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Abstract: “Einstein from noise” is an interesting phenomenon arising in cryo-

electron microscopy image analysis where spurious patterns could easily emerge

by averaging a large number of white-noise images aligned to a reference image

through rotation and translation. While this phenomenon can reasonably be

explained by model bias, no quantitative studies have been performed to char-

acterize such a bias. We consider a simple framework under which an image is

treated as a vector of dimension p and a white-noise image is a random vector uni-

formly sampled from the (p−1)-dimensional unit sphere. The cross correlation of

two images is defined as the inner product of the two corresponding vectors. This

framework geometrically explains how the bias results from averaging a properly

chosen set of white-noise images that are most highly cross-correlated with the

reference image. We quantify the bias in terms of three parameters: the number

of white-noise images (n), the image dimension (p), and the size of the selec-

tion set (m). Under the conditions that n, p and m are all large and (lnn)2/p

and m/n are both small, we show that the bias is approximately
√

2γ
1+2γ

where

γ = m
p

ln
(
n
m

)
.
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1. Introduction

Cryogenic electron microscopy (Cryo-EM) is an imaging technique that2

uses transmitted electron waves to obtain projection images of a biologi-

cal sample. In contrast to X-ray crystallography, single particle cryo-EM4

does not need crystals and thereby is amenable to structural determina-

tion of proteins that are refractory to crystallization, including membrane6

proteins (Liao et al., 2013) and yeast spliceosomes that exhibit dynamic

patterns (Liao et al., 2013; Yan et al., 2015). This capability enables single8

particle cryo-EM to record structures in solution. Because of single par-

ticle cryo-EM breakthroughs in high-resolution structure determination of10

biomolecules in solution, Nature Methods named cryo-EM as the “Method

of the Year” in 2016, and the Nobel Prize in Chemistry in 2017 was awarded12

to Jacques Dubochet, Joachim Frank, and Richard Henderson for their pi-

oneering works in developing cryo-EM.14

When cryo-EM is applied to imaging biomolecules, the data is recorded

on a micrograph, which contains many particle projections in unknown ori-16
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entations. The signal-to-noise ratio (SNR) of cryo-EM images in general is

extremely low (SNR < 0.1) because the biomolecules are photographed with18

low exposure to minimize structural degradation caused by radiation. The

resulting averages of 2D clustering in cryo-EM processing greatly enhance20

SNR of many views and allow the clustering averages to be labeled. Yet,

meaningful clustering depends on good image alignment, for which all pos-22

sible rotations and translations are exhaustively searched to find the most

fitted solution (Frank, 1975; Frank and Al-Ali, 1975; Saxton and Frank,24

1976).

In practice, there have been cases when cryo-EM processing failed to26

converge to a true structure. The pitfall would occur when the particles are

small (Mao et al., 2013) or image contrast is low (Murray et al., 2013). In28

those cases, the processing was dictated by the reference of a model (Stew-

art and Grigorieff, 2004). To elucidate the model bias phenomenon, the30

Grigorieff group did an experiment by generating 1000 white-noise images

and aligning each of them to an Einstein’s facial image through rotation32

and translation. A blurred Einstein’s face emerged from averaging the 1000

aligned images. Henderson (2013) further dubbed such unwanted outcome34

by “Einstein from noise” and used it to warn the community that an incor-

rect 3D density map could be constructed when data are blindly fitted to36
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a model.

In a recent review paper, Lai et al. (2020) discussed the “Einstein from38

noise” phenomenon from a statistical perspective. To avoid the technical

issue of how rotating an image may destroy the pixel format, they consid-40

ered a simple mathematical framework under which an image is treated as a

vector of dimension p and a white-noise image is a random vector uniformly42

distributed on the (p − 1)-dimensional unit sphere. The cross correlation

of two images is defined as the inner product of the two corresponding vec-44

tors. Under this framework, we present in Section 2 a simulation study

with n = 2× 106 white-noise images with the pixel number p = 120× 120.46

Among the 2 × 106 white-noise images, the largest cross correlation value

with Einstein’s facial image (the reference) is merely 0.039, while the cross48

correlation increases dramatically to 0.650 after averaging the m = 800 im-

ages that have the largest cross correlation values with Einstein’s facial im-50

age. This illustrates the essence of the “Einstein from noise” phenomenon.

The objective of the present paper is to provide a thorough study of the52

“Einstein from noise” phenomenon based on the statistical perspective laid

out in Lai et al. (2020). A main task is to approximate the distribution54

of the cross correlation between the (normalized) average of the m selected

images and the reference, which is referred to the (image selection) bias.56
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While the bias depends on the three parameters n, p, and m in a convoluted

manner, under the conditions that n, p and m are all large and (lnn)2/p58

and m/n are both small, we show that the bias is approximately
√

2γ
1+2γ

where γ = m
p

ln
(
n
m

)
.60

The rest of this paper is organized as follows. Section 2 consists of four

parts: (i) introducing notation, terminology and the statistical model; (ii)62

demonstrating the phenomenon of “Einstein from noise”; (iii) presenting

the asymptotic distribution of the largest cross correlation value as n and p64

both tend to infinity; (iv) stating asymptotic results on the bias as n, p, and

m all tend to infinity. The theoretical results in part (iv) are validated via66

simulation as presented in Section 3. Section 4 contains concluding remarks.

Proofs of Theorems 1-4 in Section 2 are relegated to the Appendix. The68

online supplementary material contains the proofs of auxiliary lemmas.

