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In the subject of optimal stopping, the classical secretary problem is concerned with opti-
mally selecting the best of n candidates when their relative ranks are observed sequentially.
This problem has been extended to optimally selecting the kth best candidate for k ≥ 2.
While the optimal stopping rule for k = 1, 2 (and all n ≥ 2) is known to be of threshold
type (involving one threshold), we solve the case k = 3 (and all n ≥ 3) by deriving an
explicit optimal stopping rule that involves two thresholds. We also prove several inequal-
ities for p(k, n), the maximum probability of selecting the k-th best of n candidates. It
is shown that (i) p(1, n) = p(n, n) > p(k, n) for 1 < k < n, (ii) p(k, n) ≥ p(k, n + 1), (iii)
p(k, n) ≥ p(k + 1, n + 1) and (iv) p(k,∞) := limn→∞ p(k, n) is decreasing in k.
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1. INTRODUCTION

The classical secretary problem (also known as the best choice problem) has been extensively
studied in the literature on optimal stopping, which is usually described as follows. There
are n (fixed) candidates to be interviewed sequentially in random order for one secretarial
position. It is assumed that these candidates can be ranked linearly without ties by a
manager (rank 1 being the best). Upon interviewing a candidate, the manager is only
able to observe the candidate’s (relative) rank among those that have been interviewed
so far. The manager then must decide whether to accept the present candidate (and stop
interviewing) or to reject the candidate (and continue interviewing). No recall is allowed.
The object is to maximize the probability of selecting the best candidate. More precisely, let
Rj , j = 1, 2, . . . , n, be the absolute rank of the jth candidate such that (R1, . . . , Rn) = σn
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with probability 1/n! for every permutation σn of (1, 2, . . . , n). Define Xj = |{1 ≤ i ≤ j :
Ri ≤ Rj}|, the relative rank of the jth candidate among the first j candidates. It is desired
to find a stopping rule τ1,n ∈ Mn such that P (Rτ1,n

= 1) = supτ∈Mn
P (Rτ = 1) where Mn

denotes the set of all stopping rules adapted to the filtration {Fj}, Fj being the σ-algebra
generated by X1,X2, . . . , Xj . It is well known (cf. Lindley [6]) that the optimal stopping
rule τ1,n is of threshold type given by τ1,n = min{rn ≤ j ≤ n : Xj = 1} where min ∅ := n
and the threshold

rn := min

⎧⎨
⎩j ≥ 1 :

n∑
i=j+1

1
i − 1

≤ 1

⎫⎬
⎭ .

Moreover, the maximum probability of selecting the best candidate (under τ1,n) is

p(1, n) :=
rn − 1

n

n∑
i=rn

1
i − 1

,

which converges as n → ∞ to p(1,∞) := 1/e = limn→∞ rn/n.
A great many interesting variants of the secretary problem have been formulated and

solved in the literature (cf. the review papers by Ferguson [2], Freeman [4] and Samuels [9]),
most of which are concerned with optimally selecting the best candidate or one of the k
best candidates. In contrast, only a few papers (cf. Rose [7], Szajowski [11] and Vanderbei
[12]) considered and solved the problem of optimally selecting the second best candidate.
(According to Vanderbei [12], in 1980, E.B. Dynkin proposed this problem to him with the
motivating story that ‘We are trying to hire a postdoc and we are confident that the best
candidate will receive and accept an offer from Harvard’. Thus Vanderbei [12] refers to the
problem as the postdoc variant of the secretary problem.) These authors showed that the
optimal stopping rule τ2,n is also of threshold type given by τ2,n = min{r′n ≤ j ≤ n : Xj = 2}
with r′n = �(n + 1)/2	 (the smallest integer not less than (n + 1)/2), which attains the
maximum probability of selecting the second best candidate

p(2, n) := P (Rτ2,n
= 2) = sup

τ∈Mn

P (Rτ = 2) =
(r′n − 1)(n − r′n + 1)

n(n − 1)
.

Note that p(2,∞) = limn→∞ p(2, n) = 1/4 < 1/e = p(1,∞).
In this paper, we consider the problem of optimally selecting the k-th best candidate

for general k. Let p(k, n) := supτ∈Mn
P (Rτ = k), the maximum probability of selecting

the k-th best of n candidates. Szajowski [11] derived the asymptotic solutions as n → ∞
for k = 3, 4, 5. Rose [8] dealt with the case k = (n + 1)/2 for odd n, which was called the
median problem and suggested by M. DeGroot with the motivation of selecting a candidate
representative of the entire sequence. (The candidate of rank k = (n + 1)/2 is, in some sense,
representative of all candidates.) In the next section, we solve the case k = 3 for all finite
n ≥ 3 by showing (cf. Theorem 2.1) that the stopping rule τ3,n = min{an ≤ j ≤ n : Xj =
2} ∧ min{bn ≤ j ≤ n : Xj = 3} attains the maximum probability P (Rτ3,n

= 3) = p(3, n) for
n ≥ 3, where x ∧ y := min{x, y} and the two thresholds an < bn are given in (2.8) and
(2.5), respectively. In Section 3, we prove (cf. Theorems 3.1 and 3.2) that (i) p(1, n) =
p(n, n) > p(k, n) for 1 < k < n, (ii) p(k, n) ≥ p(k, n + 1), (iii) p(k, n) ≥ p(k + 1, n + 1) and
(iv) p(k,∞) := limn→∞ p(k, n) is decreasing in k. It is also noted (cf. Remark 3.1) that the
inequality p(k, n) ≥ p(k + 1, n) occasionally fails to hold for k close to (but less than) �n

2 	.
Furthermore, we extend the result p(1, n) = p(n, n) > p(k, n) for 1 < k < n to the setting
where the goal is to select a candidate whose absolute rank belongs to a prescribed subset
Γ of {1, . . . , n} with |Γ| = c (1 ≤ c < n) (cf. Suchwalko and Szajowski [10]). It is shown (cf.
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Theorem 3.3) that the probability of optimally selecting a candidate whose absolute rank
belongs to Γ is maximized when Γ = {1, . . . , c} or Γ = {n − c + 1, . . . , n}. The proofs of
several technical lemmas are relegated to Section 4. It should be remarked that the optimal
stopping rule is not necessarily unique. For example, a slight modification τ ′

2,n of the optimal
stopping rule τ2,n also attains the maximum probability p(2, n) where τ ′

2,n ≥ r′n − 1 is given
by τ ′

2,n = r′n − 1 if Xr′
n−1 = 1 and τ ′

2,n = τ2,n otherwise. The uniqueness issue of the optimal
stopping rule is not addressed in this paper.

