
ASYMPTOTIC ANALYSIS OF PERES’ ALGORITHM FOR RANDOM
NUMBER GENERATION

ZHAO GING LIM1, CHEN-TUO LIAO2, AND YI-CHING YAO3

Abstract. von Neumann (1951) introduced a simple algorithm for generating indepen-
dent unbiased random bits by tossing a (possibly) biased coin with unknown bias. While
his algorithm fails to attain the entropy bound, Peres (1992) showed that the entropy
bound can be attained asymptotically by iterating von Neumann’s algorithm. Let b(n, p)

denote the expected number of unbiased bits generated when Peres’ algorithm is applied
to an input sequence consisting of the outcomes of n tosses of the coin with bias p. With
p = 1/2, the coin is unbiased and the input sequence consists of n unbiased bits, so that
n−b(n, 1/2) may be referred to as the cost incurred by Peres’ algorithm when not knowing
p = 1/2. We show that limn→∞ log[n − b(n, 1/2)]/ logn = θ = log[(1 +

√
5)/2] (where

log is the logarithm to base 2), which together with limited numerical results suggests
that n − b(n, 1/2) may be a regularly varying sequence of index θ. Some open prob-
lems on the asymptotic behavior of nh(p) − b(n, p) are briefly discussed where h(p) =

−p log p− (1−p) log(1−p) denotes the Shannon entropy of a random binary bit with bias
p.

1. Introduction and Results

In his seminal work [11], von Neumann introduced a simple algorithm AvN (also known
as an extractor) for generating independent unbiased random bits by tossing a (possibly)
biased coin with unknown bias. Specifically, for i = 1, 2, . . . , let Xi ∈ {0, 1} denote the
outcome of the ith toss of the coin, where 1 and 0 stand for heads and tails, respectively.
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Assume that the input sequence (X1, X2, . . . ) is independent and identically distributed
(iid) with P(Xi = 1) = p = 1 − P(Xi = 0) where the bias p ∈ (0, 1) is unknown. The
algorithm AvN divides the Xi’s into pairs (X1, X2), (X3, X4), . . . , and discards those pairs
of equal values. For each pair of unequal values, AvN generates a bit equal to the first value
of the pair, which is unbiased in the sense that its value is 1 or 0 with equal probability.

Let A denote a generic algorithm that generates independent unbiased bits from the
sequence (X1, X2, . . . ). Let A(n) denote the set of unbiased bits generated by A applied
to (X1, . . . , Xn), the outcomes of the first n tosses. Denote by |A(n)| the cardinality of
A(n), which is an integer-valued random variable whose distribution depends on n and
p. We say that A is nested if A(n1) ⊂ A(n2) whenever n1 < n2, i.e. the set of unbi-
ased bits generated from (X1, . . . , Xn1) is contained in the set of unbiased bits generated
from (X1, . . . , Xn1 , Xn1+1, . . . , Xn2). We write X ∼ binomial(n, p) if a random variable X
has the binomial distribution with parameters n and p. Then given |AvN(n)| = k, the k
bits generated by AvN applied to (X1, . . . , Xn) are (conditionally) independent unbiased.
Moreover, |AvN(n)| ∼ binomial(⌊n2 ⌋, 2pq), where q = 1 − p and ⌊x⌋ denotes the largest
integer not exceeding x. When AvN is applied to (X1, . . . , Xn), the expected number of
unbiased bits generated per toss equals Ep |AvN(n)|/n = 2pq⌊n2 ⌋/n, which converges to pq
as n → ∞, where the subscript p in Ep refers to the bias of each Xi. Note that pq is less
than the entropy bound h(p) := −p log p− q log q (the Shannon entropy of each Xi), where
log = log2 (the logarithm to base 2). This indicates that AvN does not make efficient use
of information contained in X1, X2, . . . . It is also worth noting that AvN is nested.

To improve the efficiency, Elias [3] presented a more sophisticated algorithm AE which
generates unbiased bits from (X1, . . . , Xn) by partitioning Sn = {(x1, . . . , xn) : xi ∈
{0, 1}} (the set of all possible realizations of (X1, . . . , Xn)) into disjoint subsets Sn,k =

{(x1, . . . , xn) ∈ Sn :
∑n

i=1 xi = k}, k = 0, 1, . . . , n. Write |Sn,k| =
(
n
k

)
=

∑⌊log (n
k
)⌋

ℓ=0 cℓ2
ℓ

with cℓ ∈ {0, 1} (binary representation of
(
n
k

)
). Then each Sn,k is further partitioned as

Sn,k =
∪

{ℓ:cℓ=1} Sn,k,ℓ, where |Sn,k,ℓ| = 2ℓ for each ℓ with cℓ = 1. Specify an assignment
of 2ℓ distinct (output) sequences of {0, 1}ℓ to the 2ℓ distinct sequences of Sn,k,ℓ, so that if
(X1, . . . , Xn) ∈ Sn,k,ℓ, then an output sequence of ℓ bits is generated according to the assign-
ment. While a naive implementation of Elias’ algorithm requires an exponential memory
size to make a table of assignment of output sequences, Ryabko and Matchikina [10] made
use of the enumerative encoding technique (cf. Cover [2]) to construct an assignment with
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much reduced memory size and running time. Note that AE is not nested. In fact, when AE

