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Abstract

In the literature, the problem of maximizing the expected discounted reward
over all stopping rules has been explicitly solved for a number of reward functions
(including (max{x, 0})ν , ν > 0, in particular) when the underlying process is
either a random walk in discrete time or a Lévy process in continuous time. All
of such reward functions are increasing and logconcave while the corresponding
optimal stopping rules have the threshold form. In this paper, we explore the
close connection between increasing and logconcave reward functions and optimal
stopping rules of threshold form. In the discrete case, we show that if a reward
function defined on Z is nonnegative, increasing and logconcave, then the optimal
stopping rule is of threshold form provided the underlying random walk is skip-
free to the right. In the continuous case, it is shown that for a reward function
defined on R which is nonnegative, increasing, logconcave and right-continuous,
the optimal stopping rule is of threshold form provided the underlying process is
a spectrally negative Lévy process. Furthermore, we also establish the necessity
of logconcavity and monotonicity of a reward function in order for the optimal
stopping rule to be of threshold form in the discrete (continuous, resp.) case when
the underlying process belongs to the class of Bernoulli random walks (Brownian
motions, resp.) with a downward drift. These results together provide a partial
characterization of the threshold structure of optimal stopping rules.
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1 Introduction

Let X = {Xt}t≥0 be a process with stationary independent increments defined on a
probability space (Ω,F , P ) where the time parameter t is either discrete (i.e. t ∈ Z+ =

{0, 1, . . . }) or continuous (i.e. t ∈ R+ = [0,∞)). We consider the filtration {Ft}t≥0 where
Ft is the P -completed σ-field generated by {Xs : 0 ≤ s ≤ t}. For a given nonnegative
measurable reward function g and a discount rate γ ≥ 0, we are concerned with the problem
of finding a stopping rule τ ∗ ∈ M such that

E
(
e−γτ

∗
g(Xτ∗)1{τ∗<∞}

)
= sup

τ∈M
E
(
e−γτg(Xτ )1{τ<∞}

)
,

where M is the class of all stopping rules τ with values in [0,∞] (with respect to the filtration
{Ft}) and 1A denotes the indicator function of A. A stopping rule τ is of threshold form if
τ = inf{t ≥ 0 : Xt ≥ a} for some a ∈ R ∪ {−∞}. An optimal stopping rule of threshold
form exists if τ ∗ = τa for some a ∈ R ∪ {−∞}.

In the literature, Dubins and Teicher [9] solved the problem with g(x) = x+ := max{x, 0}
and γ > 0 under the discrete-time setting. Darling, Liggett and Taylor [7] also considered
g(x) = x+ (with γ = 0) and g(x) = (ex − 1)+ both in discrete time, while Mordecki [12]
considered g(x) = (ex−1)+ and g(x) = (1−e−x)+ in continuous time. Novikov and Shiryaev
[13] and Kyprianou and Surya [11] further considered the more general case g(x) = (x+)

n,
n = 1, 2, . . . with γ = 0 in discrete time and with γ ≥ 0 in continuous time, respectively,
while [13] also considered g(x) = 1 − e−x

+
= (1 − e−x)+ with γ = 0 in discrete time. More

recently, by generalizing Appell polynomials to Appell functions, Novikov and Shiryaev [14]
were able to extend the results of [11, 13] to the case g(x) = (x+)

ν for all real-valued ν > 0

with γ ≥ 0 in both discrete and continuous time. Note that all of the above reward functions
are increasing and logconcave, and the corresponding optimal stopping rules obtained in
[7, 9, 11, 12, 13, 14] have the threshold form.
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To solve the optimal stopping problem for a more general class of reward functions under
Lévy processes, Surya [16] introduced an (associated) averaging problem from which a fluc-
tuation identity for overshoots of a Lévy process was obtained. Then the value function and
the optimal stopping time can be expressed in terms of the solution to the averaging problem
provided this solution exists and has certain monotonicity properties. See also Deligiannidis,
Le and Utev [8] for related results on Lévy processes as well as on random walks. More re-
cently, Christensen, Salminen and Ta [6] characterized the solution to the optimal stopping
problem similarly as in [8, 16] but under very general strong Markov processes including dif-
fusions, Lévy processes and continuous-time Markov chains. Moreover, the optimal stopping
time can be either one-sided or two-sided depending on the form of the representing func-
tion for the given reward function. For additional results concerning the threshold structure
of optimal stopping rules, see Baurdoux [1] on (generalized) Ornstein-Uhlenbeck processes
driven by Lévy processes, and Christensen, Irle and Novikov [5] on AR(1) sequences.

In the present paper, we focus our attention on exploring the close connection between
increasing logconcave reward functions and optimal stopping rules of threshold form. Specif-
ically, in Section 2, we consider the case of discrete time and discrete state and show that if
a reward function defined on Z is nonnegative, increasing and logconcave, then the optimal
stopping rule is of threshold form provided that the underlying (integer-valued) random walk
is skip-free to the right. In Section 3, we treat the continuous case and show that for a reward
function defined on R which is nonnegative, increasing, logconcave and right-continuous, the
optimal stopping rule is of threshold form provided that {Xt}t≥0 is a spectrally negative Lévy
process. In Sections 4 and 5, we deal with the necessity of logconcavity and monotonicity of
a reward function in order for the optimal stopping rule to be of threshold form. Specifically,
we consider γ = 0 (no future discount) and show in Section 4 (Section 5, resp.) that a non-
negative reward function defined on Z (R, resp.) is necessarily increasing and logconcave if
the corresponding optimal stopping rule is of threshold form for all Bernoulli random walks
(Brownian motions, resp.) with a downward drift. Section 6 contains concluding remarks.

2 Optimal stopping rules for logconcave reward func-
tions: the discrete case

In this section, we use n ∈ Z+ (instead of t) to denote the discrete time parameter. Let
ξ, ξ1, ξ2, . . . be a sequence of independent and identically distributed integer-valued random
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variables such that P (ξ > 1) = 0 and P (ξ = 1) > 0. Let T = inf {n > 0 : ξ1 + ξ2 + · · ·+ ξn ≥ 1}
where inf ∅ := ∞. For γ ≥ 0, define

α = α(γ) = E
(
e−γT1{T<∞}

)
. (2.1)

Here α is defined for all γ ≥ 0, but we need to assume E(ξ) < 0 if γ = 0, so that 0 < α < 1.
By the first-step analysis, α satisfies

α = e−γ
∑
ℓ≤1

P (ξ = ℓ)α1−ℓ. (2.2)

Remark 2.1. The function

f(x) = e−γ
∑
ℓ≤1

P (ξ = ℓ)x1−ℓ − x, 0 ≤ x ≤ 1, (2.3)

is convex with f(α) = 0, f(0) = e−γP (ξ = 1) > 0, f(1) = e−γ − 1 ≤ 0, and f ′(1−) =

e−γ(1 − E(ξ)) − 1 (which is positive if γ = 0, since E(ξ) < 0), where f ′(x−) denotes the
left-hand derivative of f at x. Clearly α is the unique root of f(x) = 0 in (0, 1) and f(x) ≤ 0

for all x ∈ [α, 1].