2. MAXIMIZING THE PROBABILITY OF SELECTING THE k-TH BEST CANDI-
DATE WITH K = 3

We adopt the setup and notations in Ferguson [3, Chapter 2]. As defined in Section 1,
Xj is the relative rank of the jth candidate among the first j candidates and Rj is
the absolute rank. Given X1 = x1,X2 = x2, . . . , Xj = xj , 1 ≤ j ≤ n, let yj(x1, x2, . . . , xj)
be the expected return for stopping at stage j (i.e., accepting the jth candidate) and
Vj(x1, x2, . . . , xj) the maximum expected return by optimally stopping from stage j
onwards. In other words, yj(x1, x2, . . . , xj) is the conditional probability of Rj = k (given
Xi = xi, 1 ≤ i ≤ j), which defines the reward function for the stopping problem of opti-
mally selecting the k-th best candidate. Given Xi = xi, 1 ≤ i ≤ j, Vj(x1, x2, . . . , xj) is
the (maximum) expected reward by optimally stopping from stage j onwards. Then
Vn(x1, x2, . . . , xn) = yn(x1, x2, . . . , xn), and

Vj(x1, . . . , xj) = max{yj(x1, . . . , xj), E(Vj+1(x1, . . . , xj ,Xj+1)
∣∣∣ X1 = x1, . . . , Xj = xj)},

(2.1)

for j = n − 1, n − 2, . . . , 1. Given Xi = xi, i = 1, . . . , j, it is optimal to stop at stage j if
Vj (x1, x2, . . . , xj) = yj(x1, x2, . . . , xj) and to continue otherwise. The (optimal) value of
the stopping problem is V1(1), that is, V1(1) = supτ∈Mn

P (Rτ = k). This formalizes the
method of backward induction. See also Chow, Robbins and Siegmund [1].

It is well known that X1,X2, . . . , Xn are independent and Xj has a uniform distribution
over {1, 2, . . . , j}. Given Xi = xi, i = 1, . . . , j, the conditional probability of Rj = k depends
only on xj . The conditional probability of Rj = k given Xj = xj equals the probability that
in a random sample of size j, the candidate with relative rank xj has absolute rank k,
which is the same as the probability that a random sample of size j contains the k-th best
candidate whose relative rank in the sample is xj . Thus,

P (Rj = k | X1 = x1, . . . , Xj = xj) = P (Rj = k | Xj = xj) =

(
k−1
xj−1

)(
n−k
j−xj

)
(
n
j

) , (2.2)

where we adopt the usual convention that
(
m
�

)
= 0 for m < �.

From the independence of X1,X2, . . . , Xn, the conditional expectation on the right
hand side of (2.1) reduces to E(Vj+1(x1, x2, . . . , xj ,Xj+1)). Note also that yj(x1, . . . , xj)
depends only on xj (cf. (2.2)) and so does Vj(x1, . . . , xj). Hence, we have

Vn(xn) = yn(xn)

and Vj(xj) = max

{
yj(xj),

1
j + 1

j+1∑
i=1

Vj+1(i)

}
for j = n − 1, n − 2, . . . , 1. (2.3)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000256
Downloaded from https://www.cambridge.org/core. Inst of European and American Studies, on 01 May 2019 at 02:20:53, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000256
https://www.cambridge.org/core


330 Y.-S. Lin, S.-R. Hsiau and Y.-C. Yao

Thus, it is optimal to stop at the first j with

yj(xj) ≥ 1
j + 1

j+1∑
i=1

Vj+1(i).

For the problem of optimally selecting the k-th best candidate with k = 3, we have
yj(xj) = P (Rj = 3 | X1 = x1, . . . , Xj = xj), which equals (cf. (2.2))

yj(xj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j(n − j − 1)(n − j)
n(n − 1)(n − 2)

, if xj = 1;

2j(j − 1)(n − j)
n(n − 1)(n − 2)

, if xj = 2;

j(j − 1)(j − 2)
n(n − 1)(n − 2)

, if xj = 3;

0, otherwise.

(2.4)

Setting
∑m

i=� ci := 0 whenever � > m, define for n ≥ 3,

bn = min

⎧⎨
⎩j = 2, 3, . . . , n :

n∑
i=j+1

1
i − 2

≤ 1
2

⎫⎬
⎭ , (2.5)

un = (bn − 2)(2n − 4)
n∑

i=bn

1
i − 2

, (2.6)

fn(x) = 3x2 − (1 + 4n)x + (n − 2)bn + 2(n + 1) + un, (2.7)

an = min{j = 2, 3, . . . , n : fn(j) ≤ 0}. (2.8)

Remark 2.1: Note that 3 ≤ bn ≤ bn+1 ≤ bn + 1 for n ≥ 3, implying that fn(1) > 0 for all
n ≥ 3. In order for an in (2.8) to be well defined, we need to show that the second-order
polynomial equation fn(x) = 0 has two real roots x0 < y0 with �x0	 ≤ y0 (so that an =
�x0	). For 3 ≤ n ≤ 31, this can be verified by numerical computations. For n ≥ 32, we have
bn < (2n − 1)/3 and un ≤ (n − 2)bn (cf.(4.2) and (4.5)), implying that fn((2n − 1)/3) < 0
and fn((2n + 2)/3) < 0. So, x0 < (2n − 1)/3, implying that �x0	 < ((2n + 2)/3) < y0. With
a little effort, it can be shown that 2 ≤ an ≤ an+1 ≤ an + 1 for n ≥ 3.

The next theorem is our main result.

Theorem 2.1: For n ≥ 3, we have an < bn. Furthermore, the stopping rule

τ3,n = min{an ≤ j ≤ n : Xj = 2} ∧ min{bn ≤ j ≤ n : Xj = 3}

maximizes the probability of selecting the 3rd best candidate.

While it seems intuitively reasonable for the optimal stopping rule τ3,n to involve two
thresholds for general n, the exact expressions for the thresholds an and bn in (2.8) and
(2.5) were found by some guesswork and tedious analysis. Figure 1 illustrates the optimality
of τ3,n for the case n = 13 with a13 = 7 and b13 = 9. With the help of a computer program
in Mathematica, we have verified Theorem 2.1 for 3 ≤ n ≤ 31 by numerically evaluating
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Figure 1. The optimality of τ3,13.

Vj(xj), j = n, n − 1, . . . , 1. To prove Theorem 2.1 for n ≥ 32, we need the following lemmas
whose proofs are relegated to Section 4.

Lemma 2.1: Let y0 be the larger root of the second-order polynomial equation fn(x) = 0.
Then for n ≥ 32, we have (i) an < bn; (ii) bn < y0; (iii) an > (n + 4)/3.