is applied to (X1, . . . , Xn), all of X1, . . . , Xn need to be observed before unbiased bits are
generated. To show that AE attains the entropy bound asymptotically, Elias [3, equation
(15)] proved that

n∑
k=0

(
n

k

)
pkqn−k log

(
n

k

)
− 3 ≤ Ep |AE(n)| ≤

n∑
k=0

(
n

k

)
pkqn−k log

(
n

k

)
. (1.1)

LettingH(Z) denote the Shannon entropy of a random variable Z and noting that
∑n

i=1Xi ∼
binomial(n, p), we have

nh(p)−H

( n∑
i=1

Xi

)
= −np log p− nq log q +

n∑
k=0

(
n

k

)
pkqn−k log

[(
n

k

)
pkqn−k

]

=

n∑
k=0

(
n

k

)
pkqn−k log

(
n

k

)
,

from which it follows that (1.1) is equivalent to

H

( n∑
i=1

Xi

)
≤ nh(p)− Ep |AE(n)| ≤ H

( n∑
i=1

Xi

)
+ 3. (1.2)

Since H(
∑n

i=1Xi) =
1
2 log n+ 1

2 log e+ log
√
2πpq +O( 1n) (cf. [4]), we have

nh(p)− Ep |AE(n)| =
1

2
log n+O(1). (1.3)

Consequently, limn→∞ Ep |AE(n)|/n = h(p). Later Pae and Loui [7] established the exact
optimality of AE that for any algorithm A, Ep |AE(n)| ≥ Ep |A(n)| for all p ∈ (0, 1) and
n ≥ 1.

While AvN fails to attain the entropy bound asymptotically, Peres [8] pointed out that
the entropy bound can be attained asymptotically by iterating AvN. To describe Peres’
ingenious idea, we consider an infinite iid Bernoulli sequence X = (X1, X2, . . . ) with bias
p, which is decomposed into three infinite Bernoulli sequences ψi(X), i = 1, 2, 3, as follows.
First divide X1, X2, . . . into pairs (X1, X2), (X3, X4), . . . . The ith bit of ψ1(X) is 1 or 0

according as the ith pair (X2i−1, X2i) is of equal values or of unequal values. Then separate
those pairs of equal values from the other pairs of unequal values. The ith bit of ψ2(X) is
the common value of the ith pair of equal values. The ith bit of ψ3(X) is the first value
of the ith pair of unequal values. As an example, let X = (0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, . . . ).
Then ψ1(X) = (0, 0, 1, 1, 0, 1, . . . ), ψ2(X) = (1, 0, 0, . . . ) and ψ3(X) = (0, 1, 1, . . . ). It
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is readily seen that (i) ψ1(X), ψ2(X) and ψ3(X) are mutually independent, (ii) ψ1(X),
ψ2(X) and ψ3(X) are each an iid Bernoulli sequence with respective biases f1(p) := p2+q2,
f2(p) := p2/(p2 + q2) and 1/2, (iii) X can be recovered from ψ1(X), ψ2(X) and ψ3(X),
implying that they together contain all information in X. The first iteration of Peres’
algorithm AP yields ψi(X), i = 1, 2, 3, where ψ3(X) is precisely the output sequence
generated by AvN applied to X. On the second iteration of AP, ψi(X), i = 1, 2 are each
decomposed into three iid Bernoulli sequences ψ1(ψi(X)), ψ2(ψi(X)) and ψ3(ψi(X)) with
respective biases f1(fi(p)), f2(fi(p)) and 1/2. Thus, after 2 iterations, there are 7(= 23−1)
Bernoulli sequences, 3(= 22 − 1) of which have bias 1/2. More generally, after ν iterations
(ν = 1, 2, . . . ), there are 2ν+1 − 1 Bernoulli sequences, 2ν − 1 of which have bias 1/2. We
refer to the 2ν − 1 Bernoulli sequences having bias 1/2 as unbiased Bernoulli sequences,
and refer to the other 2ν Bernoulli sequences as biased Bernoulli sequences. Note that the
2ν+1−1 Bernoulli sequences are all mutually independent, from which X can be recovered.