Let X0 = k ∈ Z, Xn+1 = Xn+ ξn+1 for n = 0, 1, 2, . . . , so that {Xn}n≥0 is a random walk
with initial state k which is skip-free to the right, i.e. {Xn}n≥0 can only move up one level at
a time but can skip down several levels. (See [3] for a discussion of skip-free random walks.)
For ℓ ∈ Z, define τℓ = inf {n ≥ 0 : Xn ≥ ℓ} (a stopping rule of threshold form). Then by the
skip-free property, we have for X0 = k < ℓ that

Xτℓ = ℓ a.s. on {τℓ <∞} and Ek(e
−γτℓ1{τℓ<∞}) = αℓ−k, (2.4)

where the subscript k in Ek refers to the initial state X0 = k. For a (nonnegative) reward
function g : Z → [0,∞) which is nonconstant, increasing (i.e. g(k) ≤ g(k + 1) for all k) and
logconcave (i.e. (g(k + 1))2 ≥ g(k)g(k + 2) for all k), define

u = u(γ) = inf

{
k ∈ Z :

g(k)

g(k + 1)
≥ α

} (
0

0
:= 0, inf Z := −∞

)
, (2.5)

U = U(γ) = sup
{
αℓg(ℓ) : ℓ ∈ Z

}
, (2.6)

V (k) = Vγ(k) = sup
τ∈M

Ek
(
e−γτg(Xτ )1{τ<∞}

)
(k ∈ Z), (2.7)

where M is the class of all stopping rules τ with values in [0,∞]. (Note that g(k)/g(k + 1)

is increasing in k since g is logconcave.) We are now ready to state the main result in this
section.
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Theorem 2.1. Let γ ≥ 0, and assume E(ξ) < 0 if γ = 0. Let g : Z → [0,∞) be nonconstant,
increasing and logconcave, and define α = α(γ), u = u(γ), U = U(γ) and V (k) = Vγ(k) as
in (2.1) and (2.5)− (2.7). Then the following statements hold.

(i) If −∞ < u <∞, then the threshold-form stopping rule τu is optimal, and V (k) = g(k)

for k ≥ u; and V (k) = αu−kg(u) for k < u.
(ii) If u = ∞, then V (k) = α−kU for all k. If, in addition, U = ∞, then there exist

(randomized) stopping rules that have an infinite expected (discounted) reward; if U <

∞, then there is no optimal stopping rule.
(iii) If u = −∞, then V (k) = g(k) for all k and the optimal stopping rule is to stop

immediately.

To prove Theorem 2.1, we need the following standard result (cf. [14, Lemma 5]).

Lemma 2.1. Let g(k) and h(k) be nonnegative functions defined on Z and γ ≥ 0. If
h(k) ≥ g(k) and h(k) ≥ E[e−γh(k + ξ)] for all k, then

h(k) ≥ sup
τ∈M

Ek
(
e−γτg(Xτ )1{τ<∞}

)
, k ∈ Z.

Proof of Theorem 2.1. (i) Let V̂ (k) = Ek
(
e−γτug(Xτu)1{τu<∞}

)
, k ∈ Z. Then by (2.4),

V̂ (k) = g(k) for k ≥ u and V̂ (k) = αu−kg(u) for k < u. We need to show V (k) = V̂ (k)

for all k. Since clearly V (k) ≥ V̂ (k), it remains to prove V̂ (k) ≥ V (k). By Lemma 2.1, it
suffices to show

V̂ (k) > g(k) for k < u, (2.8)

and
V̂ (k) ≥ E[e−γV̂ (k + ξ)] for all k. (2.9)

By the definition of u, we have g(k)/g(k + 1) < α for k < u and g(u)/g(u + 1) ≥ α,
implying that g(u) > 0 and V̂ (k) > 0 for all k. For k < u, g(k) = g(k)

g(k+1)
g(k+1)
g(k+2)

· · · g(u−1)
g(u)

g(u) <

αu−kg(u) = V̂ (k). This proves (2.8).
To prove (2.9), let h(k) = αu−kg(u) for all k. Then for k > u,

V̂ (k) = g(k) =
g(k)

g(k − 1)

g(k − 1)

g(k − 2)
· · · g(u+ 1)

g(u)
g(u)

≤
(
α−1
)k−u

g(u) = h(k).
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So V̂ (k) ≤ h(k) for all k. For k ≤ u,

E[e−γV̂ (k + ξ)] ≤ E[e−γh(k + ξ)]

= e−γ
∑
ℓ≤1

P (ξ = ℓ)αu−k−ℓg(u)

= αu−kg(u) = V̂ (k),

where the second equality follows from (2.2).
It remains to prove (2.9) for k > u. Noting that g(k − 1) ≥ g(u) > 0 and that g(j−1)

g(j)
≤

g(j)
g(j+1)

for all j, we have

g(k + ℓ)

g(k)
=

g(k + ℓ)

g(k + ℓ+ 1)

g(k + ℓ+ 1)

g(k + ℓ+ 2)
· · · g(k − 1)

g(k)
≤
(
g(k − 1)

g(k)

)−ℓ

for ℓ < 0.

A similar argument shows that the above inequality also holds for ℓ > 0; thus,

g(k + ℓ)

g(k)
≤
(
g(k − 1)

g(k)

)−ℓ

for all ℓ. (2.10)

(Note that (2.10), in fact, holds for any k with g(k − 1) > 0 regardless of whether k > u.
This inequality is also needed later in the proof of part (iii).) For k > u and ℓ ≤ u− k (i.e.
k + ℓ ≤ u), we have

V̂ (k + ℓ)

V̂ (k)
= αu−k−ℓ

g(u)

g(k)
≤ αu−k−ℓ

(
g(k − 1)

g(k)

)k−u
≤
(
g(k − 1)

g(k)

)u−k−ℓ(
g(k − 1)

g(k)

)k−u
=

(
g(k − 1)

g(k)

)−ℓ

, (2.11)

where the first inequality is by (2.10) and the second inequality follows from α ≤ g(u)/g(u+

1) ≤ g(k − 1)/g(k). For k > u and ℓ > u− k (i.e. k + ℓ > u), we have by (2.10)

V̂ (k + ℓ)

V̂ (k)
=
g(k + ℓ)

g(k)
≤
(
g(k − 1)

g(k)

)−ℓ

,

which together with (2.11) implies that V̂ (k + ℓ)/V̂ (k) ≤ (g(k − 1)/g(k))−ℓ for k > u and
for all ℓ. So, for k > u

E[e−γV̂ (k + ξ)]

V̂ (k)
= e−γ

∑
ℓ≤1

P (ξ = ℓ)
V̂ (k + ℓ)

V̂ (k)

≤ e−γ
∑
ℓ≤1

P (ξ = ℓ)

(
g(k − 1)

g(k)

)−ℓ

=
f(c)

c
+ 1 ≤ 1,
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where the second equality follows from (2.3) with c := g(k − 1)/g(k) and the last inequality
is due to f(c) ≤ 0 since α ≤ g(u)/g(u+ 1) ≤ g(k − 1)/g(k) = c ≤ 1 (cf. Remark 2.1). This
proves (2.9) and completes the proof of part (i).

(ii) Let V̂ (k) = α−kU for all k. We need to show V (k) = V̂ (k). Note that since
u = ∞, αg(k+1)

g(k)
> 1 for all k with g(k + 1) > 0, so αkg(k) is strictly increasing in k ≥

k0 := inf {ℓ : g(ℓ) > 0}. Since g is nonconstant, we have k0 < ∞ and U > αkg(k) for all k,
implying that V̂ (k) > g(k) for all k. For X0 = k < ℓ, we have by (2.4)

V (k) ≥ Ek
(
e−γτℓg(Xτℓ)1{τℓ<∞}

)
= g(ℓ)Ek(e

−γτℓ1{τℓ<∞})

= αℓ−kg(ℓ) → α−kU = V̂ (k) as ℓ→ ∞,

implying that V (k) ≥ V̂ (k) for all k.
Suppose U = ∞. Obviously V (k) = V̂ (k) = ∞. Choose an increasing sequence of

k1 < k2 < · · · such that αkng(kn) > 2n for all n. Then consider a randomized stopping rule
of threshold form which chooses threshold kn with probability 1

2n
. Clearly this stopping rule

has an infinite expected (discounted) reward.
Suppose U <∞. We claim V̂ (k) = E[e−γV̂ (k+ξ)], i.e. {e−γnV̂ (Xn)}n≥0 is a martingale.