Lemma 2.2: Given X1 = x1,X2 = x2, . . . , Xj = xj, let hj(xj) = hj(x1, x2, . . . , xj) be the
conditional probability of selecting the 3rd best candidate when τ3,n is used for stages
j, j + 1, . . . , n. Then for n ≥ 32,

(i)

hj(xj)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(an − 1)[a2
n − (1 + 2n)an + (n − 2)bn

+ 2(n + 1) + un]
n(n − 1)(n − 2)

, if j < an;

yj(2), if j ≥ an and xj = 2;

j
[
j2 + (1 − 2n)j + (n − 2)bn + 2 + un

]
n(n − 1)(n − 2)

, if an ≤ j ≤ bn − 1 and xj �= 2;

yj(3), if j ≥ bn and xj = 3;

j(j − 1)
n(n − 1)(n − 2)⎡
⎣(2n − 4)

n∑
i=j+1

1
i − 2

− (n − j)

⎤
⎦ , if j ≥ bn and xj �= 2, 3.
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(ii)

1
j + 1

j+1∑
i=1

hj+1(i)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(an − 1)[a2
n − (1 + 2n)an + (n − 2)bn + 2(n + 1) + un]

n(n − 1)(n − 2)
, if j < an;

j[j2 + (1 − 2n)j + (n − 2)bn + 2 + un]
n(n − 1)(n − 2)

, if an ≤ j ≤ bn − 1;

j(j − 1)
n(n − 1)(n − 2)

⎡
⎣(2n − 4)

n∑
i=j+1

1
i − 2

− (n − j)

⎤
⎦ , if bn ≤ j ≤ n − 1.

Lemma 2.3: For n ≥ 32, 1 ≤ j < an and 1 ≤ xj ≤ j, we have

yj(xj) <
1

j + 1

j+1∑
i=1

hj+1(i).

Lemma 2.4: For n ≥ 32 and an ≤ j < bn, we have (i) yj(2) ≥ (1/(j + 1))
∑j+1

i=1 hj+1(i); (ii)
yj(1) < (1/(j + 1))

∑j+1
i=1 hj+1(i); (iii) yj(3) < (1/(j + 1))

∑j+1
i=1 hj+1(i).

Lemma 2.5: For n ≥ 32 and bn ≤ j ≤ n − 1, we have (i) yj(1) < (1/(j + 1))
∑j+1

i=1 hj+1(i);
(ii) yj(2) ≥ (1/(j + 1))

∑j+1
i=1 hj+1(i); (iii) yj(3) ≥ (1/(j + 1))

∑j+1
i=1 hj+1(i).

Proof of Theorem 2.1: As remarked before, the theorem has been verified for 3 ≤ n ≤
31 by numerical computations. For n ≥ 32, we need to show that hj satisfies

hj(xj) = max

{
yj(xj),

1
j + 1

j+1∑
i=1

hj+1(i)

}
for 1 ≤ j < n. (2.9)

Since hj(xj) is the conditional probability of selecting the 3rd best candidate when τ3,n

is used for stages j, . . . , n, we have hj(xj) = (1/(j + 1))
∑j+1

i=1 hj+1(i) if either (j < an)
or (an ≤ j < bn and xj �= 2) or (bn ≤ j < n and xj �= 2, 3), which together with Lemmas
2.3–2.5 establishes (2.9). �

Remark 2.2: Let d1 = limn→∞ an/n and d2 = limn→∞ bn/n. It is shown in Section 4 that

d1 =
2

2
√

e +
√

4e − 6
√

e
≈ 0.466 and d2 =

1√
e
≈ 0.606. (2.10)

It is also shown in Section 4 that as n → ∞, h1(1) = p(3, n), the maximum probability of
selecting the 3rd best candidate, tends to

p(3,∞) = 2d2
1(1 − d1) =

8(2
√

e − 2 +
√

4e − 6
√

e)

(2
√

e +
√

4e − 6
√

e)3
. (2.11)

Note that p(3,∞) ≈ 0.232 < 0.25 = p(2,∞). These limiting results agree with the asymp-
totic solution for k = 3 in Szajowski [11].
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Remark 2.3: Intuitively, one might think that there is a threshold 1 < tn < n beyond which
the optimal policy never selects a candidate with relative rank 2. To see that this is not
true, note that

P (Rn−1 = 3 | Xn−1 = 2) = P (Xn ≤ 2 | Xn−1 = 2) =
2
n

>
1
n

= P (Xn = 3 | Xn−1 = 2),

implying that if none of the first n − 2 candidates has been selected, then at stage n − 1 it
is optimal to select the candidate when Xn−1 = 2. More generally, to select the k-th best of
n candidates (k ≥ 3), if none of the first n − 2 candidates has been selected, then at stage
n − 1 it is optimal to select the candidate when (and only when) Xn−1 = k − 1 or k. It is
worth mentioning the asymptotic solutions for k = 4, 5 derived by Szajowski [11]. For k = 4
and large n, there exist thresholds 1 < a′

n < b′n < n such that the stopping rule

τ4,n = min{a′
n ≤ j ≤ n : Xj = 3} ∧ min{b′n ≤ j ≤ n : Xj = 4}

attains p(4, n). For k = 5 and large n, there exist thresholds 1 < a′′
n < b′′n < c′′n < ã′′

n < n
such that the stopping rule

τ5,n = min{a′′
n ≤ j ≤ ã′′

n : Xj = 3} ∧ min{b′′n ≤ j ≤ n : Xj = 4}
∧ min{c′′n ≤ j ≤ n : Xj = 5}

attains p(5, n). (Note that min ∅ := n.) As n → ∞, the limits of a′
n/n, b′n/n, a′′

n/n, b′′n/n,
c′′n/n, ã′′

n/n, p(4, n) and p(5, n) are given in Szajowski [11].

3. SOME RESULTS ON p(k, n) AND p(k, ∞)

In this section, we present several inequalities for p(k, n) and p(k,∞) := limn→∞ p(k, n).

Theorem 3.1: For n ≥ 3 and 1 < k < n, we have p(1, n) = p(n, n) > p(k, n).

Proof: By symmetry, p(1, n) = p(n, n). (More generally, p(k, n) = p(n − k + 1, n).) For the
problem of selecting the kth best candidate (1 < k < n), a (non-randomized) optimal stop-
ping rule τ is determined by a sequence of subsets {Sj} such that Sj ⊂ {1, 2, . . . , j} (j =
1, . . . , n) and τ = min{j : Xj ∈ Sj}. Since stopping at n is enforced (if τ > n − 1), we may
assume that Sn = {1, 2, . . . , n}. Thus,

P (Rτ = k) = p(k, n). (3.1)

Define, for j = 1, . . . , n − 1,

S′
j =

{
∅, if Sj = ∅;
{1}, if Sj �= ∅;

and S′
n = {1, 2, . . . , n}. Let τ ′ = min{j : Xj ∈ S′

j}, which, as a stopping rule, may be applied
to selecting the best candidate. Thus

P (Rτ ′ = 1) ≤ sup
ν∈Mn

P (Rν = 1) = p(1, n). (3.2)

Note that for j = 1, . . . , n,

P (Rj = 1,Xj = 1) =
1
n

= P (Rj = k)