2. Statistical Model and Main Results70

2.1 Notation, terminology, and model

Let R be the reference matrix (the digital version of the reference image)72

of dimension d1 × d2. We assume that ‖R‖ = 1 where ‖ · ‖ denotes the

Frobenius norm of a matrix or Euclidean norm of a vector. We generate n74

independent and identically distributed (iid) white-noise images as follows.
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2.1 Notation, terminology, and model

Let Z1, . . . ,Zn be iid d1 × d2 random matrices such that the d1d2 compo-76

nents of each Zi are iid standard normal. We refer to Zi/‖Zi‖, i = 1, . . . , n

(the normalized version of Zi) as n iid white-noise images.78

Let r = vec(R), the p-dimensional column vector which is the vec-

torized version of R, where p = d1d2. The fact that ‖r‖ = 1 implies80

r ∈ Sp−1 (the (p − 1)-dimensional unit sphere). Let X i = vec(Zi)/‖Zi‖.

Thus, X1, . . . ,Xn are iid uniformly distributed on Sp−1. We refer to both82

Zi/‖Zi‖ and X i as the i-th white-noise image. The cross correlation of

X i and r (or equivalently Zi/‖Zi‖ and R) is defined as r>X i (the inner84

product of X i and r), where r> denotes the transpose of r. Note that

r>X i = cos Θi, where Θi is the angle between r and X i.86

The n white-noise images are ordered (and denoted by X(1), . . . ,X(n))

according to their cross correlation values with r. In other words, (X(1), . . . ,X(n))88

is a permutation of (X1, . . . ,Xn) such that r>X(1) ≥ r>X(2) ≥ · · · ≥ r>X(n).

Let Θ1:n ≤ Θ2:n ≤ · · · ≤ Θn:n be the order statistics of the angles (Θ1, · · · ,Θn),90

so that cos Θi:n = r>X(i), i = 1, . . . , n. Let Xm = m−1
∑m

i=1X
(i). Then

Xm/‖Xm‖ ∈ Sp−1 is the normalized average of the m white-noise images92

that are most highly cross-correlated with the reference image. Our goal is

to find a good approximation of the distribution of ρn,p,m = r>Xm/‖Xm‖94

when n, p, andm are large. Note that form = 1, ρn,p,1 = r>X(1) = cos Θ1:n,
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2.2 Demonstration of the “Einstein from noise” phenomenon

is the largest cross correlation value.96

2.2 Demonstration of the “Einstein from noise” phenomenon

We now present two figures summarizing the simulation study described98

in Section 1, where n = 2 × 106, p = d1 × d2 = 120 × 120 = 14400,

and m = 100, 200, 400, 800. In Figure 1, the leftmost (reference) image100

is Einstein’s face, and the other 4 images correspond to Xm/‖Xm‖ for

m = 1, 200, 400, 800. The second image from the left corresponds to X(1),102

whose cross correlation (CC) value with Einstein’s facial image is 0.039

(which is the largest among the 2 × 106 white-noise images generated in104

the simulation). While this image is rather noisy, Einstein’s face emerges

in the other 3 images with different degrees of blurring, corresponding to106

CC values 0.426, 0.536, and 0.650.

Figure 1: Example with Einstein’s face as the reference image.
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2.2 Demonstration of the “Einstein from noise” phenomenon

Figure 2: The phenomenon of “Einstein from noise” is shown across various

reference images.
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2.3 Asymptotic distribution of the largest cross correlation

Figure 2 shows similar results with four different reference images of a108

simple chessboard, digits of 2020, a leopard cat and Statistics Building of

Academia Sinica, indicating that the phenomenon of “Einstein from noise”110

is robust across various reference images. The cross correlation values in

Figure 2 are about the same across different reference images, which can be112

explained by the fact that if X is uniformly distributed on Sp−1, then the

distribution of r>X is independent of r.114

2.3 Asymptotic distribution of the largest cross correlation116

Recall that cos Θ1:n is the largest cross correlation. The following theorem

provides an approximation to the distribution of cos Θ1:n when n and p are118

large.

Theorem 1. Let120

Kn,p = − lnn+
1

2
ln lnn− 1

2
ln

 2 lnn
p

1− exp
(
−2 lnn

p

)
+

1

2
ln(4π). (1)

We have

(p− 1) ln(sin Θ1:n)−Kn,p
d−→ G uniformly as n ∧ p→∞, (2)

where n ∧ p = min{n, p}, d→ denotes convergence in distribution, and the122
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2.4 Asymptotic results on ρn,p,m

cumulative distribution function of G is given by G(t) = 1 − e−et, t ∈ R,

which is known as the extreme value distribution of Gumbel type.124

Based on (2), for 0 < α < 1, the approximate 100α-th quantile of the

distribution of cos Θ1:n is

Mn,p(α) =
√

1− exp{2(Kn,p + ln ln α−1)/(p− 1)}.

Recall that cos Θ1:n = 0.039 in the simulation study summarized in Figure

1, where n = 2× 106 and p = 120× 120. This observed value is compatible126

with the approximate 10th quantile Mn,p(0.1) = 0.039.

Figure 3 plots Mn,p(α) versus log10 n for n ≤ 10100 with p = 120× 120128

and α = .05, .5, .95. Note that the three quantile curves are very close to

each other, indicating that cos Θ1:n has a small standard deviation. Figure130

3 suggests that for P(cos Θ1:n ≥ 0.1) to be at least 0.05, n is required to

be greater than 1030, and for P(cos Θ1:n ≥ 0.15) to be at least 0.05, n is132

required to be greater than 1070. In other words, it is unlikely for any of

n iid white-noise images of dimension 120× 120 to have a cross correlation134

value with Einstein’s face greater than 0.15 unless n is astronomically large.

2.4 Asymptotic results on ρn,p,m136

When p = pn and m = mn both grow with n, asymptotic expansions for the

distribution of ρn,p,m are more involved. Our analysis requires the condition
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2.4 Asymptotic results on ρn,p,m

Figure 3: The approximate 100α-th quantile of the distribution of cos Θ1:n

(Mn,p(α)) versus log10 n with p = 120× 120, α = .05, .5, .95.