To establish this claim, note that

E[e−γV̂ (k + ξ)] =
∑
ℓ≤1

P (ξ = ℓ)e−γV̂ (k + ℓ)

= e−γ
∑
ℓ≤1

P (ξ = ℓ)α−k−ℓU

=

(
e−γ

∑
ℓ≤1

P (ξ = ℓ)α1−ℓ

)
α−k−1U

= (α)α−k−1U (by (2.2))

= α−kU = V̂ (k).

It follows from Lemma 2.1 that V̂ (k) ≥ V (k), so V (k) = V̂ (k) > g(k). Since e−γnV (Xn) =

e−γnV̂ (Xn) is a positive martingale, we have for all k and for any stopping rule τ ,

V (k) = V (X0) ≥ Ek
(
e−γτV (Xτ )1{τ<∞}

)
≥ Ek

(
e−γτg(Xτ )1{τ<∞}

)
,

where the second inequality is strict if P (τ < ∞) > 0. Hence, there exists no optimal
stopping rule.
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(iii) Since u = −∞, we have g(k − 1)/g(k) ≥ α for all k, implying that g(k) > 0 for all
k. By Lemma 2.1, it suffices to show that g(k) ≥ E[e−γg(k + ξ)]. Note that

E[e−γg(k + ξ)]

g(k)
= e−γ

∑
ℓ≤1

P (ξ = ℓ)
g(k + ℓ)

g(k)

≤ e−γ
∑
ℓ≤1

P (ξ = ℓ)

(
g(k − 1)

g(k)

)−ℓ

=
f(c′)

c′
+ 1 ≤ 1,

where the first inequality follows from (2.10), the second equality is by (2.3) with c′ :=

g(k − 1)/g(k) and the last inequality is due to f(c′) ≤ 0, since 1 ≥ c′ = g(k − 1)/g(k) ≥ α

(cf. Remark 2.1). This proves that E[e−γg(k+ξ)] ≤ g(k) for all k. The proof is complete.

Remark 2.2. By setting g(−∞) = 0, Theorem 2.1 can be readily extended to “defective”
skip-free random walks with P (ξ = −∞) > 0.

Remark 2.3. As pointed out by a referee, if the threshold u in (2.5) is not +∞, the optimal
stopping rule τu in Theorem 2.1 is a one-step-look-ahead rule for the associated problem for
the ladder height process. Since g is assumed to be increasing and logconcave, the latter
problem is a monotone stopping problem (cf. Chow, Robbins and Siegmund [4]). Theorem
2.1 shows that the original problem for the process {Xn} and the associated problem for the
ladder height process are equivalent.

3 Optimal stopping rules for logconcave reward func-
tions: the continuous case

Let Y = {Yt}t≥0 with Y0 = 0 be a spectrally negative Lévy process defined on a prob-
ability space (Ω,F , P ). We consider the filtration {Ft}t≥0 where Ft is the P -completed
σ-field generated by {Ys : 0 ≤ s ≤ t}, which satisfies the usual conditions. Assume that
P (Y1 > 0) > 0. (The reader is referred to [10] for a review of fluctuation theory of spectrally
negative Lévy processes; see also [2, 15] for a complete discussion of Lévy processes.) In the
absence of positive jumps, the Laplace exponent ψ(λ) is well defined for all λ ≥ 0, i.e.

E[eλYt ] = etψ(λ) for λ ≥ 0 and t ≥ 0. (3.1)

Clearly ψ(0) = 0 and ψ is convex and tends to infinity as λ → ∞. For γ ≥ 0, let Φ(γ) =

sup {λ ≥ 0 : ψ(λ) = γ}, the largest (nonnegative) root of the equation ψ(λ) = γ, which is
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positive for γ > 0. For γ = 0, note that since ψ(0) = 0, ψ′(0+) = E(Y1) and ψ is convex, we
have Φ(0) > 0 if and only if E(Y1) < 0.

With x ∈ R, let Xt = x+ Yt for t ≥ 0, which is a Lévy process with initial state X0 = x.
For a ∈ R, define τa = inf {t ≥ 0 : Xt ≥ a} (a stopping rule of threshold form). Then in the
absence of positive jumps, for X0 = x ≤ a, we have Xτa = a a.s. on {τa <∞}, and (cf. [10,
Equation (3)])

Ex
(
e−γτa1{τa<∞}

)
= e−Φ(γ)(a−x), (3.2)

where the subscript x in Ex refers to the initial state X0 = x. It follows from (3.1) and the
definition of Φ that

Ex[e
λ(Xt−x)] = etψ(λ) for all λ ≥ 0, and ψ(Φ(γ)) = γ. (3.3)

Consider a nonnegative reward function g : R → [0,∞) which is nonconstant, increasing
(i.e. g(x) ≤ g(y) for x ≤ y) and logconcave (i.e. g(θx+ (1− θ)y) ≥ (g(x))θ (g(y))1−θ for all
x, y and 0 < θ < 1). Letting log 0 := −∞, the function h(x) := log g(x) is increasing and
concave, so that the left-hand derivative h′(x−) is well defined (possibly +∞) at every x

with h(x) > −∞. Letting h′(x−) := +∞ if h(x) = −∞, we have that h′(x−) is decreasing
(and nonnegative) in x ∈ R. Define

w = w(γ) = inf {x ∈ R : h′(x−) ≤ Φ(γ)} , (3.4)

W = W (γ) = sup
{
e−Φ(γ)xg(x) : x ∈ R

}
, (3.5)

V ∗(x) = V ∗
γ (x) = sup

τ∈M
Ex
(
e−γτg(Xτ )1{τ<∞}

)
(x ∈ R), (3.6)

where M is the class of all stopping rules τ with values in [0,∞] (with respect to the filtration
{Ft}t≥0). The following result is the continuous-time counterpart of Theorem 2.1.

Theorem 3.1. Let γ ≥ 0, and assume E(Y1) < 0 if γ = 0, so that Φ(γ) > 0. Let
g : R → [0,∞) be nonconstant, increasing, logconcave and right-continuous, and define
w = w(γ),W = W (γ) and V ∗(x) = V ∗

γ (x) as in (3.4)− (3.6). Then the following statements
hold.

(i) If −∞ < w <∞, then the threshold-form stopping rule τw is optimal, and V ∗(x) = g(x)

for x ≥ w; and V ∗(x) = e−Φ(γ)(w−x)g(w) for x < w.
(ii) If w = ∞, then V ∗(x) = eΦ(γ)xW for all x. If, in addition, W = ∞, then there

exist (randomized) stopping rules that have an infinite expected (discounted) reward; if
W <∞, then there is no optimal stopping rule.
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(iii) If w = −∞, then V ∗(x) = g(x) for all x and the optimal stopping rule is to stop
immediately.

To prove Theorem 3.1, we need the following standard result which is the continuous-
time analogue of Lemma 2.1 and can be established easily by observing that {e−γtf(Xt)}t≥0

is a supermartingale.

Lemma 3.1. Let f(x) and g(x) be nonnegative measurable functions defined on R and γ ≥ 0.
If f(x) ≥ g(x) and f(x) ≥ Ex[e

−γtf(Xt)] for all x ∈ R and t > 0, then

f(x) ≥ sup
τ∈M

Ex
(
e−γτg(Xτ )1{τ<∞}

)
, x ∈ R.