≥ P (Rj = k,Xj ∈ Sj). (3.3)
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By (2.2), given X1 = x1, . . . , Xj = xj , the conditional distribution of Rj depends only on
xj , implying that X1, . . . , Xj−1 and (Xj , Rj) are independent. So if Sj �= ∅,

P (τ = j, Rj = k) = P (Xi /∈ Si, i = 1, . . . , j − 1, Xj ∈ Sj , Rj = k)

=

[
j−1∏
i=1

P (Xi /∈ Si)

]
P (Xj ∈ Sj , Rj = k)

≤
[

j−1∏
i=1

P (Xi /∈ S′
i)

]
P (Xj = 1, Rj = 1) (3.4)

= P (τ ′ = j, Rj = 1),

where the inequality follows from (3.3) and |S′
i| ≤ |Si| for all i. (If Sj = ∅, then P (τ =

j, Rj = k) = P (τ ′ = j, Rj = 1) = 0.) By (3.1), (3.2) and (3.4), we have

p(k, n) = P (Rτ = k) =
n∑

j=1

P (τ = j, Rj = k)

≤
n∑

j=1

P (τ ′ = j, Rj = 1) = P (Rτ ′ = 1) ≤ p(1, n). (3.5)

It remains to show that (at least) one of the two inequalities in (3.5) is strict (so that
p(k, n) < p(1, n)). If the stopping rule τ ′ is not optimal for selecting the best candidate, then
the second inequality in (3.5) is strict. Suppose τ ′ is optimal for selecting the best candidate,
which implies, in view of n ≥ 3, that S′

1 = ∅ and S′
n−1 = {1}, which in turn implies that

|Sn−1| ≥ 1. If |Sn−1| ≥ 2, then the inequality in (3.4) is strict for j = n, implying that the
first inequality in (3.5) is strict. Suppose Sn−1 = {�} for some �. Then we have

P (Rn−1 = k,Xn−1 = �) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n − k

n(n − 1)
, if k = �;

k − 1
n(n − 1)

, if k = � + 1;

0, if k − � �= 0, 1;

implying, in view of 1 < k < n, that the inequality in (3.3) is strict for j = n − 1, which
in turn implies that the inequality in (3.4) is strict for j = n − 1. It follows that the first
inequality in (3.5) is strict. The proof is complete. �

Theorem 3.2: For 1 ≤ k ≤ n, we have p(k, n) ≥ p(k, n + 1) (i.e. p(k, n) is decreasing in n)
and p(k, n) ≥ p(k + 1, n + 1). Furthermore, p(k,∞) := limn→∞ p(k, n) is well defined and
p(k,∞) ≥ p(k + 1,∞).

Proof: (i) To show p(k, n) ≥ p(k, n + 1), consider the case of selecting the k-th best of
n + 1 candidates. Let the random variable I ∈ {1, . . . , n + 1} be such that RI = n + 1
(i.e., the worst candidate is the I-th person to be interviewed). If I is known to the
manager (or more precisely, the manager knows the position of the worst candidate
before the interview process begins), then the problem of optimally selecting the k-th
best of the n + 1 candidates is equivalent to that of optimally selecting the k-th best
of the n candidates (excluding the worst one). (Indeed, let X ′

i = Xi for 1 ≤ i < I and
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X ′
i = Xi+1 for I ≤ i ≤ n. Given I, X ′

1, . . . , X
′
n are (conditionally) independent with

each X ′
i being uniform over {1, . . . , i}.) Thus, when I is known to the manager, the

maximum probability of selecting the k-th best candidate equals p(k, n), which must
be at least as large as p(k, n + 1), the maximum probability of selecting the k-th best
of the n + 1 candidates when I is unavailable. This proves that p(k, n) ≥ p(k, n + 1).

(ii) To show p(k, n) ≥ p(k + 1, n + 1), note that

p(k, n) = p(n − k + 1, n) ≥ p(n + 1 − k, n + 1) = p(k + 1, n + 1), (3.6)

where the two equalities follow from the symmetry property p(k, n) = p(n − k + 1, n)
and the inequality follows from the decreasing property of p(k, n) in n.
Alternatively, using an argument similar to the proof of (i), p(k, n) ≥ p(k + 1, n + 1)
can also be proved by letting the manager know the position of the best of n + 1
candidates. With this extra information available, the (k + 1, n + 1) problem reduces
to the (k, n) problem. We leave out the details.

(iii) Since p(k, n) is decreasing in n, p(k,∞) := limn→∞ p(k, n) is well defined. By (3.6),
we have

p(k,∞) = lim
n→∞ p(k, n) ≥ lim

n→∞ p(k + 1, n + 1) = p(k + 1,∞).

The proof is complete. �

Remark 3.1: We conjecture that the three inequalities in Theorem 3.2 are all strict.
While p(k, n) is decreasing in n, in view of p(1, n) > p(k, n) for 1 < k < n and p(k,∞) ≥
p(k + 1,∞), it may be tempting to conjecture that p(k, n) ≥ p(k + 1, n) for 1 ≤ k < �n

2 	.
However, this inequality occasionally fails to hold for k close to (but less than) �n

2 	. Our
numerical results show that the set {(k, n) : 1 ≤ k < �n

2 	, n ≤ 50, p(k, n) < p(k + 1, n)} con-
sists of (2, 5), (2, 7), (7, 15), (9, 19), (10, 21), (12, 25), (21, 43), (22, 47), (24, 49) and (24, 50).
Moreover, it can be shown that p(2, n) > p(3, n) for all n ≥ 8. Let ρ = lim infn→∞ K(n)/n
where K(n) = max{1 ≤ k ≤ �n

2 	 : p(1, n) ≥ p(2, n) ≥ · · · ≥ p(k, n)}. While 0 ≤ ρ ≤ 1/2, it
appears to be a challenging task to find the exact value of ρ. Our limited numerical results
suggest that ρ may be equal to 1/2.

Remark 3.2: It may be of interest to see how fast p(k,∞) tends to 0 as k increases. By
considering some suboptimal rules, we have derived a crude lower bound k(−k/(k−1)) for
p(k,∞). The details are omitted.

The next theorem extends Theorem 3.1 to the setting where the goal is to select a
candidate whose rank belongs to a prescribed subset Γ of {1, . . . , n} (cf. Suchwalko and
Szajowski [10]). Let

p(Γ, n) = sup
τ∈Mn

P (Rτ ∈ Γ).

Theorem 3.3: For any subset Γ of {1, 2, . . . , n} with |Γ| = c (1 ≤ c < n), we have

p(Γ, n) ≤ p({1, 2, . . . , c}, n) = p({n − c + 1, . . . , n}, n).
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In the proof below, it is convenient to take the convention that
(
0
0

)
:= 1 and

(
n
k

)
:= 0 if

n < k or n < 0 or k < 0, so that
(

n

k

)
=
(

n − 1
k

)
+
(

n − 1
k − 1

)
for (k, n) ∈ Z × Z\{(0, 0)}, (3.7)

and (
n

k

)
≥
(

n − 1
k

)
+
(

n − 1
k − 1

)
for (k, n) ∈ Z × Z, (3.8)

where Z is the set of all integers.