We now consider the finite setting where only the first n terms of the infinite input
sequence X are available. Let (X)n = (X1, . . . , Xn), the subsequence of X consisting
of the first n terms. Then (X)n induces the first ni terms of ψi(X), i = 1, 2, 3, where
n1 = n2 + n3 = ⌊n2 ⌋, n2 ∼ binomial(⌊n2 ⌋, p

2 + q2) and n3 ∼ binomial(⌊n2 ⌋, 2pq). In short-
hand notation, (X)n induces (ψi(X))ni , i = 1, 2, 3. While the infinite sequences ψi(X),
i = 1, 2, 3 are mutually independent, the subsequences (ψi(X))ni , i = 1, 2, 3 are no longer
independent. Indeed, the numbers of 1’s and 0’s in (ψ1(X))n1 are equal to n2 and n3,
respectively. It is readily seen that, given the value of n3, the bits in (ψ3(X))n3 are (con-
ditionally) independent unbiased. In fact, given the values of the bits in (ψ1(X))n1 and
(ψ2(X))n2 , the bits in (ψ3(X))n3 remain (conditionally) independent unbiased. Further-
more, for even n, (X)n can be recovered from (ψi(X))ni , i = 1, 2, 3, but for odd n, the
last term of (X)n cannot be recovered, resulting in a loss of information. After ν iterations
(ν = 1, 2, . . . ), (X)n induces a (possibly empty) subsequence of each of the 2ν+1−1 infinite
Bernoulli sequences as decomposed from X. Let AP,ν(n) denote the set of all unbiased bits
contained in the subsequences of those 2ν − 1 infinite unbiased Bernoulli sequences. Since
after ⌊log n⌋ iterations, the longest biased subsequence has length 1, no more unbiased bits
can be produced by further iteration. We have AP,ν(n) = AP,⌊logn⌋(n) for ν ≥ ⌊log n⌋. Let
AP(n) = AP,⌊logn⌋(n), the set of all unbiased bits generated by AP applied to (X)n. Con-
sider again the example where X = (0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, . . . ). For n = 12, we have
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AP,1(12) = {0, 1, 1}, AP,2(12) = {0, 1, 1, 0, 1}, and AP(12) = AP,3(12) = {0, 1, 1, 0, 1, 0}.
It is shown in Peres [8] that (i) for each ν, given |AP,ν(n)| = k, the k bits in AP,ν(n) are
independent unbiased, (ii) the rates rν(p) := limn→∞ Ep |AP,ν(n)|/n satisfy r1(p) = pq and
the recursion

rν(p) = pq +
1

2
rν−1(p

2 + q2) +
1

2
(p2 + q2)rν−1

( p2

p2 + q2

)
for ν ≥ 2, (1.4)

and (iii) rν(p) increases as ν → ∞ to h(p) uniformly in p ∈ (0, 1). As a consequence,
Ep |AP(n)|/n→ h(p) as n→ ∞, showing that AP(n) attains the entropy bound asymptot-
ically. Moreover, AP(n) is nested.

While AE and AP both attain the entropy bound asymptotically, (1.2) and (1.3) provide a
precise (second-order) behavior of nh(p)−Ep |AE(n)|. In contrast, there is not much known
about the behavior of nh(p)−Ep |AP(n)| for large n. In this regard, Pae [6] gave a formula
to compute Ep |AP(n)|, which is not convenient for deriving the asymptotic behavior of
nh(p)− Ep |AP(n)|. Recently, Prasitsupparote et al. [9] showed, based on some heuristics,
that for p = 1/2,

nh(p)− Ep |AP(n)| = n− E1/2 |AP(n)| ≥ nlog 3−1. (1.5)

To derive (1.5), they assumed, without rigorous justification, that
1

n
Ep |AP,ν(n)| ≤ rν(p) for p ∈ (0, 1), n ≥ 1, ν ≥ 1. (1.6)

In this paper, we establish the following results.

Proposition 1. Let a(n, p, ν) = Ep |AP,ν(n)|. Then for p ∈ (0, 1) and ν = 1, 2, . . . , the
sequence (a(1, p, ν), a(2, p, ν), . . . ) is superadditive, i.e. a(n, p, ν)+a(m, p, ν) ≤ a(n+m, p, ν)

for n,m ≥ 1. Consequently, limn→∞ a(n, p, ν)/n exists and is equal to supn≥1 a(n, p, ν)/n.
That is,

rν(p) := lim
n→∞

Ep |AP,ν(n)|/n = sup
n≥1

Ep |AP,ν(n)|/n,

which implies (1.6).

Proposition 2. For p = 1/2, let b(n) = E1/2 |AP(n)|. Then

(i) the b(n) satisfy b(0) = b(1) = 0 and the recursion

b(n) =
⌊n
2

⌋
/2 + b

(⌊n
2

⌋)
+ E b(B⌊n/2⌋,1/2) for n = 2, 3, . . . , (1.7)

where Bn,p denotes a binomial(n, p) random variable;
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(ii)

lim
n→∞

log(n− b(n))

log n
= log

(1 +√
5

2

)
.

The next section contains the proofs of Propositions 1 and 2. In addition, for complete-
ness, a rigorous proof of (1.5) is also given, which is needed for the proof of Proposition
2(ii). Section 3 presents numerical results, and Section 4 concludes the paper with some
open problems.

