published proofs assume (our)
Eq. (3) holds. It is only sufficient. We present examples of what may happen when
(3) does not hold, including one that may be new where w is infinite and L is finite.
We obtain a sufficient condition called “weakly FIFO” that is weaker than (3), and
through truncation, a necessary and sufficient condition. We show that (3) is sufficient
but not necessary for the departure rate to be equal to the arrival rate.
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1 Introduction

It is often written, for example, in [12] and [14], that there are two versions of Little’s
law, SP, the purely sample-path (deterministic) result as in Stidham [11], and D, a
relation between the means of stationary distributions, as in Franken et al. [4].

However, the oldest (general) formulation, that by Little in [5], as perfected by
Brumelle in [2], is neither of these. We call this version a hybrid H: It is a sample-path
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result in a stochastic setting; see also [7] and page 249 of [12]. Versions D and H have
the same starting point: The joint sequence of inter-arrival times and waiting times is
stationary, where the waiting times have an arbitrary joint distribution.

Whatever the version, we write Little’s law as “L = λw,” where λ is the arrival
rate, 0 < λ < ∞, and for SP, L is the time average of the number of customers in
system and w is the customer average of their waiting times. This departs from the
usual notation, where W is the customer-average waiting time. We prefer to define W
as a stationary waiting time with mean w = E(W ). Thus for version D, L = λE(W ),
where L is the mean of the stationary number-of-customers-in-system process. We
will often abbreviate Little’s law as LL.

The proof of LL via H is easier than via D, but D obtains much more, the construction
of the stationary number-of-customers-in-system process. Both readily extend to the
case where w = ∞.

For finite w, the proof via SP is easy to understand and uses more elementary tools.
It holds for an arbitrary point (sample path) in the sample space, or for sequences
of numbers without defining a sample space. We do not have to be concerned about
whether stationary versions of processes exist.

For SP when w = ∞, it is usually assumed that (3) below still holds. This makes
the proof easy, but it does not hold in some elementary situations.

We investigate conditions for Little’s law to hold on sample paths, with primary
consideration to the case where 0 < λ < ∞ and w = ∞.

In Sect. 2, we review how (3) is used to prove LL, and through a series of examples,
show what can happen when it does not hold. This includes an example where 0 <

λ < ∞, L < ∞, and w = ∞.
In Sect. 3, we show that LL holds under a “weakly FIFO” condition that is weaker

than (3), and like (3), it is sufficient but not necessary. In particular, FIFO is sufficient,
and is different (neither weaker nor stronger) from (3). We show that (3) is sufficient
but not necessary for the departure rate to be equal to the arrival rate. We relate this
result to the literature at the end of this section in Remark 4, and in Sect. 6.

In Sect. 4, we use truncation to obtain a necessary and sufficient condition for LL to
hold. We also obtain a stronger sufficient condition. While not necessary, it is applied
in the stochastic setting of H to give what may be the most elementary proof of LL
when w = ∞.

Section 5 is devoted primarily to establishing that for a stochastic model where
L = λw = ∞, (3) does not hold. This example is important because, unlike our
deterministic examples, the waiting times are stable. See Sect. 5.1 for the meaning of
terms “stable” and “unstable,” and further analysis of this model. We also point out
what are probably inadvertent errors in several places in a well-known publication
regarding the necessity of (3) for LL when w = ∞.

In Sect. 6, we briefly discuss the two ways infinite w may arise in queueing models
and some of the implications of each of them.

2 Version SP when w = ∞

In what follows, the quantities we define are for some arbitrary sample path in a sample
space, or are sequences of numbers without defining a sample space.
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For i ≥ 1, let customer Ci arrive at time ti , have waiting time Wi , and depart at
di = ti + Wi , where t0 ≡ 0 ≤ t1 ≤ t2 ≤ · · · , and ti → ∞ as i → ∞. For any
t ≥ 0, Ci is in the system at t if ti ≤ t < di . Define the corresponding indicator,
Ii (t) = 1 if ti ≤ t < di , and Ii (t) = 0 otherwise, where

∫ ∞
0 Ii (t) dt = Wi . Let

N (t) = ∑∞
i=1 Ii (t), the number of customers in system at time t , and �(t) = max{i :

ti ≤ t}, the number of arrivals by time t . With �(t), we rewrite N (t) = ∑�(t)
i=1 Ii (t).