Proof of Theorem 3.3: As in the proof of Theorem 3.1, let τ be a (non-randomized)
optimal stopping rule determined by a sequence of subsets {Sj} of {1, . . . , n} such that
Sj ⊂ {1, . . . , j}, τ = min{j : Xj ∈ Sj} and P (Rτ ∈ Γ) = p(Γ, n). Again, as stopping at n is
enforced (if τ > n − 1), we may assume that Sn = {1, 2, . . . , n}. Let S′

j = {1, 2, . . . , |Sj |}, so
|S′

j | = |Sj | (in particular, S′
j = ∅ if Sj = ∅). Let τ ′ = min{j : Xj ∈ S′

j}. Claim

P (Rj ∈ {t1, t2, . . . , tc},Xj ∈ {s1, s2, . . . , sd})
≤ P (Rj ∈ {1, 2, . . . , c},Xj ∈ {1, 2, . . . , d}) (3.9)

for 1 ≤ d ≤ j ≤ n, 1 ≤ c ≤ n, 1 ≤ t1 < t2 < · · · < tc ≤ n and 1 ≤ s1 < s2 < · · · < sd ≤ j. If
the claim (3.9) is true, then for j = 1, . . . , n,

P (τ = j, Rj ∈ Γ) = P (Xi /∈ Si, i = 1, . . . , j − 1, Xj ∈ Sj , Rj ∈ Γ)

=
[ j−1∏

i=1

P (Xi /∈ Si)
]
P (Rj ∈ Γ,Xj ∈ Sj)

≤
[ j−1∏

i=1

P (Xi /∈ S′
i)
]
P (Rj ∈ {1, . . . , c},Xj ∈ S′

j) (by (3.9))

= P (Xi /∈ S′
i, i = 1, . . . , j − 1,Xj ∈ S′

j , Rj ∈ {1, . . . , c})
= P (τ ′ = j, Rj ∈ {1, . . . , c}),

implying that p(Γ, n) = P (Rτ ∈ Γ) ≤ P (Rτ ′ ∈ {1, . . . , c}) ≤ p({1, . . . , c}, n).
It remains to establish (3.9). Note that

P (Rj ∈ {t1, . . . , tc},Xj ∈ {s1, . . . , sd})
≤ P (Rj ∈ {t1, . . . , tc}) =

c

n

= P (Rj ∈ {1, . . . , c})
= P (Rj ∈ {1, . . . , c},Xj ∈ {1, . . . , d}) (if d ≥ c),

showing that (3.9) holds for d ≥ c. Since

P (Rj = a,Xj = b) =

(
a−1
b−1

)(
n−a
j−b

)
n
(
n−1
j−1

) for all integers a > 0, b > 0,
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(3.9) is equivalent to

d∑
i=1

c∑
�=1

(
t� − 1
si − 1

)(
n − t�
j − si

)
≤

d∑
i=1

c∑
�=1

(
� − 1
i − 1

)(
n − �

j − i

)
, (3.10)

for 1 ≤ d ≤ j ≤ n, 1 ≤ c ≤ n, 1 ≤ t1 < · · · < tc ≤ n and 1 ≤ s1 < · · · < sd ≤ j. Note that
(3.10) holds for d ≥ c (since (3.9) does for d ≥ c). Also, from

(
n−t�

j−si

)
= 0 for t� > n or si > j,

it follows easily that for fixed n, if (3.10) holds for all (j, c, d, t1, . . . , tc, s1, . . . , sd) with
1 ≤ d ≤ j ≤ n, 1 ≤ c ≤ n, 1 ≤ t1 < · · · < tc ≤ n and 1 ≤ s1 < · · · < sd ≤ j, then (3.10) holds
for all (j, c, d, t1, . . . , tc, s1, . . . , sd) with 1 ≤ j ≤ n, 1 ≤ t1 < · · · < tc and 1 ≤ s1 < · · · < sd.
This (trivial) observation is needed later. To prove (3.10), we proceed by induction on n.
For n = 1, necessarily j = 1 and c = d = 1 (since 1 ≤ d ≤ j ≤ n and 1 ≤ c ≤ n). So (3.10)
holds for n = 1.

Suppose (3.10) holds for (fixed) n ≥ 1 and for all (j, c, d, t1, . . . , tc, s1, . . . , sd) with
1 ≤ d ≤ j ≤ n, 1 ≤ c ≤ n, 1 ≤ t1 < · · · < tc ≤ n and 1 ≤ s1 < · · · < sd ≤ j (and hence for
all (j, c, d, t1, . . . , tc, s1, . . . , sd) with 1 ≤ j ≤ n, 1 ≤ t1 < · · · < tc and 1 ≤ s1 < · · · < sd). We
need to show that (3.10) holds for n + 1 (with 1 ≤ d < c), that is,

d∑
i=1

c∑
�=1

(
t� − 1
si − 1

)(
n − t� + 1

j − si

)
≤

d∑
i=1

c∑
�=1

(
� − 1
i − 1

)(
n − � + 1

j − i

)
, (3.11)

for 1 ≤ d ≤ j ≤ n + 1, 1 ≤ d < c ≤ n + 1, 1 ≤ t1 < t2 < · · · < tc ≤ n + 1 and 1 ≤ s1 < s2 <
· · · < sd ≤ j. If j = 1, then necessarily d = 1 and s1 = 1, so that both sides of (3.11) equal
c, implying that (3.11) holds for j = 1. For j = n + 1, the left-hand side of (3.11) equals

d∑
i=1

c∑
�=1

(
t� − 1
si − 1

)(
n − t� + 1
n − si + 1

)
≤ d,

since the two inequalities t� − 1 ≥ si − 1 and n − t� + 1 ≥ n − si + 1 hold simultaneously if
and only if t� = si. The right-hand side of (3.11) equals

d∑
i=1

c∑
�=1

(
� − 1
i − 1

)(
n − � + 1
n − i + 1

)
= d,

since (
� − 1
i − 1

)(
n − � + 1
n − i + 1

)
= 1 or 0

according to whether i = � or i �= �. Thus, (3.11) holds for j = n + 1.
We now consider 2 ≤ j ≤ n. Suppose n − tc + 1 = j − sd = 0. Then the left-hand side

of (3.11) equals

d∑
i=1

c−1∑
�=1

(
t� − 1
si − 1

)(
n − t� + 1

j − si

)
+
(

n

j − 1

)

=
d∑

i=1

c−1∑
�=1

(
t� − 1
si − 1

)[(
n − t�
j − si

)
+
(

n − t�
j − si − 1

)]
+
(

n

j − 1

)
(by (3.7))