We close this section by remarking that while AE generates more unbiased bits than AP,
AP is much simpler to implement. Prasitsupparote et al. [9] made an extensive numerical
study of AE and AP regarding their memory and running time requirements and concluded
that AP is superior to AE in practical applications.

2. Proofs of Propositions 1 and 2 and (1.5)

Proof of Proposition 1. Recall that when AP is applied to (X1, . . . , Xn), 3 subsequences
(ψi(X))ni , i = 1, 2, 3, are induced where n1 = n2+n3 = ⌊n/2⌋ and n3 ∼ binomial(⌊n/2⌋, 2pq).
It follows that AP,ν(n), the set of unbiased bits generated after ν iterations, is the union
of 3 disjoint subsets Si, i = 1, 2, 3, where S3 = (ψ3(X))n3 , and Si, i = 1, 2, is the set of
unbiased bits generated when AP is applied to (ψi(X))ni with ν − 1 iterations. We have

a(n, p, ν) = Ep |AP,ν(n)| = Ep |S1|+ Ep |S2|+ 2pq⌊n/2⌋. (2.1)

Noting that (ψ1(X))n1 is a sequence of n1 = ⌊n/2⌋ iid Bernoulli random variables with
bias f1(p), we have

Ep |S1| = Ef1(p) |AP,ν−1(⌊n/2⌋)| = a(⌊n/2⌋, f1(p), ν − 1). (2.2)

Similarly, conditioning on n2, (ψ2(X))n2 is a sequence of n2 iid Bernoulli random variables
with bias f2(p), so that the conditional expectation of |S2| given n2 equals Ef2(p) |AP,ν−1(n2)| =
a(n2, f2(p), ν − 1). Since n2 ∼ binomial(⌊n/2⌋, 1− 2pq), we have

Ep |S2| = E a(B⌊n/2⌋,1−2pq, f2(p), ν − 1), (2.3)

where the expectation operator E on the right-hand side is onB⌊n/2⌋,1−2pq (a binomial(⌊n/2⌋, 1−
2pq) random variable). By (2.1), (2.2) and (2.3),

a(n, p, ν) = a(⌊n/2⌋, f1(p), ν − 1) + E a(B⌊n/2⌋,1−2pq, f2(p), ν − 1) + 2pq⌊n/2⌋. (2.4)
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We now prove by induction on ν that

a(n, p, ν) + a(m, p, ν) ≤ a(n+m, p, ν). (2.5)

For ν = 1, a(n, p, 1) = 2pq⌊n/2⌋. Since ⌊n/2⌋ + ⌊m/2⌋ ≤ ⌊(n + m)/2⌋ for n,m ≥ 1, we
have a(n, p, 1) + a(m, p, 1) ≤ a(n +m, p, 1), implying that (2.5) holds for ν = 1. Suppose
that for an integer k > 0, (2.5) holds for all n,m ≥ 1, all p ∈ (0, 1), and ν = k. We need to
show that (2.5) holds for n,m ≥ 1, p ∈ (0, 1) and ν = k + 1. By the induction hypothesis,

a(⌊n/2⌋, f1(p), k) + a(⌊m/2⌋, f1(p), k) ≤ a(⌊n/2⌋+ ⌊m/2⌋, f1(p), k)

≤ a(⌊(n+m)/2⌋, f1(p), k), (2.6)

where the second inequality follows from the fact that a(n, p, ν) is non-decreasing in n. Let
U and V be independent random variables with U ∼ binomial(⌊n/2⌋, 1 − 2pq) and V ∼
binomial(⌊m/2⌋, 1−2pq). Then U +V ∼ binomial(⌊n/2⌋+ ⌊m/2⌋, 1−2pq). If n and m are
both odd, let W be independent of U and V with W ∼ binomial(1, 1−2pq). If at least one of
n and m is even, let W be identically 0. Then U+V +W ∼ binomial(⌊(n+m)/2⌋, 1−2pq).
We have by the induction hypothesis that

E a(B⌊n/2⌋,1−2pq, f2(p), k) + E a(B⌊m/2⌋,1−2pq, f2(p), k)

= E
{
a(U, f2(p), k) + a(V, f2(p), k)

}
≤ E a(U + V, f2(p), k)

≤ E a(U + V +W,f2(p), k)

= E a(B⌊(n+m)/2⌋, f2(p), k). (2.7)

Moreover,
2pq⌊n/2⌋+ 2pq⌊m/2⌋ ≤ 2pq⌊(n+m)/2⌋. (2.8)

By (2.4) and (2.6)–(2.8),

a(n, p, k + 1) + a(m, p, k + 1) ≤ a(n+m, p, k + 1),

showing that (2.5) holds for n,m ≥ 1, p ∈ (0, 1) and ν = k + 1. The proof is complete. □

Proof of (1.5). The following argument is taken from the proof of Theorem 1 in Prasitsup-
parote [9]. With p = 1/2, we have r1(1/2) = pq = 1