Let D(t) = #{i : di ≤ t}, the number of departures by time t .
We define long-run averages as limits, when they exist, and name them.

L = lim
T →∞

1

T

T∫

0

N (t) dt, w = lim
n→∞

1

n

n∑

i=1

Wi , λ = lim
t→∞

�(t)

t
. (1)

L is the average number of customers in the system,
w is the average waiting time (of customers in the system), and
λ is the arrival rate. Unless the contrary is stated, we assume 0 < λ < ∞.

Customer data ti and Wi for all i determine N (t) for all t , where for any time T > 0,
the inequalities

∑

{i :di ≤T }
Wi ≤

T∫

0

N (t) dt ≤
�(T )∑

i=1

Wi (2)

are easily obtained, as in [11,14], page 162 of [3], and page 287 of [13].
We now sketch what is essentially the same proof of LL in all of these references

for the case where w is finite and 0 < λ < ∞.
Divide (2) by T and let T → ∞. The right-hand expression has limit λw, which

implies the left-hand expression has lim sup ≤ λw. LL follows if lim inf ≥ λw.
Toward that end, it is easily shown that finite w implies

lim
i→∞ Wi/ i = 0, (3)

and that (3), together with finite w and λ, implies

lim
i→∞ Wi/ti = 0. (4)

(When 0 < λ < ∞, (3) and (4) are equivalent, whether or not w is finite.)
The remainder of the proof uses (4) to show that for any ε > 0, the left-hand

expression in (2), when divided by T , has lim inf ≥ λw/(1 + ε), and because ε is
arbitrary, has lim inf ≥ λw. Thus we have

lim inf
T →∞

1

T

T∫

0

N (t) dt ≥ λw, (5)

which completes the proof. The key property is (3).
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It is easy to extend LL to the case where w = ∞ if we assume that (3) still holds,
which is usually what is done, e.g., on page 241 of [12].

To illustrate, consider a G I/G/1 first-in-first-out (FIFO) queue with average service
time E(S), where λE(S) < 1, and variance V (S) = ∞. We have w = ∞, and it is
easy to show that (3) holds.

However, this is not always true, as in an ∞-server queue with i.i.d. service times
Si , so the Wi = Si are i.i.d. For i.i.d. Wi , w < ∞ w.p.1 if and only if (3) holds
w.p.1.; for discussion and a proof, see Sect. 5. As we show in Example 6, LL holds for
this model even when w is infinite. Thus we have an example of stable waiting times
where, when w = ∞, LL holds but (3) does not.

On the other hand, when 0 < λ < ∞, the second inequality in (2) gives

L = ∞ �⇒ w = ∞. (6)

It was first noted by Brumelle [2], more explicitly by Stidham [11], and many times
since that there is an asymmetry to LL. When 0 < λ < ∞, finite w implies finite L ,
but not the converse. When L is finite, it has long been known that w may not exist, and
we show in Example 4 below that w may be infinite. Thus infinite L implies infinite
w, but not the converse.

The following four sample-path examples show what can happen when (3) does
not hold. The first one appears on page 289 of [13].

In all of these examples, waiting times are either “long” or “short” (equal to zero,
but this is not essential), where the arrival rate of customers with long service times
is zero. In all but Example 3, we introduce some additional notation: Let the j th
customer with a long waiting time arrive at a j , depart at b j , and have waiting time
Wa j = b j − a j , j ≥ 1.

Example 1 Let ti = i for i ≥ 1 (so λ = 1). Let a j = 2 j−1, b j = a j+1, and
Wa j = b j − a j = 2 j−1, j ≥ 1. For any arrival time ti = i, i /∈ {a1, a2, . . . },
departure time di = i and Wi = 0 (short waiting times). For customers with long
waiting times, one departs just as the next one arrives. N (t) = 1 for t ≥ 1, and L = 1.
It is easy to show that the sequence {W n = ∑n

i=1 Wi/n} fluctuates between one and
two as n → ∞. Limit w does not exist.

Example 2 This is the same as Example 1, except that we make the long waiting times
longer. Let a j = 2 j−1 (the same as in Example 1) and b j = a2 j , j ≥ 1. We still have
λ = 1. It is easy to see that N (t) increases without bound and L = ∞. From (6),
w = ∞.