=
d∑

i=1

c−1∑
�=1

(
t� − 1
si − 1

)(
n − t�
j − si

)
+

d−1∑
i=1

c−1∑
�=1

(
t� − 1
si − 1

)(
n − t�

(j − 1) − si

)
+
(

n

j − 1

)
. (3.12)
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By the induction hypothesis (applied to each of the two double sums), (3.12) is less than
or equal to

d∑
i=1

c−1∑
�=1

(
� − 1
i − 1

)(
n − �

j − i

)
+

d−1∑
i=1

c−1∑
�=1

(
� − 1
i − 1

)(
n − �

(j − 1) − i

)
+
(

n

j − 1

)

=
d−1∑
i=1

c−1∑
�=1

(
� − 1
i − 1

)[(
n − �

j − i

)
+
(

n − �

j − i − 1

)]
+

c−1∑
�=1

(
� − 1
d − 1

)(
n − �

j − d

)
+
(

n

j − 1

)
,

which by (3.7) is equal to

d−1∑
i=1

c−1∑
�=1

(
� − 1
i − 1

)(
n − � + 1

j − i

)
+

c−1∑
�=d

(
� − 1
d − 1

)(
n − �

j − d

)
+
(

n

j − 1

)
. (3.13)

We need the following identity
c∑

i=d+1

(
c − 1
i − 1

)(
n − c + 1

j − i

)
=

c−1∑
�=d

(
� − 1
d − 1

)(
n − �

j − d − 1

)
, (3.14)

which holds by observing that the left-hand side is the total number of subsets of {1, . . . , n}
with j − 1 elements and with the d-th smallest element less than c while the term(

� − 1
d − 1

)(
n − �

j − d − 1

)

on the right-hand side is the number of subsets of {1, . . . , n} with j − 1 elements and with
the dth smallest element being �. In view of (3.14),(

n

j − 1

)
=

d∑
i=1

(
c − 1
i − 1

)(
n − c + 1

j − i

)
+

c∑
i=d+1

(
c − 1
i − 1

)(
n − c + 1

j − i

)

=
d∑

i=1

(
c − 1
i − 1

)(
n − c + 1

j − i

)
+

c−1∑
�=d

(
� − 1
d − 1

)(
n − �

j − d − 1

)
. (3.15)

We have shown that the left-hand side of (3.11) is less than or equal to (3.13), which by
(3.15) equals

d−1∑
i=1

c−1∑
�=1

(
� − 1
i − 1

)(
n − � + 1

j − i

)
+

c−1∑
�=d

(
� − 1
d − 1

)[(
n − �

j − d

)
+
(

n − �

j − d − 1

)]

+
d∑

i=1

(
c − 1
i − 1

)(
n − c + 1

j − i

)

=
d−1∑
i=1

c−1∑
�=1

(
� − 1
i − 1

)(
n − � + 1

j − i

)
+

c−1∑
�=d

(
� − 1
d − 1

)(
n − � + 1

j − d

)

+
d∑

i=1

(
c − 1
i − 1

)(
n − c + 1

j − i

)
(by (3.7))

=
d∑

i=1

c∑
�=1

(
� − 1
i − 1

)(
n − � + 1

j − i

)
,
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establishing (3.11) for the case that 2 ≤ j ≤ n and n − tc + 1 = j − sd = 0.
It remains to deal with the case that 2 ≤ j ≤ n and (n − tc + 1, j − sd) �= (0, 0) (imply-

ing that (n − t� + 1, j − si) �= (0, 0) for all i, �). By (3.7), the left-hand side of (3.11)
equals

d∑
i=1

c∑
�=1

(
t� − 1
si − 1

)(
n − t�
j − si

)
+

d∑
i=1

c∑
�=1

(
t� − 1
si − 1

)(
n − t�

(j − 1) − si

)

≤
d∑

i=1

c∑
�=1

(
� − 1
i − 1

)(
n − �

j − i

)
+

d∑
i=1

c∑
�=1

(
� − 1
i − 1

)(
n − �

(j − 1) − i

)

(by the induction hypothesis)

=
d∑

i=1

c∑
�=1

(
� − 1
i − 1

)[(
n − �

j − i

)
+
(

n − �

j − i − 1

)]

≤
d∑

i=1

c∑
�=1

(
� − 1
i − 1

)(
n − � + 1

j − i

)
(by (3.8)).

Note that the first inequality follows from the induction hypothesis applied to each of
the two double sums where tc > n or sd > j − 1 is possible. (Recall that the induction
hypothesis applies to all (j, c, d, t1, . . . , tc, s1, . . . , sd) with 1 ≤ j ≤ n, 1 ≤ t1 < · · · < tc and
1 ≤ s1 < · · · < sd.) The proof is complete. �

Remark 3.3: It is worth noting that the identities (3.14) and (3.15) are variants of Chu-
Vandermonde convolution formula. (See the first identity in Table 169 of Graham, Knuth
and Patashnik [5].)

The next theorem provides another monotonicity property of p(Γ, n), which is an
extension of Theorem 3.2.

Theorem 3.4: For any subset Γ of {1, 2, . . . , n} with |Γ| = c (1 ≤ c ≤ n), let Γ + 1 := {x +
1 : x ∈ Γ}. Then we have p(Γ, n) ≥ p(Γ, n + 1) and p(Γ, n) ≥ p(Γ + 1, n + 1). Consequently,
p(Γ,∞) := limn→∞ p(Γ, n) is well defined and p(Γ,∞) ≥ p(Γ + 1,∞).

Proof: The proof is similar to that of Theorem 3.2. To show p(Γ, n) ≥ p(Γ, n + 1), consider
the case of selecting a candidate whose absolute rank is in Γ among n + 1 candidates. Let the
random variable I ∈ {1, 2, . . . , n + 1} be such that RI = n + 1 (i.e., I denotes the position
of the worst candidate). If I is known to the manager, then the problem of optimally
selecting a candidate with absolute rank in Γ among n + 1 candidates is equivalent to that
of optimally selecting a candidate with absolute rank in Γ among n candidates. Therefore,
if I is known to the manger, then the maximum probability of selecting a candidate with
absolute rank in Γ among n + 1 candidates equals p(Γ, n), which must be at least as large as
p(Γ, n + 1), the maximum probability of selecting a candidate with absolute rank in Γ among
n + 1 candidates when I is unknown to the manager. This proves that p(Γ, n) ≥ p(Γ, n + 1).
Hence, p(Γ,∞) := limn→∞ p(Γ, n) is well defined.

Letting n + 1 − Γ := {n + 1 − x : x ∈ Γ}, we have by symmetry that

p(Γ, n) = p(n + 1 − Γ, n) ≥ p(n + 1 − Γ, n + 1) = p(Γ + 1, n + 1),

from which it follows that p(Γ,∞) ≥ p(Γ + 1,∞). The proof is complete. �
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4. PROOFS OF LEMMAS 2.1–2.5 AND (2.10)–(2.11)

To prove Lemmas 2.1–2.5, we need the following lemma.