(lnn)2/p = o(1) (which is stronger than (ln n)/p = o(1)), so that terms such

as (ln n)(ln ln n)/p become negligible. Let

βn,p,m =
m

p

{
2 ln

n

m
− ln ln

n

m
− ln(4π) + 2

}
,

which is a model bias index.

Theorem 2. Let p = pn → ∞ satisfy (lnn)2/p = o(1) and m = mn → ∞138

satisfy m/n = o(1). Then

ρ2n,p,m =
βn,p,m

1 + βn,p,m
(1 + op(1)) .

Consequently, ρ2n,p,m −
βn,p,m

1 + βn,p,m
→ 0 in probability.140
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2.4 Asymptotic results on ρn,p,m

Theorem 3. Let p = pn → ∞ satisfy (lnn)2/p = o(1) and m = mn → ∞

satisfy m(ln lnn)4/(lnn)2 = o(1). Then142

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1),

where αn,p,m = p
(
8m+ 2p β2

n,p,m

)−1/2
(1 + βn,p,m)2 and N(0, 1) denotes the

standard normal distribution.144

Theorem 4. Let p = pn →∞ and m = mn →∞.

(i) If (lnn)2/p = o(1) and m/n = o(1), then

ρn,p,m√
βn,p,m/(1 + βn,p,m)

= 1 + op(1).

Consequently,

ρn,p,m =

√
βn,p,m

1 + βn,p,m
+ op(1) and E(ρn,p,m) =

√
βn,p,m

1 + βn,p,m
+ o(1).

(ii) In additional to the conditions specified in (i), if m (ln ln n)4/(ln n)2 = o(1),

then146

α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1 + βn,p,m

)
d−→ N(0, 1),

where α̃n,p,m = 2αn,p,m
√
βn,p,m/(1 + βn,p,m).

Remark 1. On top of the condition (lnn)2/p = o(1), Theorem 2 only148

requires the mild condition m/n = o(1). Let γn,p,m = m
p

ln n
m

. Since
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2.4 Asymptotic results on ρn,p,m

βn,p,m = 2γn,p,m(1+o(1)) (i.e. 2γn,p,m is the leading term of βn,p,m), Theorem150

2 implies

ρ2n,p,m =
2γn,p,m

1 + 2γn,p,m
+ op(1).

Consequently,152

ρn,p,m =
√

2γn,p,m
1+2γn,p,m

+ op(1) and E(ρn,p,m) =
√

2γn,p,m
1+2γn,p,m

+ o(1). (3)

Remark 2. To establish asymptotic normality of ρ2n,p,m (and ρn,p,m), Theo-

rem 3 (and Theorem 4) requires the stringent conditionm(ln ln n)4/(ln n)2 =154

o(1). It is unclear whether asymptotic normality still holds when m grows at

a rate faster than (ln n)2/(ln ln n)4. It should also be remarked that under156

the conditions as in Theorem 3, it is not true that αn,p,m

(
ρ2n,p,m −

2γn,p,m
1+2γn,p,m

)
d−→

N(0, 1). This shows that while 2γn,p,m is the leading term of βn,p,m, the re-158

maining terms also play a non-negligible role in the proof of asymptotic

normality.160

Remark 3. Fan et al. (2018) developed an asymptotic theory to approx-

imate the distribution of the maximum spurious correlation of a response162

variable Y with the best m linear combinations of p covariates X based

on an iid sample of size n when X and Y are independent. See also Fan164

et al. (2012) for related results. In our setting, the quantity ρn,p,m may

be referred to as the spurious cross correlation of the reference with the166
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normalized average of the m white-noise images that are most highly cross-

correlated with the reference. Indeed, with the roles of n and p reversed,168

ρn,p,m corresponds to another spurious correlation of the response variable

Y with the the average of the m (standardized) covariates in X that are170

most highly correlated with Y when the p covariates in X and Y are all

mutually independent.172

3. Simulation Results on ρn,p,m

By Theorem 4(i), if m is small compared to n and (ln n)2 is small compared174

to p, then E(ρn,p,m) is expected to be close to
√

βn,p,m
1+βn,p,m

while the standard

deviation (s.d.) of ρn,p,m is expected to be small. We conducted a simulation176

study of the distribution of ρn,p,m for various combinations of (n, p,m) with

n = 104, 105, p = 104, 4 × 104, and m = 100, 200, 400, 600. The results are178

reported in Tables 1 and 2 where E(ρn,p,m) and s.d.(ρn,p,m) were estimated

based on 1000 replications for each case. While
√

βn,p,m
1+βn,p,m

approximates180

E(ρn,p,m) well, it slightly overestimates E(ρn,p,m), more notably for n = 104.

Clearly, E(ρn,p,m) increases as n or m increases or p decreases. On the182

other hand, s.d.(ρn,p,m) is small (< .005) in all cases. Besides, s.d.(ρn,p,m)

decreases as n or p increases, and is about the same as m varies from 100 to184

600. Also included in Tables 1 and 2 are α̃−1n,p,m and the empirical probability
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(denoted as Prob.) that186 ∣∣∣∣∣ρn,p,m −
√

βn,p,m
1 + βn,p,m

∣∣∣∣∣ < 1.96 α̃−1n,p,m.