Thus, while (3) is sufficient, it is not necessary for w = L = ∞.
So far, we have examples with 0 < λ < ∞ where L is finite and limit w does not

exist and where both L and w are infinite. As we show next, it is easy to construct
examples where, when λ = 0, we have finite L and infinite w.

Example 3 Let {Wi } be any increasing sequence with limit ∞, hence w = ∞. Let
t1 = 1, and define

ti+1 = ti + Wi , i ≥ 1.
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As in Example 1, N (t) = 1, t ≥ 1, and L = 1, but now, λ = 0. Compared with
Example 1, we have deleted the arrival times and waiting times of those customers
who had short waiting times.

A sample-path example in [11] has finite L , but neither λ nor w exist. Our next
example, which is of much greater interest and requires more ingenuity, has

0 < λ < ∞, L < ∞, and w = ∞. (7)

We are not aware of a previously published example of (7).

Example 4 Let ti = i, i ≥ 1; λ = 1. We construct sequences {a j } and {b j }, with
a1 = 1, a2 = 2, and integers 2 < b1 < b2. Let {r j }, j ≥ 1, be an increasing sequence
of positive integers with limit ∞. For j = 1, 2, . . . , define

b j+2 = b j + b j+1r j ,

so that {b j } is strictly increasing. Let a j+2 = b j for j = 1, 2, . . . , so that {a j } is
strictly increasing. For ti = i, i /∈ {a1, a2, . . .}, di = i and Wi = 0.

Because customers with long waiting times depart FIFO and a j+2 = b j , N (t) = 2
for every t > a2, which implies L = 2. We now show that w = ∞. For n in the range
a j+2 = b j ≤ n < b j+1, j ≥ 1,

n∑

i=1

Wi ≥ Wa j+2 = b j+2 − a j+2 = b j+2 − b j = b j+1r j , so that

n∑

i=1
Wi

n
>

b j+1r j

b j+1
= r j , for n ∈ [b j , b j+1).

Because r j → ∞ as n → ∞, this gives

w = lim
n→∞

∑n
i=1 Wi

n
= ∞.

3 A weaker sufficient condition

As defined in (1), λ is the limit of �(t)/t as t → ∞, which is easily shown to be
equivalent to ti/ i → 1/λ as i → ∞. Arrival i departs at di = ti + Wi . If customers
depart FIFO, di is the i th (ordered) departure time. If we also have (3), Wi/ i → 0 as
i → ∞, it is immediate that di/ i → 1/λ as i → ∞, which is

departure rate = arrival rate. (8)

Actually, it is immediate that (slightly) more is true, which we state as

123



272 Queueing Syst (2014) 76:267–281

Lemma 1 For 0 < λ ≤ ∞, and when we have FIFO, any two of

(a) arrival rate = λ, (b) departure rate = λ, (c) Wi/ i → 0 as i → ∞

implies the third.

It turns out that (3) is sufficient for (8) without requiring FIFO; see Sect. 3.1.
Nevertheless, (3) imposes what we call a weakly FIFO condition on departure order
that we now define (FIFO and (3) are special cases).

Definition (Weakly FIFO). For given 0 ≤ (integer) B < ∞ and 0 < ε ≤ 1, a
sequence of arrival and departure times {(ti , di ), i ≥ 1} is called (B, ε)-FIFO if
d j ≤ dk for all j and k satisfying B < j < εk.

Remark 1 (0, 1)-FIFO is the same as FIFO. If {(ti , di )} is (B, ε)-FIFO, then it is
(B ′, ε′)-FIFO provided that B ′ ≥ B and ε′ ≤ ε.

Remark 2 If {(ti , di )} is (B, ε)-FIFO and 0 ≤ λ < ∞, {(ti , di )} is (0, ε′)-FIFO for
sufficiently small ε′ > 0.

Remark 3 If 0 < λ < ∞ and (3) holds for {(ti , di )}, then it is (B, ε)-FIFO, where ε

can be set to any positive value < 1, together with a suitably chosen (possibly large) B.
Conversely, a (B, ε)-FIFO sequence need not in general satisfy (3). In fact, Example
7 in Sect. 5 has a FIFO sequence for which L = λw = ∞ and Wi/ i → 1.

Next we show that weakly FIFO is sufficient for L = ∞. It is not necessary; for
example, it can be shown that weakly FIFO does not hold in Example 2.