Proof of Theorem 3.1. (i) Let V̂ (x) = Ex
(
e−γτwg(Xτw)1{τw<∞}

)
, x ∈ R. Then by (3.2),

V̂ (x) = g(x) for x ≥ w and V̂ (x) = e−Φ(γ)(w−x)g(w) for x < w. We need to prove V ∗(x) =

V̂ (x) for all x. Since clearly V ∗(x) ≥ V̂ (x), it remains to prove V̂ (x) ≥ V ∗(x). By Lemma
3.1, it suffices to show

V̂ (x) > g(x) for x < w, (3.7)

and
V̂ (x) ≥ Ex[e

−γtV̂ (Xt)] for x ∈ R and t > 0. (3.8)

By the definition of w, we have 0 ≤ h′(y−) ≤ Φ(γ) for all y > w, which implies that
0 ≤ h(y) − h(x) ≤ Φ(γ)(y − x) for all y > x > w. Pick an arbitrary y with y > w and
g(y) > 0. Then we have by the right-continuity of g that

h(y)− h(w) = lim
x→w+

(h(y)− h(x)) ≤ lim
x→w+

Φ(γ)(y − x) = Φ(γ)(y − w) < +∞,

implying that h(w) > −∞. So we have g(w) > 0 and V̂ (x) > 0 for all x.
To prove (3.7), let b(x) = g(x)

V̂ (x)
for all x ∈ R. For x < w, log b(x) = h(x) +Φ(γ)(w− x)−

h(w), whose left-hand derivative equals h′(x−)− Φ(γ) > 0, implying that b(x) is increasing
in −∞ < x < w and strictly increasing in x0 < x < w where x0 := inf{y : g(y) > 0} ≤ w.
Since b(w−) = g(w−)/V̂ (w) ≤ g(w)/V̂ (w) = 1, we have b(x) < 1, i.e. V̂ (x) > g(x) for
x < w. This prove (3.7).

To prove (3.8), let a(y) = e−Φ(γ)(w−y)g(w) and q(y) = log
(
V̂ (y)
a(y)

)
for all y ∈ R. Since

q(y) = h(y)+Φ(γ)(w− y)−h(w) for y > w, we have q′(y−) = h′(y−)−Φ(γ) ≤ 0 for y > w,
implying that q(y) is decreasing in y > w. Since q(w) = 0 and g(y) (and hence q(y)) is
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right-continuous at y = w, we have q(y) ≤ 0 for y > w, i.e. V̂ (y) ≤ a(y) for y > w. Since
V̂ (y) = a(y) for y ≤ w, we have V̂ (y) ≤ a(y) for all y ∈ R. Now for X0 = x ≤ w,

Ex[e
−γtV̂ (Xt)] ≤ Ex[e

−γta(Xt)]

= g(w)e−γtEx[e
−Φ(γ)(w−Xt)]

= g(w)e−Φ(γ)(w−x)−γtEx[e
Φ(γ)(Xt−x)]

= g(w)e−Φ(γ)(w−x)−γt+ψ(Φ(γ))t

= g(w)e−Φ(γ)(w−x) = V̂ (x),

where the third and fourth equalities are by (3.3).
It remains to show that V̂ (x) ≥ Ex[e

−γtV̂ (Xt)] for X0 = x > w. Letting ĥ(y) = log V̂ (y)

for all y ∈ R, note that ĥ(y) = h(y) for y ≥ w and ĥ(y) = h(w) − Φ(γ)(w − y) for
y < w. Since ĥ′(y) = Φ(γ) for y < w and h(y) (and hence ĥ(y)) is concave in y > w and
ĥ′(y−) = h′(y−) ≤ Φ(γ) for y > w, we have that ĥ(y) is increasing and concave on R. It
follows that

ĥ(y) ≤ h(x) + ĉ(y − x) for all y ∈ R,

where 0 ≤ ĉ := ĥ′(x−) = h′(x−) ≤ Φ(γ) (since x > w). So

Ex[e
−γtV̂ (Xt)] = e−γtEx[e

ĥ(Xt)]

≤ e−γtEx[e
h(x)+ĉ(Xt−x)]

= eh(x)−γtEx[e
ĉ(Xt−x)]

= eh(x)−γt+ψ(ĉ)t (by (3.3))

≤ eh(x)−γt+ψ(Φ(γ))t

= eh(x) = g(x) = V̂ (x),

where the second inequality follows since 0 ≤ ĉ ≤ Φ(γ) and ψ(z) ≤ max{ψ(0), ψ(Φ(γ))}
= ψ(Φ(γ)) for all 0 ≤ z ≤ Φ(γ) (by convexity of ψ). The proof of part (i) is complete.

(ii) Let V̂ (x) = eΦ(γ)xW for all x. We need to show V ∗(x) = V̂ (x). Since w = ∞, the left-
hand derivative of h(x)−Φ(γ)x is h′(x−)−Φ(γ) > 0 for all x, so that e−Φ(γ)xg(x) = eh(x)−Φ(γ)x

is strictly increasing in x ≥ x0 := inf {y : g(y) > 0}. Since g is nonconstant, we have x0 <∞
and W = sup{e−Φ(γ)yg(y) : y ∈ R} = limy→∞ e−Φ(γ)yg(y) > e−Φ(γ)xg(x) for all x ∈ R,
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implying that V̂ (x) > g(x) for all x ∈ R. For X0 = x < y, we have

V ∗(x) ≥ Ex
(
e−γτyg(Xτy)1{τy<∞}

)
= g(y)Ex(e

−γτy1{τy<∞}) = e−Φ(γ)(y−x)g(y) → eΦ(γ)xW = V̂ (x) as y → ∞.

So V ∗(x) ≥ V̂ (x) for all x. The remaining claims for part (ii) can be established by treating
the cases W = ∞ and W < ∞ separately along the lines of the proof of Theorem 2.1(ii).
The details are omitted.

(iii) By Lemma 3.1, it suffices to show that for x ∈ R and t > 0,

g(x) ≥ Ex[e
−γtg(Xt)], (3.9)

which can be established along the lines of the proof of (3.8) for X0 = x > w (cf. the last
part of the proof of (i)). Briefly, since w = −∞, we can argue that g(x) > 0 for all x ∈ R.
Since h(x) = log g(x) is increasing and concave on R,

h(y) ≤ h(x) + c(y − x) for all x and y, (3.10)

where 0 ≤ c := h′(x−) ≤ Φ(γ). Then (3.9) follows from (3.10).

Remark 3.1. If a nonnegative function g : R → [0,∞) is increasing and logconcave, it is
easily shown that g(x) is continuous everywhere except possibly at x0 := inf{x ∈ R : g(x) >

0}. If x0 > −∞, then Theorem 3.1 requires that g(x) be right-continuous at x = x0, i.e.
g(x0) = g(x0+). This right-continuity condition cannot be removed as the following example
shows. For 0 ≤ c ≤ 1, consider gc : R → [0,∞) defined by

gc(x) =


0, if x < 0;

c, if x = 0;

1, if x > 0;

which is increasing and logconcave. It is readily seen that the value function V ∗(x) =

V ∗
γ (x) = min{eΦ(γ)x, 1} for x ∈ R, which is independent of c ∈ [0, 1]. For c = 1, gc is

right-continuous and the optimal stopping rule is τ0. But for 0 ≤ c < 1, gc is not right-
continuous and no optimal stopping rule exists. On the other hand, for a nonnegative,
increasing and logconcave reward function g which is not right-continuous at x = x0 (i.e.
g(x0−) = 0 ≤ g(x0) < g(x0+)), let g̃(x) := g(x) for x ̸= x0; and g̃(x0) := g(x0+), which is
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increasing, logconcave and right-continuous. For the reward function g̃, suppose the optimal
threshold value w defined in (3.4) (with h′(x−) replaced by the left-hand derivative of log g̃(x))
is such that x0 < w <∞. Then the stopping rule τw is optimal for the reward function g since
τw is optimal for g̃ and since g(x) = g̃(x) for x ̸= x0, g(x0) < g̃(x0) and x0 < w. Moreover,
the two reward functions g and g̃ yield the same value function. As an example, consider a
Brownian motion with drift parameter −a (a > 0) and γ = 0 (without discounting). Then
we have ψ(λ) = λ2/2− aλ and Φ(0) = 2a. For 0 ≤ c ≤ 1, let g∗c : R → [0,∞) be defined by

g∗c (x) =


0, if x < 0;

c, if x = 0;

e
√
x, if x > 0;

(3.11)

which is increasing and logconcave for all 0 ≤ c ≤ 1 and is right-continuous at x0 = 0 if
and only if c = 1. For the reward function g∗1, the optimal threshold value defined in (3.4)

is w = 1/(16a2) > 0 = x0. It follows that τw is optimal for the reward function g∗c for all
0 ≤ c ≤ 1.