It is clear from the tables that α̃−1n,p,m approximates s.d.(ρn,p,m) reason-

ably well in all cases. By Theorem 4(ii), the Prob. value is expected to188

be close to .95 if the normal approximation is accurate. By Theorems

3 and 4, αn,p,m

(
ρ2n,p,m −

βn,p,m
1+βn,p,m

)
and α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1+βn,p,m

)
are ap-190

proximately standard normal under somewhat stringent conditions on the

growth rates of m and p as n → ∞. While none of the combinations192

of (n, p,m) with n = 104, 105, p = 104, 4 × 104 and m = 100, 200, 400, 600

seems to satisfy the condition that m (ln ln n)4/(ln n)2 be small, the normal194

approximation appears to be acceptable for n = 105 but less satisfactory

for n = 104.196
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Table 1: p = 104.

n = 104 n = 105

m 100 200 400 600 100 200 400 600

E(ρn,p,m) 0.257 0.323 0.395 0.437 0.318 0.408 0.509 0.570√
βn,p,m

1+βn,p,m
0.258 0.325 0.399 0.442 0.319 0.409 0.510 0.571

s.d.(ρn,p,m) 0.0043 0.0045 0.0046 0.0048 0.0039 0.0039 0.0040 0.0037

α̃−1n,p,m 0.0051 0.0053 0.0055 0.0057 0.0041 0.0042 0.0040 0.0039

Prob. 0.974 0.967 0.942 0.870 0.967 0.959 0.947 0.953

Table 2: p = 4× 104.

n = 104 n = 105

m 100 200 400 600 100 200 400 600

E(ρn,p,m) 0.132 0.168 0.210 0.236 0.165 0.218 0.283 0.327√
βn,p,m

1+βn,p,m
0.132 0.169 0.212 0.239 0.166 0.219 0.284 0.328

s.d.(ρn,p,m) 0.0022 0.0024 0.0026 0.0027 0.0019 0.0020 0.0021 0.0022

α̃−1n,p,m 0.0026 0.0028 0.0031 0.0033 0.0021 0.0022 0.0023 0.0023

Prob. 0.977 0.978 0.946 0.871 0.968 0.967 0.955 0.953
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Figure 4: Empirical pdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf. (solid curves): n = 104, p = 104.
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Figure 5: Empirical pdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf. (solid curves): n = 105, p = 104.
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Figure 6: Empirical pdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf. (solid curves): n = 104, p = 4× 104.
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Figure 7: Empirical pdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf. (solid curves): n = 105, p = 4× 104.
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In Figures 4-7, we plot the empirical cumulative distribution function

(cdf) of α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1+βn,p,m

)
(based on 1000 replications), along with198

the standard normal cdf for each combination of (n, p,m). (The value of Dks

is the Kolmogorov-Smirnov distance between the two cdfs.) The empirical200

cdf is shifted to the left of the standard normal cdf (more notably for n =

104 in Figures 4 and 6), indicating that the mean of ρn,p,m −
√

βn,p,m
1+βn,p,m

202

is negative. This is consistent with the results in Tables 1 and 2 where√
βn,p,m

1+βn,p,m
(slightly) overestimates E(ρn,p,m) (more notably for n = 104).204

4. Concluding Remarks

This paper studied a simple statistical model in order to quantitatively ex-206

amine the phenomenon of “Einstein from noise”. Specifically, for a given

reference image of dimension p and a set Sn of n iid white-noise images208

(with the common uniform distribution on Sp−1), we derived the asymp-

totic behavior of the cross correlation ρn,p,m between the reference and the210

normalized average of the m “most biased” members in Sn in the sense

that they have the largest cross correlation values with the reference. Our212

theoretical results indicate that for m = 1 and p = 120×120, unless n is far

beyond the practical range (> 1070), ρn,p,1 is small (< 0.15) with high prob-214

ability, implying that none of n white-noise images even remotely resembles
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the reference. On the other hand, for m moderately large (≥ 400), ρn,p,m216

exceeds 0.5 with high probability if n = 2 × 106, in which case a blurred

version of the reference emerges from the normalized average of the m most218

biased members in Sn.

Given a set Sn of n iid white-noise images, Cai et al. (2013) derived the220

asymptotic distribution of the maximum of all pairwise cross correlations

in Sn. See also Cai and Jiang (2011, 2012) and references therein. In222

the absence of a reference image, their results may be applied to test the

null hypothesis that Sn consists of n iid white-noise images. On the other224

hand, given a reference image, our results can be used to test such a null

hypothesis against the alternative that some of the n images in Sn are biased226

towards the reference by checking whether ρn,p,m exceeds a threshold (which

is determined by the null distribution of ρn,p,m).228

Our approach can be directly generalized to tackle a special case of

multiple references. Let r(1), . . . , r(k) be k given references of dimension230

p. Given a set Sn of n iid white-noise images, for i = 1, . . . , k, let ρ
(i)
n,p,m

(i = 1, . . . , k) denote the cross correlation between r(i) and the normal-232

ized average of those m members in Sn having the largest cross correlation

values with r(i). It would be of interest to derive the asymptotic distri-234

bution of max{ρ(i)n,p,m : i = 1, . . . , k}. If r(1), . . . , r(k) are orthogonal (i.e.
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the pairwise cross correlations are all equal to 0), then it can be argued236

that ρ
(1)
n,p,m, . . . , ρ

(k)
n,p,m are asymptotically independent, so that the asymp-

totic distribution of max{ρ(i)n,p,m : i = 1, . . . , k} can be readily derived by238

Theorem 4. However, it seems difficult to find the asymptotic distribution

of max{ρ(i)n,p,m : i = 1, . . . , k} when r(1), . . . , r(k) are not orthogonal.240

The phenomenon of “Einstein from noise” originally arose in the con-

text of cryo-EM image analysis where a key component is image alignment242

(including rotation and translation). While to address this more compli-

cated problem is beyond the scope of the present paper, it is worth noting244

that the geometric shape of the reference is likely to play a significant role

in the asymptotic theory yet to be developed. As an example, consider a246

rotationally invariant reference, e.g. an image of a centered wheel. Because

of rotational symmetry of the reference, a data image cannot fit the refer-248

ence any better by rotation. We leave this challenging problem for future

work.250

Supplementary Material

The online Supplementary Material contains the proofs of Lemmas A6-252

A8 stated in the Appendix.
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A. Appendix258

The Appendix consists of three sections. Section 4 states some auxiliary

lemmas, Section 4 contains the proof of Theorem 1, and Section 4 provides260

the proofs of Theorems 2-4. For easy reference, a complete list of notations

is given in Supplementary Material. Note that if X is uniformly distributed262

on Sp−1, then the distribution of r>X is the same for all r ∈ Sp−1. Without

loss of generality, we assume r = (1, 0, . . . , 0)> ∈ Sp−1.264

A.1. Auxiliary lemmas

Lemma A1. (Lemma 6.2 of Cai and Jiang (2012)) For t ∈ (0, 1), we have266

(
1 +

1

pt2

)−1
1

(p+ 2)t
(1− t2)(p+2)/2 ≤

∫ 1

t

(1− u2)p/2du ≤ 1

(p+ 2)t
(1− t2)(p+2)/2.