Lemma 4.1: For n ≥ 32, we have

n − 1√
e

+ 1 < bn <
n − (3/2)√

e
+

5
2
. (4.1)

In particular,
n + 5

2
< bn <

2n − 1
3

. (4.2)

Proof: By (2.5), we have

1
2

<

n∑
i=bn

1
i − 2

=
n−2∑

i=bn−2

1
i

<

∫ n−(3/2)

bn−(5/2)

dx

x
= log

(
n − (3/2)
bn − (5/2)

)
(4.3)

and

1
2
≥

n∑
i=bn+1

1
i − 2

=
n−2∑

i=bn−1

1
i

>

∫ n−1

bn−1

dx

x
= log

(
n − 1
bn − 1

)
. (4.4)

By (4.3), we have

bn <
n − (3/2)√

e
+

5
2
;

and from (4.4), bn > ((n − 1)/
√

e) + 1, establishing (4.1). Since

n − (3/2)√
e

+
5
2

<
2n − 1

3
and

n − 1√
e

+ 1 >
n + 5

2

(for n ≥ 32), we have ((n + 5)/2) < bn < ((2n − 1)/3). The proof is complete. �

From (2.5) and (2.6), we have

(bn − 2)(n − 2) =
(bn − 2)(2n − 4)

2

< un = 2n − 4 + (bn − 2)(2n − 4)
n∑

i=bn+1

1
i − 2

≤ 2n − 4 +
(bn − 2)(2n − 4)

2
= bn(n − 2),

that is,

(bn − 2)(n − 2) < un ≤ bn(n − 2). (4.5)

Remark 4.1: The assumption of n ≥ 32 is needed for Lemmas 2.1–2.5 since the following
proofs of the lemmas rely on (4.2).
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Proof of Lemma 2.1: (i) Note (cf. Remark 2.1) that an = �x0	 < x0 + 1 where x0

is the smaller root of fn(x) = 0. We now show fn(bn − 1) < 0 (which implies that
an < x0 + 1 < (bn − 1) + 1 = bn). We have

fn(bn − 1) = 3(bn − 1)2 − (1 + 4n)(bn − 1) + (n − 2)bn + 2(n + 1) + un

≤ 3(bn − 1)2 − (1 + 4n)(bn − 1) + (n − 2)bn + 2(n + 1)

+ bn(n − 2) (by (4.5))

= (bn − 3)[3bn − (2n + 2)] < 0 (by (4.2)).

This proves (i).
(ii) Note that

fn(bn) ≤ 3b2
n − (1 + 4n)bn + (n − 2)bn + 2(n + 1) + bn(n − 2)

= (bn − 1)[3bn − (2n + 2)] < 0 (by (4.2)).

This proves that bn < y0.
(iii) By (4.2) and (ii), y0 > bn > ((n + 5)/2) > ((n + 4)/3). We now show fn((n + 4)/3) >

0 (which implies that ((n + 4)/3) < x0 ≤ �x0	 = an). By (4.5),

fn

(
n + 4

3

)
= −n2 − 3n + 4 + (n − 2)bn + 2(n + 1) + un

> −n2 − 3n + 4 + (n − 2)bn + 2(n + 1) + (bn − 2)(n − 2) (by (4.5))

= (n − 2)(2bn − (n + 5)) > 0 (by (4.2)).

The proof is complete. �

Proof of Lemma 2.2: By Lemma 2.1, an < bn.

(i) Let

Qi = {X� �= 2 for an ≤ � ≤ i − 1,Xi = 2}, an ≤ i ≤ bn − 1;

Q′
i = {X� �= 2 for an ≤ � ≤ bn − 1,

X� �= 2, 3 for bn ≤ � ≤ i − 1,Xi = 2}, i ≥ bn;

and Q′′
i = {X� �= 2 for an ≤ � ≤ bn − 1,

X� �= 2, 3 for bn ≤ � ≤ i − 1,Xi = 3}, i ≥ bn.

Since X� is uniformly distributed over {1, 2, . . . , �}, the X ′
�s are independent and Ri

is conditionally independent of X1, . . . , Xi−1 given Xi, we have

P (Qi) =
(an − 1)
i(i − 1)

, P (Ri = 3 | Qi) = yi(2) for an ≤ i ≤ bn − 1,

P (Q′
i) = P (Q′′

i ) =
(an − 1)(bn − 2)
i(i − 1)(i − 2)

, P (Ri = 3 | Q′
i) = yi(2),

P (Ri = 3 | Q′′
i ) = yi(3), for i ≥ bn.
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Thus, by (2.4) and (2.6), for j < an,

hj(xj) =
n∑

i=an

P (Ri = 3 and the ith candidate is selected under τ3,n)

=
bn−1∑
i=an

P (Qi)P (Ri = 3 | Qi)

+
n∑

i=bn

[P (Q′
i)P (Ri = 3 | Q′

i) + P (Q′′
i )P (Ri = 3 | Q′′

i )]

=
bn−1∑
i=an

(an − 1)
i(i − 1)

yi(2) +
n∑

i=bn

[
(an − 1)(bn − 2)
i(i − 1)(i − 2)

(yi(2) + yi(3))
]

=
an − 1

n(n − 1)(n − 2)

[
bn−1∑
i=an

2(n − i) + (bn − 2)
n∑

i=bn

2n − i − 2
i − 2

]

=
an − 1

n(n − 1)(n − 2)

[
(2n − an − bn + 1)(bn − an) − (bn − 2)(n − bn + 1)

+ (bn − 2)(2n − 4)
n∑

i=bn

1
i − 2

]

=
(an − 1)[a2

n − (1 + 2n)an + (n − 2)bn + 2(n + 1) + un]
n(n − 1)(n − 2)

=: cn. (4.6)

This proves (i) for j < an. The other cases can be treated similarly.

(ii) By (i), for j < an − 1, hj+1(i) does not depend on i, so that (1/(j + 1))
∑j+1

i=1

hj+1(i) = cn. To establish the identity for j = an − 1, we have by (i) that han
(2) =

yan
(2) and

han
(i) =

an

(
a2

n + (1 − 2n)an + (n − 2)bn + 2 + un

)
n(n − 1)(n − 2)

for i �= 2 with 1 ≤ i ≤ an.