Remark 3.2. Theorem 2.1 is concerned with the discrete-time discrete-state case while
Theorem 3.1 deals with the continuous-time continuous-state case. We now consider the
continuous-time discrete-state case involving a compound Poisson process

Xt = k +
Nt∑
i=1

ξi (t ≥ 0), X0 = k ∈ Z,

where ξ, ξ1, ξ2, . . . is a sequence of independent and identically distributed integer-valued
random variables with P (ξ > 1) = 0 and P (ξ = 1) > 0, and {Nt}t≥0 is a Poisson process
with constant rate µ > 0 which is independent of the ξ′is.

Let ϕ(λ) = E[eλξ], λ ≥ 0. Clearly, ϕ(0) = 1 and ϕ is convex and tends to infinity as
λ → ∞. For γ ≥ 0 and µ > 0, let β = β(γ, µ) = sup

{
λ ≥ 0 : ϕ(λ) = 1 + γ

µ

}
, which is

positive for γ > 0. For γ = 0, note that since ϕ(0) = 1, ϕ′(0+) = E(ξ) and ϕ is convex, we
have β > 0 if and only if E(ξ) < 0.

For a (nonnegative) reward function g : Z → [0,∞) which is nonconstant, increasing and
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logconcave, define

z = z(γ, µ) = inf

{
k ∈ Z :

g(k)

g(k + 1)
≥ e−β

}
, (3.12)

Z = Z(γ, µ) = sup
{
e−βℓg(ℓ) : ℓ ∈ Z

}
, (3.13)

V ∗∗(k) = V ∗∗
γ,µ(k) = sup

τ∈M
Ek
(
e−γτg(Xτ )1{τ<∞}

)
, (3.14)

where M is the class of all stopping rules τ with values in [0,∞]. Then we have the following
result which can be established along the lines of the proof of Theorem 2.1.

Theorem 3.2. Let γ ≥ 0, and assume E(ξ) < 0 if γ = 0, so that β > 0. Let g : Z →
[0,∞) be nonconstant, increasing and logconcave, and define z = z(γ, µ), Z = Z(γ, µ) and
V ∗∗(k) = V ∗∗

γ,µ(k) as in (3.12)− (3.14). Then the following statements hold.

(i) If −∞ < z <∞, then the threshold-form stopping rule τz is optimal, and V ∗∗(k) = g(k)

for k ≥ z; and V ∗∗(k) = e−β(z−k)g(z) for k < z.
(ii) If z = ∞, then V ∗∗(k) = eβkZ for all k. If, in addition, Z = ∞, then there exist

(randomized) stopping rules that have an infinite expected (discounted) reward; if Z <

∞, then there is no optimal stopping rule.
(iii) If z = −∞, then V ∗∗(k) = g(k) for all k and the optimal stopping rule is to stop

immediately.

4 Necessity of logconcavity and monotonicity: the dis-
crete case

Theorem 2.1 shows that for a nonnegative, increasing and logconcave reward function g,
the optimal stopping rule is of threshold form under a general skip-free random walk model.
In this section, we prove a converse of Theorem 2.1 by restricting attention to Bernoulli
random walks without discounting (i.e. γ = 0). Specifically, let {Xn}n≥0 be a Bernoulli
random walk with parameter p (denoted BRW(p))

Xn+1 = Xn + ξn+1, n = 0, 1, . . . ; X0 = k ∈ Z,

where ξ, ξ1, ξ2, . . . are independent and identically distributed with P (ξ = 1) = p, P (ξ =

−1) = q = 1− p (0 < p < 1
2
). For u ∈ Z ∪ {−∞}, let τu = inf {n ≥ 0 : Xn ≥ u}. (Note that
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τ−∞ = 0.) For u ∈ Z ∪ {−∞} and g : Z → [0,∞), it is well known that

Ek,p
[
g(Xτu)1{τu<∞}

]
=

g(u)(p/q)
u−k, if k < u;

g(k), if k ≥ u,
(4.1)

where the subscripts k and p in Ek,p refer to the initial state X0 = k and the parameter p of
Bernoulli random walk BRW(p).

Definition 4.1. Let g : Z → [0,∞) be a reward function and

V (k, p) = sup
τ∈M

Ek,p[g(Xτ )1{τ<∞}],

where M is the class of all stopping rules τ with values in [0,∞]. We say that g is of
threshold type with respect to Bernoulli random walks if for each p ∈ (0, 1

2
) there is an

m(p) ∈ Z∪{−∞} such that the stopping rule τm(p) is optimal under the BRW(p) model, i.e.
for all p ∈ (0, 1

2
) and k ∈ Z,

V (k, p) = Ek,p[g(Xτm(p)
)1{τm(p)<∞}]. (4.2)

We now present the main result in this section.

Theorem 4.1. If g : Z → [0,∞) is of threshold type with respect to Bernoulli random walks,
then g is increasing and logconcave.

The key to the proof of Theorem 4.1 is the following lemma.

Lemma 4.1. Suppose g : Z → [0,∞) is not identically 0 and is of threshold type with respect
to Bernoulli random walks (i.e. g satisfies (4.2)). Then the following properties hold.

(i) For all k ∈ Z and p ∈ (0, 1
2
), V (k, p) > 0 and

g(k) ≤ V (k, p) =

g(m(p))(p/q)m(p)−k, if k < m(p);

g(k), if k ≥ m(p),

(ii) m(p) is increasing in p ∈ (0, 1
2
), i.e. m(p1) ≤ m(p2) for 0 < p1 < p2 <

1
2
,

(iii) g(k) = 0 for all k < m0 := inf
{
m(p) : 0 < p < 1

2

}
.
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Proof. (i) It is clear that V (k, p) ≥ Ek,p[g(Xτ )1{τ<∞}] for any stopping rule τ . Since g is of
threshold type with respect to Bernouli random walks, we have by (4.1) and (4.2) that

g(k) ≤ V (k, p) =

g(m(p))(p/q)m(p)−k, if k < m(p);

g(k), if k ≥ m(p).

Since g is not identically 0, g(i0) > 0 for some i0 ∈ Z. Consider the stopping rule τ =

inf {n ≥ 0 : Xn = i0} (which is different from τi0 if X0 = k > i0). Then

V (k, p) ≥ Ek,p
[
g(Xτ )1{τ<∞}

]
= g(i0)Ek,p

[
1{τ<∞}

]
= g(i0)min

{
(p/q)i0−k , 1

}
> 0

for all k ∈ Z and p ∈ (0, 1
2
). This proves (i).