4 and, by (1.4)

rν(1/2) =
1

4
+

3

4
rν−1(1/2) for ν ≥ 2,
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from which it follows that rν(1/2) = 1− (34)
ν , ν ≥ 1. By Proposition 1,

1−
(3
4

)ν
= rν(1/2) ≥ E1/2 |AP,ν(n)|/n,

so that with ν = ⌊log n⌋ and b(n) = E1/2 |AP(n)|, we have

1−
(3
4

)⌊logn⌋
≥ E1/2 |AP,⌊logn⌋(n)|/n = E1/2 |AP(n)|/n = b(n)/n,

implying that

n− b(n) ≥ n
(3
4

)⌊logn⌋
≥ n

(3
4

)logn
= nlog 3−1,

proving (1.5). □

Proof of Proposition 2(i). For p = 1/2, f1(1/2) = f2(1/2) = 1/2, and B⌊n/2⌋,1−2pq =

B⌊n/2⌋,1/2. Letting a(n, p, ν) = Ep |AP,ν(n)|, we have by (2.4) that

a(n, 1/2, ν) = a(⌊n/2⌋, 1/2, ν − 1) + E a(B⌊n/2⌋,1/2, 1/2, ν − 1) + ⌊n/2⌋/2. (2.9)

Recall that AP(n) = AP,ν(n) for ν ≥ ⌊log n⌋. By (2.9),

b(n) = E1/2 |AP(n)| = E1/2 |AP,⌊logn⌋(n)|

= a(n, 1/2, ⌊log n⌋)

= a(⌊n/2⌋, 1/2, ⌊log n⌋ − 1) + E a(B⌊n/2⌋,1/2, 1/2, ⌊log n⌋ − 1) + ⌊n/2⌋/2

= b(⌊n/2⌋) + E b(B⌊n/2⌋,1/2) + ⌊n/2⌋/2,

proving (1.7). □

To prove Proposition 2(ii), we need the following lemmas. Proposition 2(ii) follows
immediately from Lemmas 4 and 5 below. For the rest of this section, to simplify notation,
we write Bn = Bn,1/2 for a binomial(n, 1/2) random variable. Let g(n) = n− b(n) ≥ 0, for
n = 0, 1, . . . . We have g(0) = 0, g(1) = 1, and by Proposition 2(i), for even n ≥ 0,

g(n) = n− b(n) = n−
[
n

4
+ b

(n
2

)
+ E b(Bn

2
)

]
=

[
n

2
− b

(n
2

)]
+ E

[
Bn

2
− b(Bn

2
)
]

= g
(n
2

)
+ E g(Bn

2
),
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and for odd n ≥ 1,

g(n) = n− b(n) = n−
[
n− 1

4
+ b

(n− 1

2

)
+ E b(B(n−1)/2)

]
= 1 +

[
n− 1

2
− b

(n− 1

2

)]
+ E

[
B(n−1)/2 − b(B(n−1)/2)

]
= 1 + g

(n− 1

2

)
+ E g(B(n−1)/2).

So, for n ≥ 0,

g(n) = g
(⌊n

2

⌋)
+ E g(B⌊n

2
⌋) + 1{n is odd}, (2.10)

where 1 denotes the indicator function.

Lemma 1. For δ ∈ (0, 1), we have

lim
n→∞

1

n
logP

(
Bn >

n

2
(1 + δ)

)
= −1

2

[
(1− δ) log(1− δ) + (1 + δ) log(1 + δ)

]
< 0.

Lemma 2. If f(0) ≤ f(1) ≤ · · · ≤ f(n+ 1), then E f(Bn+1) ≥ E f(Bn).

Lemma 1 is a standard result in large deviation theory; see e.g. [5, pages 539–540].
Lemma 2 follows from the fact that Bn is stochastically smaller than Bn+1. By (2.10),

g(0) = 0, g(1) = 1, g(2) =
3

2
, g(3) =

5

2
, g(4) =

19

8
< g(3), (2.11)

so that g(n) is not non-decreasing. Lemma 3 below constructs two non-decreasing sequences
G and H that are closely related to g and satisfy 0 ≤ H(n) ≤ g(n) ≤ G(n) ≤ n.

Lemma 3. Let G(n) and H(n), n = 0, 1, . . . be defined by

G(n) = g(n) for n = 0, 1, 2, 3,

H(n) = g(n) for n = 0, 1,

and recursively

G(n) = G
(⌊n

2

⌋)
+ EG(B⌊n

2
⌋) + 1 for n ≥ 4, (2.12)

H(n) = H
(⌊n

2

⌋)
+ EH(B⌊n

2
⌋) for n ≥ 2. (2.13)

Then (i) G is non-decreasing and g(n) ≤ G(n) ≤ n for all n, and (ii) H is non-decreasing
and g(n) ≥ H(n) ≥ 0 for all n.
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Proof. In view of (2.10) and (2.12), it is easily shown by induction that g(n) ≤ G(n) for
all n. By (2.11), G(n) = g(n) ≤ n and G(n) is non-decreasing for n ≤ 3. For n ≥ 4, if
G(ℓ) ≤ ℓ for all ℓ < n, then

G(n) = G
(⌊n

2

⌋)
+ EG(B⌊n

2
⌋) + 1

≤
⌊n
2

⌋
+ EB⌊n

2
⌋ + 1

≤ 3

4
n+ 1 ≤ n.