Theorem 1 If 0 < λ < ∞ and w = ∞ for {(ti , di )}, then L = λw = ∞ holds
provided that {(ti , di )} is (B, ε)-FIFO for 0 ≤ B < ∞ and 0 < ε ≤ 1.

Proof We claim that for all T > 0,

T∫

0

N (t) dt ≥ min

⎧
⎨

⎩
T

4

[
�(3T/4) − �(T/2)

]
,

∑

{i :B<i<ε I (T/2)}
Wi

⎫
⎬

⎭
, (9)

where I (t) = inf{i : ti ≥ t}. Assume the claim holds.
As T → ∞, 1

T [�(3T/4) − �(T/2)] → λ/4 > 0, first term of the min
T → ∞, and

1

T

∑

{i :B<i<ε I (T/2)}
Wi = ε I (T/2)

T

1

ε I (T/2)

∑

{i :B<i<ε I (T/2)}
Wi → (ελ/2)w = ∞.

It follows that 1
T

∫ T
0 N (t) dt → ∞ = L .

It remains to prove (9). Consider the following two cases.
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Case (i): di > T for all i such that T
2 ≤ ti < T . We have

T∫

0

N (t) dt ≥
T∫

T/2

N (t) dt ≥
∑

{i : T
2 <ti ≤ 3

4 T }
(T − ti )

≥ T

4
#

{

i : T

2
< ti ≤ 3

4
T

}

= T

4
[�(3T/4) − �(T/2)],

so that (9) holds.
Case (ii): di0 ≤ T for some i0 such that T

2 ≤ ti0 < T . By the (B, ε)-FIFO
condition, we have di ≤ di0 for all i in the range B < i < εi0. Since i0 ≥ I (T/2),

T∫

0

N (t) dt ≥
∑

{i :B<i<εi0}
Wi ≥

∑

{i :B<i<ε I (T/2)}
Wi ,

so that (9) holds. This completes the proof. ��
FIFO is an important special case because it is often assumed in models of queues

and frequently occurs in the real world. For example, suppose customers “take a
number” on arrival, so that they depart FIFO from the queue. Theorem 1 applies to
the entire system when there is one server, and to the queue when there is one or more
servers, without regard to whether (3) holds.

Related but different is the use of FIFO in proving LL on pages 163–164 of [3].
Theorem 6.2 assumes (8), but not (3), and allows 0 ≤ λ ≤ ∞. Corollary 6.3 requires
finite w.

3.1 Constructing FIFO departure processes

When the actual departure process is not FIFO, we will see that it is useful to construct
another departure process that has this property. One example occurs on page 167 of
[3] for what we call the hat departure process: Let the mth departure time d̂m =
max{d1, . . . , dm}, m ≥ 1, and D̂(t) = #{m : d̂m ≤ t}, t ≥ 0, which clearly
is FIFO. Lemma 6.9 on page 169 of [3] states that for 0 < λ ≤ ∞, any two of:
arrival rate = λ, limt→∞ D̂(t)/t = λ, and (3) implies the third.

For an alternative, let W ′
m = max{W1, . . . , Wm}, m ≥ 1. Define the prime depar-

ture process d ′
m = tm + W ′

m, m ≥ 1, which is the mth ordered departure (the FIFO
property), and D′(t) = #{m : d ′

m ≤ t}, t ≥ 0. Note that the hat departure process is
identical to the original when the latter is FIFO, whereas this is not the case for prime.

Applying Lemma 1 to the prime departure process, noting that W ′
m/m → 0 is

equivalent to (3) (see Remark 4), we have

Lemma 2 For 0 < λ ≤ ∞, any two of: arrival rate = λ, limt→∞ D′(t)/t = λ,
and (3) implies the third.
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From d ′
m ≥ dm ≥ tm for all m, D′(t) ≤ D(t) ≤ �(t) for all t . From these

inequalities, the following theorem is an immediate consequence of Lemma 2.

Theorem 2 For arrival rate λ, where 0 < λ ≤ ∞, (3) is sufficient for (8).