(ii) Suppose m(p1) > m(p2) for some 0 < p1 < p2 <
1
2
. Letting m1 := m(p1), q1 := 1−p1,

q2 := 1− p2, we have by (4.1) and part (i)

g(m1)

(
p2
q2

)
= Em1−1,p2

[
g(Xτm1

)1{τm1<∞}
]

≤ V (m1 − 1, p2) = g(m1 − 1) (since m1 − 1 = m(p1)− 1 ≥ m(p2))

≤ V (m1 − 1, p1) = g(m1)

(
p1
q1

)
,

which together with p1
q1
< p2

q2
implies that g(m1) = 0 and V (m1 − 1, p1) = 0, contradicting

(i). This proves (ii).
(iii) It suffices to consider m0 > −∞. Then, by the definition of m0 and (ii), there exists

p0 ∈ (0, 1
2
) such that m(p) = m0 for all 0 < p ≤ p0. For 0 < p ≤ p0 and any k < m0(= m(p)),

we have by (i)

g(k) ≤ V (k, p) = g(m0)

(
p

q

)m0−k

→ 0 as p→ 0,

proving (iii).

Proof of Theorem 4.1. If g is identically zero, then we are done. Suppose now that g is
not identically 0. We shall first show that g is increasing. Suppose to the contrary that
g(ℓ) > g(ℓ+1) (implying g(ℓ) > 0) for some ℓ ∈ Z. By Lemma 4.1(iii), we have ℓ ≥ m0 since
g(ℓ) > 0. Thus in either of the two cases m0 = −∞ and m0 > −∞, there exists p ∈ (0, 1

2
)
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such that m(p) ≤ ℓ. Letting τ = inf {n ≥ 0 : Xn = ℓ} and noting that Eℓ+1,p[1{τ<∞}] = 1,
we have by Lemma 4.1(i)

g(ℓ+ 1) = V (ℓ+ 1, p) ≥ Eℓ+1,p[g(Xτ )1{τ<∞}] = g(ℓ),

a contradiction. This proves that g is increasing.
It remains to show that g is logconcave. Suppose to the contrary that (g(ℓ + 1))2 <

g(ℓ)g(ℓ + 2) for some ℓ ∈ Z. Then g(ℓ) > 0 and hence g(k) > 0 for all k ≥ ℓ since g is
increasing. Choose p ∈ (0, 1

2
) such that

g(ℓ+ 1)

g(ℓ+ 2)
<
p

q
<

g(ℓ)

g(ℓ+ 1)
. (4.3)

For k ≥ m(p), we have by Lemma 4.1(i) that g(k + 1) = V (k + 1, p) > 0 and

g(k) = V (k, p) ≥ Ek,p
[
g(Xτk+1

)1{τk+1<∞}
]
= g(k + 1)

(
p

q

)
.

So
g(k)

g(k + 1)
≥ p

q
for all k ≥ m(p),

implying by (4.3) that ℓ+ 1 < m(p). Let ℓ1, ℓ2 ∈ {ℓ+ 1, ℓ+ 2, . . . ,m(p)} be such that(
g(ℓ)

g(ℓ1)

) 1
ℓ1−ℓ

= min

{(
g(ℓ)

g(k)

) 1
k−ℓ

: k = ℓ+ 1, ℓ+ 2, . . . ,m(p)

}
, (4.4)

g(ℓ2)

g(ℓ2 + 1)
= min

{
g(k)

g(k + 1)
: k = ℓ+ 1, ℓ+ 2, . . . ,m(p)

}
. (4.5)

By (4.3)–(4.5),
p

q
>
g(ℓ+ 1)

g(ℓ+ 2)
≥ g(ℓ2)

g(ℓ2 + 1)
,

(
g(ℓ)

g(ℓ1)

) 1
ℓ1−ℓ

=

(
g(ℓ)

g(ℓ+ 1)

g(ℓ+ 1)

g(ℓ+ 2)
· · · g(ℓ1 − 1)

g(ℓ1)

) 1
ℓ1−ℓ

>

(
g(ℓ+ 1)

g(ℓ+ 2)

(
g(ℓ2)

g(ℓ2 + 1)

)ℓ1−ℓ−1
) 1

ℓ1−ℓ

≥

((
g(ℓ2)

g(ℓ2 + 1)

)ℓ1−ℓ) 1
ℓ1−ℓ

=
g(ℓ2)

g(ℓ2 + 1)
,

from which follows

min

{
p

q
,

(
g(ℓ)

g(ℓ1)

) 1
ℓ1−ℓ

}
>

g(ℓ2)

g(ℓ2 + 1)
.
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Choose p′ ∈ (0, p) such that

min

{
p

q
,

(
g(ℓ)

g(ℓ1)

) 1
ℓ1−ℓ

}
>
p′

q′
>

g(ℓ2)

g(ℓ2 + 1)
, (4.6)

where q′ = 1− p′. For k ∈ {ℓ+ 1, ℓ+ 2, . . . ,m(p)}, we have by (4.4) and (4.6)(
g(ℓ)

g(k)

) 1
k−ℓ

≥
(
g(ℓ)

g(ℓ1)

) 1
ℓ1−ℓ

>
p′

q′
,

so
V (ℓ, p′) ≥ g(ℓ) > g(k)

(
p′

q′

)k−ℓ
,

implying by Lemma 4.1(i) that m(p′) ̸= k for all k ∈ {ℓ+ 1, ℓ+ 2, . . . ,m(p)}. Since m(p′) ≤
m(p) by Lemma 4.1(ii), we have m(p′) ≤ ℓ < ℓ2, which together with (4.1), Lemma 4.1(i)
and (4.6) implies that

Eℓ2,p′ [g(Xτℓ2+1
)1{τℓ2+1<∞}] = g(ℓ2 + 1)

(
p′

q′

)
> g(ℓ2) = V (ℓ2, p

′),

a contradiction. This proves that g is logconcave and completes the proof.

5 Necessity of logconcavity and monotonicity: the
continuous case

We have shown in Theorem 3.1 that for a nonnegative, increasing, logconcave and right-
continuous reward function g, the optimal stopping rule is of threshold form with respect
to a general spectrally negative Lévy process. In this section, we present a converse of
Theorem 3.1 by restricting attention to Brownian motions without discounting. Specifically,
let {Xt}t≥0 be a Brownian motion with drift parameter −a (denoted BM(a)), where 0 < a <

∞, i.e.
Xt = x− at+Bt for t ≥ 0; X0 = x ∈ R,

where x is the initial state and Bt is a standard Brownian motion. For a measurable function
g : R → [0,∞) and u ∈ R ∪ {−∞}, letting τu = inf{t ≥ 0 : Xt ≥ u}, we have the following
standard result

Ex,a[g(Xτu)1{τu<∞}] =

g(u)e
−2a(u−x), if x < u;

g(x), if x ≥ u;
(5.1)

where the subscripts x and a in Ex,a refer to the initial state X0 = x and the drift parameter
−a of Brownian motion BM(a).

18



Definition 5.1. Let g : R → [0,∞) be a measurable reward function and

V (x, a) = sup
τ∈M

Ex,a
[
g(Xτ )1{τ<∞}

]
,

where M is the class of all stopping rules τ with values in [0,∞]. We say that g is of
threshold type with respect to Brownian motions if for each a ∈ (0,∞) there is a u(a) ∈
R ∪ {−∞} such that the stopping rule τu(a) is optimal under BM(a), i.e. for all a ∈ (0,∞)

and x ∈ R,
V (x, a) = Ex,a

[
g(Xτu(a))1{τu(a)<∞}

]
. (5.2)

The following result is the counterpart of Theorem 4.1 in the continuous case.

Theorem 5.1. If a measurable reward function g : R → [0,∞) is of threshold type with
respect to Brownian motions, then g is increasing and logconcave.

We first establish the following lemma which is the key to the proof of Theorem 5.1.