It follows by induction that G(n) ≤ n for all n. That G(n) is non-decreasing in n also
follows by induction and Lemma 2. This proves part (i). In view of (2.10) and (2.13), part
(ii) can be proved similarly. □

Lemma 4. For each δ ∈ (0, 1), there exists an N ≥ 4 and a non-decreasing sequence
(G′(0), G′(1), . . . ) such that G′(n) ≥ g(n) for all n and

G′(n) = G′
(⌊n

c

⌋)
+

4

c2
G′

(⌊ n
c2

⌋)
, for all n ≥ N ,

where c = c(δ) = 2/
√
1 + δ. Moreover,

lim sup
n→∞

log g(n)

log n
≤ lim sup

n→∞

logG′(n)

log n
≤ 1

log c
log

(
1

2
+

√
4

c2
+

1

4

)
.

Consequently, letting δ → 0 so that c = c(δ) → 2, we have

lim sup
n→∞

log g(n)

log n
≤ log

(
1 +

√
5

2

)
.

Proof. Let δ ∈ (0, 1) be fixed. Let G be defined as in Lemma 3, so that G is non-decreasing
and 0 ≤ g(n) ≤ G(n) ≤ n for all n. We have

EG(B⌊n
2
⌋) + 1 ≤ 1 +G

(⌊⌊n
2

⌋(1 + δ

2

)⌋)
P
(
B⌊n

2
⌋ ≤

⌊⌊n
2

⌋(1 + δ

2

)⌋)
+G

(⌊n
2

⌋)
P
(
B⌊n

2
⌋ >

⌊⌊n
2

⌋(1 + δ

2

)⌋)
≤ 1 +G

(⌊⌊n
2

⌋(1 + δ

2

)⌋)
+
⌊n
2

⌋
P
(
B⌊n

2
⌋ >

⌊⌊n
2

⌋(1 + δ

2

)⌋)
. (2.14)

By (1.5), G(⌊ ⌊n/2⌋2 (1 + δ)⌋) ≥ g(⌊ ⌊n/2⌋2 (1 + δ)⌋) → ∞ as n→ ∞, and by Lemma 1,

lim
n→∞

⌊n
2

⌋
P
(
B⌊n

2
⌋ >

⌊⌊n
2

⌋(1 + δ

2

)⌋)
= 0,

10



so that by (2.14), there is a (large) N ≥ 4 such that

EG(B⌊n
2
⌋) + 1 ≤ (1 + δ)G

(⌊⌊n
2

⌋(1 + δ

2

)⌋)
for all n ≥ N . (2.15)

Letting c = 2/
√
1 + δ, we have by (2.12) and (2.15) that for all n ≥ N(≥ 4),

G(n) = G
(⌊n

2

⌋)
+ EG(B⌊n

2
⌋) + 1

≤ G
(⌊n

c

⌋)
+

4

c2
G
(⌊ n
c2

⌋)
. (2.16)

Define G′(n), n = 0, 1, . . . by G′(n) = G(n) for n < N and recursively

G′(n) = G′
(⌊n

c

⌋)
+

4

c2
G′

(⌊ n
c2

⌋)
for n ≥ N . (2.17)

(Note that for c >
√
2 and n ≥ N ≥ 4, ⌊n/c2⌋ ≤ ⌊n/c⌋ ≤ n − 1, so G′ is well defined.)

Since G(n) is non-decreasing and G(n) = G′(n) for all n < N , we have by (2.16), (2.17)
and induction that G′(n) ≥ G(n)(≥ g(n)) for all n. To show that G′(n) is non-decreasing,
note that G′(N) ≥ G(N) ≥ G(N − 1) = G′(N − 1). Since G′(0) ≤ G′(1) ≤ · · · ≤ G′(N), it
follows by (2.17) and induction that G′(n) ≤ G′(n+ 1) for all n ≥ N .

It remains to prove that

lim sup
n→∞

logG′(n)

log n
≤ 1

log c
log

(
1

2
+

√
4

c2
+

1

4

)
. (2.18)

Let ℓk = ⌊ckN⌋, k = 0, 1, . . . . Let x0 = G′(ℓ0), x1 = G′(ℓ1), and

xk = xk−1 +
4

c2
xk−2, k = 2, 3, . . . . (2.19)

By (2.17) and monotonicity of G′, we have for k ≥ 2

G′(ℓk) = G′(⌊ckN⌋) = G′
(⌊⌊ckN⌋

c

⌋)
+

4

c2
G′

(⌊⌊ckN⌋
c2

⌋)
≤ G′(⌊ck−1N⌋

)
+

4

c2
G′(⌊ck−2N⌋

)
= G′(ℓk−1) +

4

c2
G′(ℓk−2). (2.20)

Since xk = G′(ℓk) for k = 0, 1, it follows by (2.19), (2.20) and induction that

G′(ℓk) ≤ xk for all k ≥ 0. (2.21)

Since xk satisfies the difference equation (2.19), we have

xk = α1λ
k
1 + α2λ

k
2, k = 0, 1, . . .