Of course, the hat process and Lemma 6.9 can be used instead of Lemma 2 to
complete the proof of Theorem 2. It is such an obvious consequence of either lemma
that an explicit statement of this result is hard to find. We do not claim it to be new.
Also note that Lemma 6.9 is an easy consequence of the inequalities

tm ≤ d̂m ≤ tm + W ′
m = d ′

m, and Wm ≤ Ŵm ≡ d̂m − tm ≤ W ′
m, m ≥ 1,

where we also have that Ŵm/m → 0 is equivalent to (3).
What may have been missed is that (3) is not necessary for (8). For example, suppose

0 < λ < ∞, where, in the terminology used in Examples 1–4, the long-run fraction
of arrivals that have short (Wi = 0) waiting times is one. (8) holds, regardless of the
size of the longs. If Wi = i for an infinite subsequence of longs, (3) does not hold.

Remark 4 See Lemma 2.10 on page 45 of [3] for an easy proof that (i) Wm/m → c,
as m → ∞, is equivalent to (ii) W ′

m/m → c, as m → ∞, where c = 0. Their proof is
correct for c = 0, but their claim that this result also holds for c > 0 is not true. While
(i) implies (ii) for this case, the converse does not hold. Here is a counterexample. Let
Wi = i for even i, Wi = 0 for odd i . Limit (ii) holds, where c = 1. Limit (i) does not
exist.

They used the incorrect version of Lemma 2.10 (c > 0 when λ < ∞) in their proof
of Lemma 6.9. Because the ti are nondecreasing, however, it is enough to use only the
c = 0 case, as we have done. Thus Lemma 6.9 is correct, as we have shown. These
errors seem to have originated in [9], where the first error occurs in Eq. (12) on page
153, and the second follows two lines later.

4 A necessary and sufficient condition

We now derive a necessary and sufficient condition for L = ∞ via truncation, where,
for n = 1, 2, . . . , and k > 0 (k may be a function of n), we define

W n(k) = 1

n

n∑

i=1

min(Wi , k). (10)

We also replace the second inequality in (2) by the more precise

T∫

0

N (t) dt =
�(T )∑

i=1

min(Wi , T − ti ). (11)
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Theorem 3 When 0 < λ < ∞,

lim
n→∞ W n(n) = ∞ (12)

is necessary and sufficient for L = λw = ∞.

Proof To show that (12) implies L = ∞, fix 0 < c < 1/(1 + λ) < 1. Since

lim
T →∞[�(cT ) + t�(cT )]/T = cλ + c < 1,

�(cT ) < T − t�(cT ) for all sufficiently large T . (13)

From (11),

1

T

T∫

0

N (t) dt ≥ 1

T

�(cT )∑

i=1

min(Wi , T − ti )

≥ 1

T

�(cT )∑

i=1

min(Wi , T − t�(cT )), and from (13) for large T,

≥ 1

T

�(cT )∑

i=1

min(Wi ,�(cT )) = �(cT )

T
W �(cT )(�(cT )).

As T → ∞, the last expression → ∞, which implies L = ∞.
To show that L = ∞ implies (12), fix 0 < c′ < min(λ, 1). Since

lim
n→∞ t[c′n]/n = c′/λ < 1,

t[c′n] < n for all sufficiently large n, (14)

where [x] ≡ greatest integer ≤ x . From (10), (14), and noting that [c′n] < n,

W n(n) ≥ 1

n

[c′n]∑

i=1

min(Wi , t[c′n]) (for large n)

≥ 1

n

[c′n]∑

i=1

min(Wi , t[c′n] − ti ) = 1

n

t[c′n]∫

0

N (t) dt

= t[c′n]
n

1

t[c′n]

t[c′n]∫

0

N (t) dt.

As n → ∞, the last expression → ( c′
λ
)L = ∞, which implies (12) and completes the

proof. ��
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We may replace (12) by limn→∞ W n(rn) = ∞ with 0 < r < ∞. In fact, it
is easily shown that limn→∞ W n(r ′n) = ∞ for some 0 < r ′ < ∞ implies that
limn→∞ W n(rn) = ∞ for all 0 < r < ∞.

A key feature of (12) is that the length of truncated intervals increases with n as
we take the limit. We now describe a more conventional approach, which is to fix
truncation length, k, let n → ∞, and then let k → ∞. As n → ∞ in (10),

lim inf
n→∞ W n(k) < ∞

exists (the limit may not). It is easy to see that

lim
k→∞ lim inf

n→∞ W n(k) = ∞ (15)

implies (12). Hence we have

Corollary When 0 < λ < ∞, (15) is a sufficient condition for L = ∞.