Lemma 5.1. Suppose a measurable reward function g : R → [0,∞) is not identically 0

and is of threshold type with respect to Brownian motions (i.e. g satisfies (5.2)). Then the
following properties hold.

(i) For all x ∈ R and a ∈ (0,∞), V (x, a) > 0 and

g(x) ≤ V (x, a) =

g(u(a))e
−2a(u(a)−x), if x < u(a);

g(x), if x ≥ u(a),

(ii) u(a) is decreasing in a ∈ (0,∞), i.e. u(a1) ≥ u(a2) for 0 < a1 < a2 <∞,

(iii) g(x) = 0 for x < u∞ := inf {u(a) : 0 < a <∞}.

Proof. (i) It is clear that V (x, a) ≥ Ex,a[g(Xτ )1{τ<∞}] for all stopping rules τ ∈ M. Since g
is of threshold type with respect to Brownian motions, we have by (5.1) and (5.2) that

g(x) ≤ V (x, a) =

g(u(a))e
−2a(u(a)−x), if x < u(a);

g(x), if x ≥ u(a).
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Since g is not identically 0, g(x′) > 0 for some x′ ∈ R. Consider the stopping rule τ =

inf {t ≥ 0 : Xt = x′}. Then

V (x, a) ≥ Ex,a[g(Xτ )1{τ<∞}]

= g(x′)Ex,a[1{τ<∞}]

= g(x′)min{e−2a(x′−x), 1} > 0

for all x ∈ R and a ∈ (0,∞). This proves (i).
(ii) Suppose u(a1) < u(a2) for some 0 < a1 < a2 < ∞. Letting u2 := u(a2) and

δ ∈ (0, u(a2)− u(a1)) (so that u(a1) < u(a2)− δ = u2 − δ < u2), we have by (5.1) and part
(i)

e−2a1δg(u2) = Eu2−δ,a1
[
g(Xτu2

)1{τu2<∞}
]

≤ V (u2 − δ, a1) = g(u2 − δ)

≤ V (u2 − δ, a2) = e−2a2δg(u2),

which together with 0 < a1 < a2 implies that g(u2) = 0 and V (u2 − δ, a2) = 0, contradicting
(i). This proves (ii)

(iii) It suffices to consider u∞ > −∞. Pick an (arbitrary) a3 ∈ (0,∞) and let u3 :=

u(a3) ≥ u∞. We have by (i)

g(y) ≤ V (y, a3) = e−2a3(u3−y)g(u3) for all y ≤ u3. (5.3)

For any x < u∞, we have by (i), (ii) and (5.3) that for all a > a3

0 ≤ g(x) ≤ V (x, a) = e−2a(u(a)−x)g(u(a)) ≤ e−2a(u(a)−x)−2a3(u3−u(a))g(u3),

which converges to 0 as a→ ∞. This proves (iii).

Proof of Theorem 5.1. If g is identically zero, then we are done. Suppose now that g is
not identically 0. We shall first show that g is increasing. Suppose to the contrary that
g(r) > g(s) (implying g(r) > 0) for some r < s. By Lemma 5.1(iii), we have u∞ ≤ r < s, so
that there exists a ∈ (0,∞) such that u(a) < s. Letting τ = inf {t ≥ 0 : Xt = r} and noting
that Es,a

[
1{τ<∞}

]
= 1, we have by Lemma 5.1(i)

g(s) = V (s, a) ≥ Es,a
[
g(Xτ )1{τ<∞}

]
= g(r),
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a contradiction. This proves that g is increasing.
It remains to show that g is logconcave. Suppose to the contrary that there exist r < c < s

such that
g(c) < g(r)

s−c
s−r g(s)

c−r
s−r . (5.4)

Then g(r) > 0 and hence g(x) > 0 for all x ≥ r since g is increasing. By (5.4),

0 <

(
g(c)

g(s)

) 1
s−c

<

(
g(r)

g(s)

) 1
s−r

<

(
g(r)

g(c)

) 1
c−r

≤ 1. (5.5)

We claim that g is continuous on (r,∞). Since g is increasing, it suffices to show that
g(x−) ≥ g(x+) for all x > r. Since Lemma 5.1(iii) together with g(r) > 0 implies that
u∞ ≤ r < x, there exists a ∈ (0,∞) such that u(a) < x. By Lemma 5.1(i), we have for
0 < ε < x− u(a) (implying x− ε > u(a)),

g(x− ε) = V (x− ε, a) ≥ Ex−ε,a
[
g(Xτx+ε)1{τx+ε<∞}

]
= e−2a(2ε)g(x+ ε),

which by letting ε→ 0 yields g(x−) ≥ g(x+). Thus, g is continuous on (r,∞).
In view of (5.5), let a′ ∈ (0,∞) be such that(

g(c)

g(s)

) 1
s−c

< e−2a′ <

(
g(r)

g(s)

) 1
s−r

<

(
g(r)

g(c)

) 1
c−r

. (5.6)

For y > x ≥ u(a′), we have by Lemma 5.1(i) that g(y) = V (y, a′) > 0 and

g(x) = V (x, a′) ≥ Ex,a′
[
g(Xτy)1{τy<∞}

]
= e−2a′(y−x)g(y) > 0.

So, (
g(x)

g(y)

) 1
y−x

≥ e−2a′ for all y > x ≥ u(a′),

implying by (5.6) that c < u(a′). Let

L = inf

{(
g(c)

g(x)

) 1
x−c

: c < x ≤ max{s, u(a′)}

}
. (5.7)

Since
(
g(r)
g(x)

) 1
x−r is continuous in x ∈ [c,max{s, u(a′)}], there is an x1 ∈ [c,max{s, u(a′)}]

such that (
g(r)

g(x1)

) 1
x1−r

= min

{(
g(r)

g(x)

) 1
x−r

: c ≤ x ≤ max{s, u(a′)}

}
. (5.8)

21



By (5.6) and (5.7),

e−2a′ >

(
g(c)

g(s)

) 1
s−c

≥ L. (5.9)

Note that c ≤ x1 ≤ max{s, u(a′)}. By (5.6)–(5.8), if x1 = c,(
g(r)

g(x1)

) 1
x1−r

=

(
g(r)

g(c)

) 1
c−r

>

(
g(c)

g(s)

) 1
s−c

≥ L; (5.10)

if x1 > c,

(
g(r)

g(x1)

) 1
x1−r

=

[(
g(c)

g(x1)

) 1
x1−c

] x1−c
x1−r

[(
g(r)

g(c)

) 1
c−r

] c−r
x1−r

> L
x1−c
x1−r

[(
g(c)

g(s)

) 1
s−c

] c−r
x1−r

≥ L
x1−c
x1−rL

c−r
x1−r = L. (5.11)

In view of (5.9)–(5.11), let a′′ ∈ (a′,∞) be such that

min

{
e−2a′ ,

(
g(r)

g(x1)

) 1
x1−r

}
> e−2a′′ > L. (5.12)

For y ∈ [c, u(a′)], we have by (5.8) and (5.12)(
g(r)

g(y)

) 1
y−r

≥
(
g(r)

g(x1)

) 1
x1−r

> e−2a′′ ,

so V (r, a′′) ≥ g(r) > e−2a′′(y−r)g(y), implying by Lemma 5.1(i) that u(a′′) ̸= y for all y ∈
[c, u(a′)]. Since u(a′′) ≤ u(a′) by Lemma 5.1(ii), we have u(a′′) < c. It follows from (5.7)

and (5.12) that e−2a′′ >
(
g(c)
g(y0)

) 1
y0−c for some y0 ∈ (c,max{s, u(a′)}], which together with

u(a′′) < c implies that

V (c, a′′) = g(c) < e−2a′′(y0−c)g(y0) = Ec,a′′
[
g(Xτy0

)1{τy0<∞}
]
,

a contradiction. This proves that g is logconcave and completes the proof.