11



where

λ1 =
1

2
(1 + γ), λ2 =

1

2
(1− γ)

α1 =
1

γ

(1
2
(γ − 1)x0 + x1

)
, α2 =

1

γ

(1
2
(γ + 1)x0 − x1

)
and γ =

√
1 + 16

c2
. Noting that −1 < λ2 < 0 < 1 < λ1 (since

√
2 < c < 2) and α1 > 0, it

follows that

lim
k→∞

log xk
k

= log λ1 = log

(
1

2
+

√
4

c2
+

1

4

)
. (2.22)

By (2.21) and (2.22),

lim sup
k→∞

logG′(ℓk)

log ℓk
≤ lim sup

k→∞

log xk
log⌊ckN⌋

=
log λ1
log c

.

Since G′ is non-decreasing, for each n ≥ 1, let k = k(n) be such that ℓk ≤ n < ℓk+1, so that

logG′(n)

log n
≤ logG′(ℓk+1)

log ℓk
,

implying that

lim sup
n→∞

logG′(n)

log n
≤ lim sup

k→∞

logG′(ℓk+1)

log ℓk

= lim sup
k→∞

logG′(ℓk+1)

log ℓk+1

log ℓk+1

log ℓk

≤ log λ1
log c

=
1

log c
log

(
1

2
+

√
4

c2
+

1

4

)
,

proving (2.18). The proof is complete. □

Lemma 5. For each δ ∈ (0, 1), there exists an N ≥ 4 and a non-decreasing sequence
(H ′(0),H ′(1), . . . ) such that 0 ≤ H ′(n) ≤ g(n) for all n and

H ′(n) = H ′
(⌈n
d

⌉)
+

4

d2
H ′

(⌈ n
d2

⌉)
, for all n ≥ N ,

where d = d(δ) = 2 + δ and ⌈x⌉ denotes the smallest integer not less than x. Moreover,

lim inf
n→∞

log g(n)

log n
≥ lim inf

n→∞

logH ′(n)

log n
≥ 1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
.

Consequently, letting δ → 0 so that d = d(δ) → 2, we have

lim inf
n→∞

log g(n)

log n
≥ log

(
1 +

√
5

2

)
.
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Proof. The following proof is similar to that of Lemma 4. Let δ ∈ (0, 1) be fixed. Let H be
defined as in Lemma 3, so that H is non-decreasing and 0 ≤ H(n) ≤ g(n) for all n. Also
H(0) = g(0) = 0, H(1) = g(1) = 1.

For d = 2+ δ > 2, by the law of large numbers, P(B⌊n
2
⌋ < ⌈ n

d2
⌉) → 0 as n→ ∞. So there

exists an N ≥ 4 such that for all n ≥ N ,

H
(⌊n

2

⌋)
≥ H

(⌈n
d

⌉)
and P

(
B⌊n

2
⌋ ≥

⌈ n
d2

⌉)
≥ 4

d2
.

By (2.13), for n ≥ N ≥ 4,

H(n) = H
(⌊n

2

⌋)
+ EH(B⌊n

2
⌋)

≥ H
(⌈n
d

⌉)
+ P

(
B⌊n

2
⌋ ≥

⌈ n
d2

⌉)
H
(⌈ n
d2

⌉)
≥ H

(⌈n
d

⌉)
+

4

d2
H
(⌈ n
d2

⌉)
. (2.23)

Define H ′(n), n = 0, 1, . . . by H ′(0) = 0, H ′(1) = · · · = H ′(N − 1) = 1 and recursively

H ′(n) = H ′
(⌈n
d

⌉)
+

4

d2
H ′

(⌈ n
d2

⌉)
for n ≥ N . (2.24)

(Note that ⌈ n
d2
⌉ ≤ ⌈nd ⌉ ≤ n − 1 for n ≥ N ≥ 4, so that the recursion is well defined.)

Since by (2.24), H ′(N) = H ′(⌈Nd ⌉) +
4
d2
H ′(⌈N

d2
⌉) = 1 + 4

d2
> 1, we have H ′(0) < H ′(1) =

· · · = H ′(N − 1) < H ′(N). It follows by (2.24) and induction that H ′ is a non-decreasing
sequence. Since H(n) ≥ H ′(n) for all n < N , we have by (2.23), (2.24) and induction that
H ′(n) ≤ H(n) for all n.