As we show in Example 5, however, (15) is not necessary. We now investigate how
(12) and (15) apply to earlier examples.

Example 5 First consider Example 2. For fixed k > 0, any n ≥ 1, and Wi for i =
1, 2, . . . , n, define #0(n) and #n(n) as the number of the Wi that, respectively, are > 0
and ≥ n, where #0(n) ≥ #n(n). It is easy to show that #0(n)/n → 0 as n → ∞.
From this, W n(k) ≤ #0(n)k/n → 0 as n → ∞. Hence (15) does not hold, showing,
as noted above, that it is not necessary for L = ∞.

To show that (12) holds, consider n ∈ [a j , a j+1).
For j odd, j > 3, and s = ( j + 3)/2, ( j + 5)/2, . . . , j ,

Was = bs − as = 22s−1 − 2s−1 > 2 j+2 − 2 j−1 > 2 j > n.

For j even, j > 2, and s = ( j + 2)/2, ( j + 4)/2, . . . , j ,

Was > 2 j+1 − 2 j−1 > 2 j > n.

In both cases, #n(n) ≥ ( j − 1)/2 for n ∈ [a j , a j+1), j ≥ 4. Hence #n(n) → ∞ as
n → ∞. From W n(n) ≥ #n(n), (12) holds!

Now consider Example 4, using the same notation. By the same analysis, (15)
does not hold. For n ∈ [b j , b j+1), the sum of the waiting times of customers with
arrival times a j , a j−2, . . . is at most b j , and the sum of the waiting times of customers
with arrival times a j−1, a j−3, . . . is at most b j−1. Among the long waiting times in
{W1, . . . , Wn}, only those with arrival times a j+1 and a j+2 are not included in one of
these sums. It follows that W n(n) is bounded above by 4; (12) does not hold.

Although only a sufficient condition, (15) has a natural connection to the w = ∞
case in a stochastic setting, where it holds, and gives an easy proof.
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Example 6 Now consider the stochastic setting in H where the Wi are stationary
and ergodic, with w = ∞. The truncated quantities Wi (k) = min(Wi , k) are also
stationary and ergodic, but with finite mean

E[Wi (k)] =
k∫

0

P(Wi > u) du,

where limk→∞ E[Wi (k)] = ∞. Thus the lim inf in (15) is equal to E[Wi (k)], and
(15) holds! Now apply the sample-path proof of LL for finite w (sketched above) to
the truncated quantities, and bring in the stochastic setting at the end, to conclude that
w = ∞ �⇒ L = ∞, but this is “only” w.p.1. Note that this includes the special case
of i.i.d. Wi , where (3) does not hold when w = ∞ (see Theorem 4 in Sect. 5).

In Example 6, the same argument goes through when the Wi are stationary but not
ergodic, where for invariant sigma field F , E(W | F) = ∞, and

E[Wi (k) | F] =
k∫

0

P(Wi > u | F) du.

5 An earlier stochastic example

In Sect. 2, we asserted that for i.i.d. Wi ,

w < ∞ w.p.1 if and only if (3) holds w.p.1, (16)

and showed in Example 6 that L = ∞ w.p.1. when w = ∞ w.p.1. (16) was presented
as a counterexample to the necessity of (3) when w = ∞ on p. 298 of [13] without
a reference, and in [14] with reference to Loève [8]. However, this reference is prob-
lematic because of possible confusion of edition number and difficulty of finding the
result. Here is a closely related result:

For i.i.d. Wi , where i.o. denotes infinitely often,

w < ∞ w.p.1 if and only if P(Wi > i i.o.) = 0. (17)

(17) appears as Problem 10 on page 44 of [1]. Breiman also references Loève, with
similar difficulty of verification.

While proofs of (16) and (17) appear elsewhere, we prove them here because we
need (16) and because the proofs are easy and short.

Theorem 4 (16) and (17) hold.

Proof For (17), let W be a generic waiting time, where w =
∞∫

0
P(W > u) du.
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w < ∞ w.p.1 if and only if
∞∑

i=1

P(W > i) < ∞, which is equivalent to

∞∑

i=1

P(Wi > i) < ∞,

because the Wi are identically distributed. Replacing probabilities by indicators, and
taking expected value outside the sum, w < ∞ w.p.1 if and only if

E

[ ∞∑

i=1

I {Wi > i}
]

< ∞.