Since X i, i = 1, . . . , n are iid uniformly distributed on Sp−1 and Θi

denotes the angle between X i and r = (1, 0, . . . , 0)>, we have (cf. Eq (5)268
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of Cai et al. (2013)) that Θi, i = 1, . . . , n are iid with the common cdf

Fp(θ) =

∫ θ

0

1√
π

Γ(p/2)

Γ((p− 1)/2)
(sinx)p−2dx

=

∫ 1

cos θ

1√
π

Γ(p/2)

Γ((p− 1)/2)
(1− u2)

p−3
2 du, θ ∈ [0, π]. (A.1)

Let270

F p(θ) =
1√
π

Γ(p/2)

Γ((p− 1)/2)

sinp−1 θ

(p− 1)| cos θ|
. (A.2)

The following lemma is a consequence of Lemma A1.

Lemma A2. For θ ∈ (0, π/2) and p > 3, we have(
1 +

1

(p− 3) cos2 θ

)−1
F p(θ) ≤ Fp(θ) ≤ F p(θ).

Let U1, U2, . . . be iid uniform (0,1) random variables and let U1:n ≤272

· · · ≤ Un,n denote the order statistics of U1, . . . , Un. Let S0 = 0, and

Si = ξ1 + · · ·+ ξi, i = 1, 2, . . . , where ξ1, ξ2, . . . are iid exponential random274

variables with mean 1. The next lemma is well known; see e.g. Karlin and

Taylor (1975). We write X
d
= Y if random vectors X and Y are equal in276

distribution.

Lemma A3. (i) (U1:n, . . . , Un:n)
d
= (S1, . . . , Sn)/Sn+1. (ii) (S1, . . . , Sn)/Sn+1278

is independent of Sn+1.

Recall that (X(1), . . . ,X(n)) is a permutation of (X1, . . . ,Xn) such280

that X
(1)
1 ≤ · · · ≤ X

(n)
1 , where X

(i)
1 = r>X(i) (the first component of
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X(i)). Let V i and V (i) be defined by X i = (Xi1, (1 − X2
i1)

1/2V >i )> and282

X(i) = (X
(i)
1 , νiV

(i)>)>, where νi = (1−X(i)2
1 )1/2. In other words, V i (V (i),

respectively) ∈ Sp−2 is the normalized subvector of X i (X(i), respectively)284

with the first component deleted.

Lemma A4.286

(i) Xi1 and V i, i = 1, . . . , n are all independent.

(ii) Xi1, i = 1, . . . , n are iid.288

(iii) V i, i = 1, . . . , n are iid with the uniform distribution on Sp−2.

(iv) (V (1), . . . ,V (n)) is independent of (X11, . . . , Xn1) and hence indepen-290

dent of (X
(1)
1 , . . . , X

(n)
1 ).

(v) V (i), i = 1, . . . , n are iid with the uniform distribution on Sp−2.292

Recall that

Xm =
1

m

m∑
i=1

X(i) = (m−1
m∑
i=1

X
(i)
1 ,m−1

m∑
i=1

νiV
(i)>)>

and that294

ρ2n,p,m =

(
r>

Xm

‖Xm‖

)2

=

(
1
m

∑m
i=1X

(i)
1

)2
(

1
m

∑m
i=1X

(i)
1

)2
+
∥∥∥ 1
m

∑m
i=1 νiV

(i)
∥∥∥2 .

Let V ′i, i = 1, . . . , n be iid uniformly distributed on Sp−2 and independent

of X1, · · · ,Xn. Then the following lemma is a consequence of Lemma A4.296
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Lemma A5.

ρ2n,p,m
d
=

(
m−1

∑m
i=1X

(i)
1

)2
(
m−1

∑m
i=1X

(i)
1

)2
+ ‖m−1

∑m
i=1 νiV

′

i‖2

=
An,p,m

An,p,m + Vn,p,m
, (A.3)

where

An,p,m =

(
1

m

m∑
i=1

X
(i)
1

)2

and Vn,p,m =

∥∥∥∥∥ 1

m

m∑
i=1

νiV
′
i

∥∥∥∥∥
2

. (A.4)

The long proofs of Lemmas A6-A8 below are given in Supplementary298

Material.

Lemma A6. Let m = mn → ∞ satisfy m/n = o(1) and p = pn → ∞300

satisfy (lnn)2/p = O(1). Then

(i)

max
1≤i≤m

∣∣∣∣p ln(sin Θi:n) + ln
n

i
− 1

2
ln ln

n

i

∣∣∣∣ = Op(1),

(ii)

max
1≤i≤m

∣∣∣∣−p2 cos2 Θi:n + ln
n

i
− 1

2
ln ln

n

i

∣∣∣∣ = Op(1),

where Θ1:n ≤ Θ2:n ≤ · · · ≤ Θn:n are the order statistics of Θ1, . . . ,Θn.302

Lemma A7. Suppose that p = pn →∞ satisfies (lnn)2/p = O(1).

(i) If m = mn →∞ satisfies m/n→ 0, then

−pAn,p,m + 2 ln
n

m
− ln ln

n

m
= Op(1).
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(ii) If m = mn →∞ satisfies (lnm)3/(lnn)2 → 0, then304

−pAn,p,m + 2 ln
n

m
− ln ln

n

m
− ln(4π) + 2− 2

p

(
ln
n

m

)2
= op(1).