It remains to prove that

lim inf
n→∞

logH ′(n)

log n
≥ 1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
(2.25)

Let ℓk = ⌈dkN⌉, k = 0, 1, . . . . Let x0 = H ′(ℓ0), x1 = H ′(ℓ1), and

xk = xk−1 +
4

d2
xk−2, k = 2, 3, . . . . (2.26)

By (2.24) and monotonicity of H ′, we have for k ≥ 2

H ′(ℓk) = H ′(⌈dkN⌉) = H ′
(⌈⌈dkN⌉

d

⌉)
+

4

d2
H ′

(⌈⌈dkN⌉
d2

⌉)
≥ H ′(⌈dk−1N⌉

)
+

4

d2
H ′(⌈dk−2N⌉

)
= H ′(ℓk−1) +

4

d2
H ′(ℓk−2). (2.27)
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Since xk = H ′(ℓk) for k = 0, 1, it follows by (2.26), (2.27) and induction that

H ′(ℓk) ≥ xk for all k ≥ 0. (2.28)

Note that the difference equation (2.26) is the same as (2.19) with c replaced by d. Solving
(2.26) yields (cf. (2.22))

lim
k→∞

log xk
k

= log

(
1

2
+

√
4

d2
+

1

4

)
.

By (2.28),

lim inf
k→∞

logH ′(ℓk)

log ℓk
≥ lim inf

k→∞

log xk
log⌈dkN⌉

=
1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
.

Since H ′ is non-decreasing, for each n ≥ 1, let k = k(n) be such that ℓk ≤ n < ℓk+1, so that
logH ′(n)

log n
≥ logH ′(ℓk)

log ℓk+1
,

implying that

lim inf
n→∞

logH ′(n)

log n
≥ lim inf

k→∞

logH ′(ℓk)

log ℓk+1

= lim inf
k→∞

logH ′(ℓk)

log ℓk

log ℓk
log ℓk+1

≥ 1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
,

proving (2.25). The proof is complete. □

3. Numerical results

Recall that g(n) = n − b(n) = n − E1/2 |AP(n)|. By (2.10), we computed g(n) for all
n ≤ 16384. Figure 1 plots log g(n)/ log n versus n for n ≤ 16384 where θ = log[(1+

√
5)/2] ≈

0.694. It shows that log g(n)/ log n is slightly greater than θ and appears to converge to θ
slowly. Figure 2 plots g(n)/nθ versus n for n ≤ 16384. By Proposition 2(ii),

lim
n→∞

log
[
g(n)/nθ

]
/ log n = 0.

While it is unclear whether g(n)/nθ converges to some constant eventually, it appears that
g(n)/nθ fluctuates less when n becomes larger. Figure 3 plots g(2n)/g(n) versus n for
n ≤ 8192. It appears that g(2n)/g(n) is close to 2θ for large n. Figure 4 plots g(3n)/g(n)
versus n for n ≤ 5461, where g(3n)/g(n) oscillates around 3θ. Our limited numerical results
provide weak evidence that g(3n)/g(n) converges to 3θ eventually.
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4. Concluding Remarks

Recall that Ep |AP(n)| denotes the expected number of unbiased bits generated when
Peres’ algorithm is applied to the input sequence (X1, . . . , Xn) where X1, . . . , Xn are iid
with P(Xi = 1) = p = 1 − P(Xi = 0). When p = 1/2, X1, . . . , Xn are unbiased, so that
g(n) = n− E1/2 |AP(n)| may be referred to as the cost incurred by Peres’ algorithm when
not knowing p = 1

2 . We derived

lim
n→∞

log
[
n− E1/2 |AP(n)|

]
/ log n = θ = log

(
1 +

√
5

2

)
(4.1)

by exploiting the recursion in (1.7). It is a challenging task to obtain more refined results. A
positive sequence L(n) is said to be regularly varying of index θ if limn→∞ L(⌊λn⌋)/L(n) =
λθ for all λ > 0. (See Bojanic and Seneta [1] for a unified theory of regularly varying
sequences.) Figures 3 and 4 suggest that g(n) may be regularly varying of index θ. Fur-
thermore, it is of interest to see if g(n)/nθ converges to a constant (which would imply that
g(n) is regularly varying of index θ). If so, how can this constant be characterized?

For p ̸= 1/2, no recursion like (1.7) is available. It seems difficult to obtain an asymptotic
result on nh(p) − Ep |AP(n)| similar to (4.1). Furthermore, Varp(|AP(n)|), the variance of
|AP(n)|, is also of interest and importance. Even for p = 1/2, it seems challenging to derive
the asymptotic behavior of Var1/2(|AP(n)|) as n→ ∞.

0 5000 10000 15000
n0.68

0.69
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0.71

0.72

0.73

0.74

0.75

log g(n)/ log n

θ

Figure 1. Plot of log g(n)/ log n versus n.
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Figure 2. Plot of g(n)/nθ versus n with θ = log[(1 +
√
5)/2].

0 2000 4000 6000 8000
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Figure 3. Plot of g(2n)/g(n) versus n.
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Figure 4. Plot of g(3n)/g(n) versus n.
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