From the Borel–Cantelli lemma, we have (17) because events {Wi > i} are indepen-
dent.

When w < ∞ w.p.1, the strong law of large numbers readily gives that (3) holds
w.p.1. That is,w < ∞ is sufficient (as it is on sample paths). To show that it is necessary,
suppose w = ∞. From (17) and by Kolmogorov’s 0-1 law, P(Wi > i i.o.) = 1. For
any sample path where Wi > i i.o., (3) does not hold. Hence (3) holds w.p.0 for this
case, and we have (16). ��

Thus (16), important because it is for a conventional queueing model with stable
waiting times, shows that L = λw = ∞ may hold when (3) does not. Example 2 is
not a conventional model. As we now illustrate, there are much simpler deterministic
examples that are conventional, but they are unstable.

Example 7 Consider a single-server FIFO queue with ti = i and service times Si =
2, i ≥ 1. It is easy to see that Wi = 1 + i and N (t) both increase without bound. We
have λ = 1, both L and w are infinite, and (3) does not hold. Incidentally, (15) holds
here.

While writing this paper, we did a literature search to be sure that we were not
“rediscovering the wheel.” Probably the most complete treatment of LL is in the El-
Taha and Stidham book, [3], which we refer to several times. We searched this book
for necessary and sufficient conditions for LL and also for the more general H = λG,
and were surprised, and worried at first, at what we found.

Theorem 6.17 on page 179 claims that a necessary and sufficient condition for
H = λG (including the case G = ∞) is that an error term converges to zero (Condition
R). In the following Example 6.2, they conclude that LL holds when λw is well defined,
where the convergence of the error term turns out to be (3). Of course, this is incorrect.
Condition R (and (3)) is not necessary when G (w) is infinite. The result is correct if
G is restricted to 0 ≤ G < ∞. This is an unfortunate oversight.

Also unfortunate are similar statements in at least two other places. The last sentence
on page 160 states in words the incorrect Theorem 6.17. Independent of that, the first
sentence in Sect. 6.3 on page 170 states the same thing about LL, and refers incorrectly
to an earlier result.
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5.1 Stability properties of our infinite server model

The stability of queues is a research area where there is usually a stochastic framework,
and the definition of a stable queue depends on this framework. See Appendix C,
stability in stochastic models, in [3] for a treatment of the question: what is a stable
queue?

From this, we come away with the fact that “stable queue” has no generally accepted
definition that covers all situations. Instead, it is useful to think of a queueing model,
which is a set of assumptions that determine how a queue evolves over time. These
assumptions determine how certain stochastic processes evolve, of which the most
prominent (usually) are waiting-time sequence {Wi } and number-of-customers-in-
system process {N (t)}.

We define a stochastic process to be stable if it converges (Wi as i → ∞ or N (t)
as t → ∞) to a proper limiting distribution, independent of initial conditions. These
are rough definitions that leave out certain possibilities, such as periodic behavior. We
define a queueing model to be stable if both {Wi } and {N (t)} are stable.

Similarly, we define a stochastic process to be unstable if it grows without bound
to ∞ (we are dealing here with non-negative quantities that can grow in only one
direction), usually w.p.1. We define a queueing model to be unstable if both {Wi } and
{N (t)} are unstable.

As an example, consider an M/M/1 queue with arrival rate λ and service rate μ,
with ρ = λ/μ. {N (t)} is an irreducible Markov chain that is positive recurrent, null
recurrent, or transient if (respectively) ρ < 1, ρ = 1, or ρ > 1. The positive recurrent
case is stable; the transient case is unstable. In the null case, the chain returns over
and over to an empty system, but it is not stable. If we define unstable to be growth
to ∞ w.p.1, it is not unstable. The waiting-time sequence has the identical properties
for each range of ρ.

In our sample-path examples, these definitions are not helpful, with the exception
of Example 7. For our infinite-server model with i.i.d. waiting times (ISM for short),
however, our definitions apply, where (obviously) {Wi } is stable. What about {N (t)}?

It is difficult to answer this question without defining the arrival process. It will be
helpful to consider this special case: Arrivals are Poisson at rate λ, so that the ISM
is an M/G/∞ queue. Our analysis of this model is a refinement and extension of
Example 2–6 on page 75 of [13].