(iii) If m = mn →∞ satisfies m(ln lnn)4/(lnn)2 → 0, then

(m
8

)1/2{
−pAn,p,m + 2 ln

n

m
− ln ln

n

m
− ln(4π) + 2− 2

p

(
ln
n

m

)2} d−→ N(0, 1).

Lemma A8. Let W 1, . . . ,W n be iid uniformly distributed on Sp−1. Then306 √
p

2n2

∑
1≤i 6=`≤n

〈W i,W `〉
d−→ N(0, 1) uniformly as n ∧ p→∞,

where 〈W i,W `〉 denotes the inner product of W i and W `.

A.2. Proof of Theorem 1308

Theorem 1 is a special case of Theorem A1 below for m = 1.

Theorem A1. Let310

Tn,p = (p− 1) ln(sin Θm:n)−Kn,p,

where Kn,p is defined as in (1). Let G∗m(t) = Gm(et), t ∈ R, where Gm

denotes the gamma distribution with shape parameter m and scale parameter312

1. Then for fixed m = 1, 2, . . . , Tn,p
d−→ G∗m uniformly as n ∧ p→∞.

Proof. We claim that

Tn,p = Tn,pn
d−→ G∗m (A.5)
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if p = pn → ∞ satisfies limn→∞ lnn /p = α ∈ [0,∞]. Assume for now that

the claim (A.5) holds. To show that Tn,p
d−→ G∗m uniformly as n ∧ p→∞,

suppose to the contrary that lim supn∧p→∞ supt∈R |P(Tn,p ≤ t)−G∗m(t)| > 0.

Then there exist an ε > 0 and a sequence {(n`, p`) : ` = 1, 2, . . . } such that

lim`→∞ n` ∧ p` =∞ and

sup
t∈R
|P(Tn`,p` ≤ t)−G∗m(t)| > ε for ` = 1, 2, . . . . (A.6)

Choose an arbitrary subsequence {(n`k , p`k) : k = 1, 2, . . . } such that314

limk→∞ lnn`k /p`k= α ∈ [0,∞]. Then (A.6) contradicts (A.5), implying that

Tn,p
d−→ G∗m uniformly as n ∧ p→∞.316

We now prove (A.5). Suppose p = pn → ∞ satisfies limn→∞ lnn /p =

α ∈ [0,∞]. For fixed m, since Fp(Θm:n)
d
= Um:n, we have by Lemma A3

P(nFp(Θm:n) ≤ et) = P
(
nUm:n ≤ et

)
= P

(
n
Sm
Sn+1

≤ et
)

−→ P(Sm ≤ et) = Gm

(
et
)

= G∗m(t). (A.7)

For fixed t > 0, let tn ∈ [0, 1) be such that

p− 1

2
ln(1− t2n) = min{Kn,p + t, 0}.

Noting that

Kn,p = Kn,pn = −(lnn)(1 + o(1)) as n→∞, (A.8)
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we have for large n318

p− 1

2
ln(1− t2n) = Kn,p + t < 0. (A.9)

By Lemma A2,

(
1 +

1

(p− 3)t2n

)−1
F p(cos−1 tn) ≤ Fp(cos−1 tn) ≤ F p(cos−1 tn),

implying that

P(nFp(Θm:n) ≤ nF p(cos−1 tn)) ≥ P(nFp(Θm:n) ≤ nFp(cos−1 tn))

≥ P

(
nFp(Θm:n) ≤

(
1 +

1

(p− 3)t2n

)−1
nF p(cos−1 tn)

)
.

(A.10)

Recalling α = limn→∞(lnn) /p, we claim that for every α ∈ [0,∞], as320

n→∞

nF p(cos−1 tn) = et + o(1), (A.11)

p t2n →∞, (A.12)

P(cos Θm:n ≤ −tn)→ 0. (A.13)

By (A.7), (A.10), (A.11) and (A.12),

P(cos Θm:n ≥ tn) = P
(
nFp(Θm:n) ≤ nFp(cos−1 tn)

)
→ G∗m(t). (A.14)
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Furthermore,

P(Tn,p ≤ t) = P

(
p− 1

2
ln(1− cos2 Θm:n)−Kn,p ≤ t

)
= P(cos2 Θm:n ≥ t2n) (by (A.9))

= P(cos Θm:n ≥ tn) + P(cos Θm:n ≤ −tn)

→ G∗m(t) (by (A.13) and (A.14)).

It remains to establish (A.11)-(A.13). Note that by Sterling’s formula (see

e.g. Tricomi and Erdélyi (1951)),

Γ(p/2)

Γ((p− 1)/2)
=

√
p

2

(
1 +O

(
1

p

))
as p→∞. (A.15)

We have

ln
(
nF p(cos−1 tn)

)
= ln

{
n√
π

Γ(p/2)

Γ((p− 1)/2)

(
(1− t2n)p−1

(p− 1)2t2n

)1/2
}

(by (A.2))

= ln

{
n

(
(1− t2n)p−1

2πpt2n

)1/2
}

+O

(
1

p

)
(by (A.15))

=
p− 1

2
ln(1− t2n) + lnn− 1

2
ln(pt2n)− 1

2
ln(2π) +O

(
1

p

)
= Kn,p + t+ lnn− 1

2
ln(pt2n)− 1

2
ln(2π) +O

(
1

p

)
(by (A.9)).