Remark 5.1. Under the assumptions on g in Theorem 5.1, g has been shown to be increasing
and logconcave, so that it is continuous everywhere except possibly at x0 := inf{x : g(x) > 0}
(cf. Remark 3.1). However, g need not be right-continuous under the assumptions of Theorem
5.1, as the function g∗c given in (3.11) (with 0 ≤ c < 1) shows.

22



6 Concluding remarks

We have explored the close connection between increasing logconcave reward functions
and optimal stopping rules of threshold form, which yields a partial characterization of the
threshold structure of optimal stopping rules. In the discrete (continuous, resp.) case, we
established that if a nonnegaive measurable reward function defined on Z (R, resp.) is
increasing and logconcave (and right-continuous for the continuous case), then the optimal
stopping rule is of threshold form provided the underlying process is a skip-free random
walk (a spectrally negative Lévy process, resp.). As these results only cover optimal stopping
problems without overshoot, it would be of great interest to find, for problems with overshoot,
(general) conditions on the reward function (in addition to logconcavity and monotonicity)
under which the optimal stopping rule is of threshold form, so as to provide a more complete
characterization of the threshold structure of optimal stopping rules.

In the case without discounting (γ = 0), we also established the necessity of logconcavity
and monotonicity of a reward function in order for the optimal stopping rule to be of threshold
form in the discrete (continuous, resp.) case when the underlying process belongs to the
class of Bernoulli random walks (Brownian motions, resp.) with a downward drift. For
the remainder of this section, we briefly address the issue of necessity of logconcavity and
monotonicity when the discount rate γ is positive. With γ > 0 fixed, in the discrete case, we
consider the class of Bernoulli random walks BRW(p) for all 0 < p < 1. Let g be a positive
reward function defined on Z with g(k) ≥ e−γ max{g(k − 1), g(k + 1)} for all k ∈ Z. (Such
a function g can be neither increasing nor logconcave.) Since g(k) ≥ E[e−γg(k + ξ)] where
P (ξ = 1) = p = 1− q = 1− P (ξ = −1), we have by Lemma 2.1

g(k) ≥ Ek,p(e
−γτg(Xτ )1{τ<∞}) , for all k ∈ Z and τ ∈ M,

implying that the stopping rule τ−∞ (i.e. to stop immediately) is optimal under BRW(p)
for all 0 < p < 1. In particular, for a positive increasing reward function g with g(k) ≥
e−γg(k+1) for all k (which need not be logconcave), the stopping rule τ−∞ is optimal under
BRW(p) for all 0 < p < 1. More generally, let g be a positive increasing reward function
such that for some k0 ∈ Z, g is logconcave in k ≤ k0 (i.e. g(k − 2)/g(k − 1) ≤ g(k − 1)/g(k)

for all k ≤ k0) and g(k) ≥ e−γg(k + 1) for all k ≥ k0. Then the optimal stopping rule is of
threshold form under BRW(p) for all 0 < p < 1. More precisely, for 0 < p < 1, define

α(p) = (eγ −
√
e2γ − 4pq)/(2q),
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which satisfies (2.2). Let

m(p) = inf{k ∈ Z : g(k)/g(k + 1) ≥ α(p)}.

Note that m(p) ≤ k0 since α(p) ≤ e−γ. Then it can be shown (along the lines of the proof of
Theorem 2.1) that τm(p) is optimal under BRW(p) for all 0 < p < 1. (This can also be argued
by considering the associated problem for the ladder height process, which as a consequence
of the conditions on g, is a monotone stopping problem; cf. Remark 2.3.)

In the continuous case, we consider the class of Brownian motions BM(a) for all a ∈ R
where a is the (negative) drift parameter, i.e. Xt = x− at+Bt for t ≥ 0. For a measurable
function g : R → [0,∞) and u ∈ R ∪ {−∞}, we have the following standard result

Ex,a[e
−γτug(Xτu)1{τu<∞}] =

g(u)e
−θ(a)(u−x), if x < u;

g(x), if x ≥ u;
(6.1)

where θ(a) =
√
a2 + 2γ + a. (Note that θ(a) equals Φ(γ) in (3.2) when {Xt} is BM(a) and

that (6.1) reduces to (5.1) since θ(a) = 2a for γ = 0 and a > 0.) Clearly with γ > 0 fixed,
θ(a) is continuous and strictly increasing with lima→−∞ θ(a) = 0 and lima→∞ θ(a) = ∞.
The following result can be established along the lines of the proof of Theorem 5.1 with 2a

replaced by θ(a) and some minor modifications.

Theorem 6.1. Fix γ > 0. Let g : R → [0,∞) be a measurable reward function. Suppose
that for each −∞ < a <∞, there is a threshold u(a) ∈ R∪ {−∞} such that τu(a) is optimal
under BM(a). Then g is increasing and logconcave.

Acknowledgments

The authors wish to dedicate this work to Professor Herman Chernoff on the occasion
of his ninety-first birthday. The authors are grateful to the referee for a careful reading and
useful comments. The authors also gratefully acknowledge support from the National Science
Council of Taiwan under grants NSC 101-2118-M-018-004 and NSC 102-2118-M-001-006.

References
[1] Baurdoux, E.J. (2007). Examples of optimal stopping via measure transformation for processes with

one-sided jumps. Stochastics 79, 303–307.

24



[2] Bertoin, J. (1996). Lévy Processes. Cambridge University Press.

[3] Brown, M., Peköz, E.A. and Ross, S.M. (2010). Some results for skip-free random walk. Probability
in the Engineering and Informational Sciences 24, 491–507.

[4] Chow, Y.S., Robbins, H. and Siegmund, D. (1971). Great Expectations: The Theory of Optimal
Stopping. Houghton Mifflin, Boston.

[5] Christensen, S., Irle, A. and Novikov, A. (2011). An elementary approach to optimal stopping
problems for AR(1) sequences. Sequential Analysis 30, 79–93.

[6] Christensen, S., Salminen, P. and Ta, B.Q. (2013). Optimal stopping of strong Markov processes.
Stochastic Processes and their Applications 123, 1138–1159.

[7] Darling, D.A., Liggett, T. and Taylor, H.M. (1972). Optimal stopping for partial sums. Ann.
Math. Statist. 43, 1363–1368.

[8] Deligiannidis, G., Le, H. and Utev, S. (2009). Optimal stopping for processes with independent
increments, and applications. J. Appl. Probab. 46, 1130–1145.

[9] Dubins, L.E. and Teicher, H. (1967). Optimal stopping when the future is discounted. Ann. Math.
Statist. 38, 601–605.

[10] Kyprianou, A.E. and Palmowski, Z. (2005). A martingale review of some fluctuation theory for
spectrally negative Lévy processes. Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857,
16–29. Springer, Berlin.

[11] Kyprianou, A.E. and Surya, B.A. (2005). On the Novikov-Shiryaev optimal stopping problems in
continuous time. Elect. Comm. in Probab. 10, 146–154.

[12] Mordecki, E. (2002). Optimal stopping and perpetual options for Lévy processes. Finance and
Stochastics 6, 473–493.

[13] Novikov, A.A. and Shiryaev, A.N. (2005). On an effective solution to the optimal stopping problem
for random walks. Theory. Probab. Appl. 48, 288–303.

[14] Novikov, A.A. and Shiryaev, A.N. (2007). On a solution of the optimal stopping problem for
processes with independent increments. Stochastics. 79, 393–406.

[15] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.

[16] Surya, B.A. (2007). An approach for solving perpetual optimal stopping problems driven by Lévy
processes. Stochastics. 79, 337–361.

25