Let G be the service (waiting time) distribution. Extend the time horizon, −∞ <

t < ∞. Define s-customers to be those with waiting time ≤ s, and for every t , let
Ns(t) be the number of s-customers in the system at time t . By subscript s, we denote
quantities λs, Ls , and ws for the system consisting only of s-customers.

To be in the system at time t , an s-customer must have arrived in the interval
(t − s, t], where the number of s-customers that arrive in this interval is Poisson
with mean λsG(s). An s-customer that arrives at time u in this interval will be in
the system at time t if its waiting time exceeds t − u, an event with probability
[G(s) − G(t − u)]/G(s). Given the number of s-customer arrivals in this interval,
their (unordered) arrival times are i.i.d. uniform with density 1/s. Hence the probability
that any one of them is in the system at time t, pt , is
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pt = [sG(s)]−1

t∫

t−s

[
G(s) − G(t − u)

]
du = [sG(s)]−1

s∫

0

[G(s) − G(u)] du.

We have what is referred to in [13] as a “random partition” of the s-arrivals in the
interval (t − s, t], and it follows that Ns(t) has a Poisson distribution with mean, Ls

in our notation above,

Ls = λsG(s)pt = λ

s∫

0

[G(s) − G(u)] du. (18)

Noting that
∫ s

0 [1 − G(u)/G(s)] du = ws , the RHS of (18) is equal to λsws .
Now let s → ∞. When w is finite, N (t) has a Poisson distribution with mean λw.

The process {N (t)} is stationary and hence stable.
When w is infinite, we have very different behavior. The limit of (18) is ∞. Because,

at any point in the sample space, Ns(t) can only increase as s increases, N (t) = ∞
w.p.1.

Thus process {N (t)} is unstable, even though process {Wi } is stable. The queueing
model? We could say it is not stable, which is not to say it is unstable. In our experience,
processes {N (t)} and {Wi } behaved alike; either both were stable or both were unstable.
We do not have a name for what happens here.

We believe that this peculiar limiting behavior will hold for much more general
arrival processes, but it will be difficult to carry out the analysis, provided that the
arrival process is independent of the waiting times. When they are dependent, there
may be other possibilities. For example, if the arrival process is defined as in Example
3, and the Wi are i.i.d., L = 1, but now we have λ = 0.

6 Concluding remarks

Some of our examples are not conventional queueing models, but this should not be
regarded as an objection. The beauty and simplicity of Little’s law is that it makes no
assumptions about model structure. This also accounts for the ubiquity of its applica-
tions; see [6] and the references therein.

In an earlier version of this paper, we commented that (3) is sufficient for (8) without
requiring FIFO, but gave no reference. A referee requested that we supply one. We
thought this was well settled and intended to comply, but an investigation revealed that
there are surprising gaps in the literature. We are aware of a proof by Sigman [10],
using a different approach, but it is not published in a refereed journal or a book, and
does not cover the case λ = ∞. It is not archival and may be deleted at any time.

We find the approach in [3] and [9] more intuitive as well as more general. For any
FIFO departure process, such as hat or prime, where the arrival rate λ > 0 exists, it is
immediate from the elementary Lemma 1 that (3) is necessary and sufficient for (8).
Without FIFO, we then showed that (3) is sufficient but not necessary. Note that we
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used the correct part of Lemma 2.10 in [3] only for waiting times; the arrival process
plays no role.

In a typical queueing model, arriving customers at a facility have service require-
ments, whereas the facility has constraints on its ability to meet these requirements. For
a single-server queue, the constraint is that, at most, one customer is served at a time
(an infinite-server queue removes such a constraint). Sometimes, the facility cannot
keep up with the service requirements, for example, the arrival rate at a single-server
queue is greater than the service rate. These queues are unstable. Both L and w are
infinite, but there is no reason to expect (3) to hold. This is the situation in Example 7.

Stable queues may also have infinite w. This is true, for example, in a G I/G/1
FIFO queue with λ/(service rate) < 1 and infinite service time variance. Infinite w

may occur because some customers are delayed by others, even though, in this case,
the system empties from time to time. An important component of waiting time in this
example is the remaining service time of the customer in service, if any, found by an
arrival. It has an infinite mean, and is the reason w is infinite.
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