(A.16)

By (A.8) and (A.9),

ln(1− t2n) = −2 lnn

p
(1 + o(1)), (A.17)
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implying that

tn →
(
1− e−2α

)1/2
, (A.18)

where limn→∞ lnn/p = α ∈ [0,∞] and e−∞ := 0.322

If α = 0, we have tn → 0+, so that by (A.17)

t2n =
2 lnn

p
(1 + o(1)), (A.19)

from which it follows that ln(pt2n) = ln(2 lnn) + o(1). By the definition of

Kn,p, we have Kn,p = − lnn+ (ln lnn)/2 + ln(4π)/2 + o(1), so that Kn,p +

lnn − ln(pt2n)/2 − ln(2π)/2 = o(1), which together with (A.16) establishes

(A.11) for α = 0. If 0 < α <∞, we have t2n = 1− e−2α + o(1) (by (A.18))

and ln(pt2n) = ln lnn − lnα + ln (1− e−2α) + o(1), so that Kn,p + lnn −

ln(pt2n)/2− ln(2π)/2 = o(1), which together with (A.16) establishes (A.11)

for 0 < α < ∞. If α = ∞, we have tn → 1−, so that by the definition of

Kn,p,

Kn,p + lnn− 1

2
ln(pt2n)− 1

2
ln(2π)

= − lnn+
1

2
ln lnn− 1

2
ln

(
2 lnn

p

)
+

1

2
ln(4π) + lnn− 1

2
ln p− 1

2
ln(2π) + o(1)

= o(1),

which together with (A.16) establishes (A.11) for α =∞.

324
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Next, (A.19) holds for α = 0, which implies (A.12). For 0 < α ≤ ∞, it

follows from (A.18) that tn → (1− e−2α)1/2 > 0, which implies (A.12).326

Finally, to prove (A.13), note that

P(cos Θm:n ≤ −tn) ≤ P(Θm:n ≥ π/2) = P(B(n, 1/2) < m)→ 0,

where B(n, 1/2) denotes a binomial random variable with parameters n and328

1/2 (success probability). This establishes (A.13) and completes the proof

of Theorem A1.330

A.3. Proofs of Theorems 2-4

We first show that if m = mn → ∞ satisfies m/n → 0 and p = pn → ∞332

satisfies (ln n)2/p→ 0, then

m

√
p

2

(
Vn,p,m −

1

m

)
d−→ N(0, 1), (A.20)

where Vn,p,m = ‖ 1
m

∑m
i=1 νiV

′
i‖2 with ν2i = 1 − cos2 Θi:n, and V ′1, . . . ,V

′
m334

are iid uniformly distributed on Sp−2, and (V ′1, . . . ,V
′
m) is independent of

(ν1, . . . , νm).336
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We have

Vn,p,m =
1

m2

m∑
i=1

ν2i ‖V
′

i‖2 +
1

m2

∑
1≤i 6=`≤m

νiν`〈V ′i,V ′`〉

=
1

m
+

1

m2

m∑
i=1

(ν2i − 1) +
1

m2

∑
1≤i 6=`≤m

{1 + (νiν` − 1)}〈V ′i,V ′`〉

=
1

m
+ V ′1,n + V ′2,n + V ′3,n, (A.21)

where

V ′1,n =
1

m2

m∑
i=1

(ν2i − 1) = − 1

m2

m∑
i=1

cos2 Θi:n,

V ′2,n =
1

m2

∑
1≤i 6=`≤m

〈V ′i,V ′`〉,

V ′3,n =
1

m2

∑
1≤i 6=`≤m

(νiν` − 1)〈V ′i,V ′`〉.

By Lemma A8, we have

m

√
p

2
V ′2,n

d−→ N(0, 1). (A.22)

It remains to prove338

mp1/2V ′i,n = op(1), i = 1, 3. (A.23)

By Lemma A6(ii),

max
1≤i≤m

cos2 Θi:n = Op

(
ln n

p

)
,

implying that mp1/2V ′1,n = Op

(
ln n
p1/2

)
= op(1). To show mp1/2V ′3,n = op(1),340

note that (ν1, . . . , νm) is independent of (V ′1, . . . ,V
′
m) and E[〈V ′i,V ′`〉〈V ′i′ ,V ′`′〉] =
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0 if i 6= `, i′ 6= `′ and {i, `} 6= {i′, `′}. Also, for i 6= `, E〈V ′i,V ′`〉2 =342 ∫ π
0

cos2(θ)dFp−1(θ) = 1
p−1 , where Fp is defined as in (A.1). We have

EV
′2
3,n =

2

m4

∑
1≤i 6=`≤m

E[(νiν` − 1)2]E〈V ′i,V ′`〉2

=
2

m4

∑
1≤i 6=`≤m

E[(νiν` − 1)2]
1

p− 1

= o

(
1

m2p

)
, (A.24)

since |νi| ≤ 1 and νiν` − 1 → 0 in probability uniformly in 1 ≤ i 6= ` ≤ m.344

It follows from (A.24) that mp1/2V ′3,n = op(1). This proves (A.23) and

completes the proof of (A.20).346

Proof of Theorem 2. Since by (A.3) ρ2n,p,m
d
= An,p,m

An,p,m+Vn,p,m
, we have

ρ2n,p,m −
βn,p,m

1 + βn,p,m

d
=

An,p,m − βn,p,m/m
(An,p,m + Vn,p,m)(1 + βn,p,m)

+
(1/m− Vn,p,m)βn,p,m

(An,p,m + Vn,p,m)(1 + βn,p,m)
.

(A.25)

Since βn,p,m = m
p

{
2 ln n

m
− ln ln n

m
− ln(4π) + 2

}
, it follows from Lemma

A7(i) and (A.20) that348

p(An,p,m −
1

m
βn,p,m) = Op(1), mVn,p,m = 1 + op(1), pβn,p,mVn,p,m = (2 + op(1)) ln

( n
m

)
.

Thus,

An,p,m − βn,p,m/m
(An,p,m + Vn,p,m)(1 + βn,p,m)

=
p(An,p,m − βn,p,m/m)

(pβn,p,mAn,p,m + pβn,p,mVn,p,m)

βn,p,m
(1 + βn,p,m)

= op(1)
βn,p,m

(1 + βn,p,m)
,

350

(1/m− Vn,p,m)βn,p,m
(An,p,m + Vn,p,m)(1 + βn,p,m)

=
(1−mVn,p,m)

(mAn,p,m +mVn,p,m)

βn,p,m
(1 + βn,p,m)

= op(1)
βn,p,m

(1 + βn,p,m)
.
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We have by (A.25),

ρ2n,p,m =
βn,p,m

1 + βn,p,m
(1 + op(1)).

The proof is complete.

352

Proof of Theorem 3. By (A.21)-(A.23),

m

√
p

2

(
Vn,p,m −

1

m

)
= m

√
p

2

(
V ′1,n + V ′2,n + V ′3,n

)
= m

√
p

2
V ′2,n + op(1). (A.26)

Let354

Z1,n = p

√
m

8

(
An,p,m −

1

m
βn,p,m +

2

p2

(
ln
n

m

)2)
,

Z2,n = m

√
p

2
V ′2,n,

γn = (An,p,m + Vn,p,m)(1 + βn,p,m).

We have by (A.25) and (A.26)

ρ2n,p,m −
βn,p,m

1 + βn,p,m

d
= γ−1n

{
1

p
√
m/8

Z1,n −
βn,p,m

m
√
p/2

m

√
p

2

(
Vn,p,m −

1

m

)}
− γ−1n

2

p2

(
ln
n

m

)2
= γ−1n

{√
8

mp2
Z1,n −

√
2

m2p
βn,p,m(Z2,n + op(1))

}
− γ−1n

2

p2

(
ln
n

m

)2
= γ−1n

(
8

mp2
+

2

m2p
β2
n,p,m

)1/2

{c1,nZ1,n + c2,n(Z2,n + op(1))} − γ−1n
2

p2

(
ln
n

m

)2
,

(A.27)
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where356

c1,n =

√
8

mp2

(
8

mp2
+

2

m2p
β2
n,p,m

)−1/2
,

c2,n = −
√

2

m2p
βn,p,m

(
8

mp2
+

2

m2p
β2
n,p,m

)−1/2
.

Since ρ2n,p,m
d
= An,p,m/(An,p,m + Vn,p,m), we have by Theorem 2

An,p,m
An,p,m + Vn,p,m

=
βn,p,m

1 + βn,p,m
(1 + op(1)). (A.28)

It follows from Lemma A7(i) and (p/m)βn,p,m = 2 ln n
m

(1 + o(1)) that358

mAn,p,m
βn,p,m

=
pAn,p,m

(p/m)βn,p,m
= 1 + op(1). (A.29)

So we have

γn

(
8

mp2
+

2

m2p
β2
n,p,m

)−1/2
=

pm√
8m+ 2pβ2

n,p,m

(An,p,m + Vn,p,m)(1 + βn,p,m)

=
pmAn,p,m√

8m+ 2pβ2
n,p,m

An,p,m + Vn,p,m
An,p,m

(1 + βn,p,m)

=
pmAn,p,m/βn,p,m√

8m+ 2pβ2
n,p,m

(1 + βn,p,m)2(1 + op(1)) (by(A.28))

=
p√

8m+ 2pβ2
n,p,m

(1 + βn,p,m)2(1 + op(1)) (by (A.29))

= αn,p,m(1 + op(1)), (A.30)

where αn,p,m = p
(
8m+ 2p β2

n,p,m

)−1/2
(1 + βn,p,m)2 .360
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Also,

0 <
2

p2

(
ln
n

m

)2( 8

mp2
+

2

m2p
β2
n,p,m

)−1/2
≤ 2

p2

(
ln
n

m

)2( 2

m2p
β2
n,p,m

)−1/2
=

2

p2

(
ln
n

m

)2{ 2

p3

( p
m
βn,p,m

)2}−1/2
=

√
2

p

(
ln
n

m

)2 (
2 ln

n

m
(1 + o(1))

)−1
=

1√
2p

ln
n

m
(1 + o(1)) = o(1),

which together with (A.30) implies that362

αn,p,m
γn

2

p2

(
ln

n

m

)2
=

{
αn,p,m
γn

(
8

mp2
+

2

m2p
β2
n,p,m

)1/2
}{

2

p2

(
ln

n

m

)2( 8

mp2
+

2

m2p
β2
n,p,m

)−1/2}
= (1 + op(1))o(1) = op(1). (A.31)

It follows from (A.27), (A.30), and (A.31) that

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d
=

αn,p,m
γn

(
8

mp2
+

2

m2p
β2
n,p,m

)1/2

{c1,nZ1,n + c2,nZ2,n(1 + op(1))} − αn,p,m
γn

2

p2

(
ln

n

m

)2
= (1 + op(1)) {c1,nZ1,n + c2,nZ2,n(1 + op(1))}+ op(1). (A.32)

Note that c1,n and c2,n are constants (depending on n, pn,mn), which satisfy364

c21,n + c22,n = 1. By Lemma A7(iii),

−Z1,n =

√
m

8

{
−pAn,p,m + 2 ln

n

m
− ln ln

n

m
− ln (4π) + 2− 2

p

(
ln

n

m

)2} d−→ N(0, 1).
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By (A.22), Z2,n
d−→ N(0, 1). Note that Z1,n and Z2,n are independent (since366

An,p,m and V ′2,n are independent). We have

c1,nZ1,n + c2,nZ2,n
d−→ N(0, 1),

which together with (A.32) implies that368

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1).

The proof is complete.

Proof of Theorem 4. Part (i) follows immediately from Theorem 2. To370

prove part (ii), we have by part (i) and Theorem 3 that

2αn,p,m

√
βn,p,m

1 + βn,p,m

(
ρn,p,m −

√
βn,p,m

1 + βn,p,m

)

=
2
√

βn,p,m
1+βn,p,m

ρn,p,m +
√

βn,p,m
1+βn,p,m

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1),

completing the proof.372
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