So,

1
an

an∑
i=1

han
(i)

=
1
an

{
yan

(2) + (an − 1)

[
an

(
a2

n + (1 − 2n)an + (n − 2)bn + 2 + un

)
n(n − 1)(n − 2)

]}

=
1
an

{
2an(an − 1)(n − an)

n(n − 1)(n − 2)
+ (an − 1)

×
[

an

(
a2

n + (1 − 2n)an + (n − 2)bn + 2 + un

)
n(n − 1)(n − 2)

]}

=
(an − 1)

[
a2

n − (1 + 2n)an + (n − 2)bn + 2(n + 1) + un

]
n(n − 1)(n − 2)

= cn.
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This proves (ii) for the case j < an. The other cases can be treated similarly.
�

Proof of Lemma 2.3: Since, by Lemma 2.2(ii), (1/(j + 1))
∑j+1

i=1 hj+1(i) = cn for j < an

where cn is defined in (4.6), we need to show

max{yj(i) : i = 1, 2, 3, j < an} < cn, (4.7)

where yj(i) is given in (2.4). Since yj(2) > yj(3) if and only if 2(n − j) > j − 2 (i.e., j <
((2n + 2)/3)) and, since by Lemma 2.1(i) and (4.2), an < bn < (2n − 1)/3, we have yj(2) >
yj(3) for j < an, implying that

max
j<an

yj(2) > max
j<an

yj(3). (4.8)

Noting that yj(1) ≥ yj+1(1) if and only if j ≥ (n − 2)/3, we have

max
1≤j≤n

yj(1) = y�(n−2)/3	(1) ≤ y�(n−2)/3	+1(2),

where the inequality is due to the fact that yj(1) ≤ yj+1(2) for j ≥ (n − 2)/3. By
Lemma 2.1(iii),

an >
n + 4

3
>

⌈
n − 2

3

⌉
+ 1.

So,
max

1≤j≤n
yj(1) = y�((n−2)/3)	(1) ≤ y�((n−2)/3)	+1(2) ≤ max

j<an

yj(2). (4.9)

Moreover, yj(2) ≤ yj+1(2) if and only if j ≤ �((2n − 1)/3)�, which together with an <
((2n − 1)/3) implies that

max
j<an

yj(2) = yan−1(2). (4.10)

In view of (4.8)–(4.10), (4.7) holds if we can show that

yan−1(2) < cn,

that is,
3a2

n − (4n + 7)an + (n − 2)bn + 6(n + 1) + un > 0,

which is equivalent to fn(an − 1) > 0. This holds by (2.8). The proof is complete. �

Proof of Lemma 2.4:

(i) Note that

n(n − 1)(n − 2)
j

[
yj(2) − 1

j + 1

j+1∑
i=1

hj+1(i)

]

= 2(j − 1)(n − j) − j2 − (1 − 2n)j − (n − 2)bn − 2 − un

= −3j2 + (1 + 4n)j − (n − 2)bn − 2(n + 1) − un

= −fn(j) ≥ 0,

where the inequality holds since fn(j) ≤ 0 for x0 ≤ an ≤ j < bn < y0 where x0 and
y0 denote the two roots of fn(x) = 0.
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(ii) Note that

n(n − 1)(n − 2)
j

[
yj(1) − 1

j + 1

j+1∑
i=1

hj+1(i)

]

= (n − j − 1)(n − j) − j2 − (1 − 2n)j − (n − 2)bn − 2 − un

= n2 − n − (n − 2)bn − 2 − un

< n2 − n − (n − 2)bn − 2 − (bn − 2)(n − 2) (by (4.5))

= (n − 2)(n + 3 − 2bn) < 0 (by (4.2)).

This proves (ii).
(iii) Note that

n(n − 1)(n − 2)
j

[
yj(3) − 1

j + 1

j+1∑
i=1

hj+1(i)

]

= (j − 1)(j − 2) − j2 − (1 − 2n)j − (n − 2)bn − 2 − un

= (n − 2)(2j − bn) − un

< (n − 2)(2j − bn) − (bn − 2)(n − 2) (by (4.5))

= 2(n − 2)(j + 1 − bn) ≤ 0,

where the last inequality follows since j ≤ bn − 1. The proof is complete. �

Proof of Lemma 2.5: We claim that

j − 1
n − j

n∑
i=j+1

1
i − 2

is increasing in 2 ≤ j < n; (4.11)

and
1

n − j

n∑
i=j+1

1
i − 2

is decreasing in 2 ≤ j < n. (4.12)

Note that for j = 2, . . . , n − 2,

j − 1
n − j

n∑
i=j+1

1
i − 2

− j

n − j − 1

n∑
i=j+2

1
i − 2

=
1

n − j
− n − 1

(n − j)(n − j − 1)

n∑
i=j+2

1
i − 2

=
n − 1
n − j

⎛
⎝ 1

n − 1
− 1

n − j − 1

n∑
i=j+2

1
i − 2

⎞
⎠ < 0,

establishing (4.11). A similar argument yields (4.12).

(i) By (2.4) and Lemma 2.2(ii), for bn ≤ j ≤ n − 1,

n(n − 1)(n − 2)
j

[
yj(1) − 1

j + 1

j+1∑
i=1

hj+1(i)

]

= (n − j − 1)(n − j) − (j − 1)

⎡
⎣(2n − 4)

n∑
i=j+1

1
i − 2

− (n − j)

⎤
⎦
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= (n − j)(n − 2)

⎡
⎣1 − 2(j − 1)

n − j

n∑
i=j+1

1
i − 2

⎤
⎦

≤ (n − j)

[
1 − 2(bn − 1)

n − bn

n∑
i=bn+1

1
i − 2

]
(by (4.11))

< (n − j)
[
1 − 2(bn − 1)

n − 2

]

< 0
(

since bn >
n + 5

2
by (4.2)

)
.

This proves (i).
(ii) By (2.4) and Lemma 2.2(ii), for bn ≤ j ≤ n − 1,

n(n − 1)(n − 2)
j(j − 1)

[
yj(2) − 1

j + 1

j+1∑
i=1

hj+1(i)

]

= 3(n − j) − (2n − 4)
n∑

i=j+1

1
i − 2

= (n − j)

⎡
⎣3 − 2n − 4

n − j

n∑
i=j+1

1
i − 2

⎤
⎦

≥ (n − j)

[
3 − 2n − 4

n − bn

n∑
i=bn+1

1
i − 2

]
(by (4.12))

≥ (n − j)
[
3 − n − 2

n − bn

]
(by (2.5))

> 0 (since bn < (2n − 1)/3 by (4.2)).

This proves (ii).
(iii) By (2.4) and Lemma 2.2(ii), for bn ≤ j ≤ n − 1,

n(n − 1)(n − 2)
j(j − 1)

[
yj(3) − 1

j + 1

j+1∑
i=1

hj+1(i)

]

= n − 2 − (2n − 4)
n∑

i=j+1

1
i − 2

= (n − 2)

⎡
⎣1 − 2

n∑
i=j+1

1
i − 2

⎤
⎦

≥ (n − 2)

[
1 − 2

n∑
i=bn+1

1
i − 2

]

≥ 0 (by (2.5)).

The proof is complete. �
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Proof of (2.10) and (2.11): It follows immediately from Lemma 4.1 that d2 = 1/
√

e.
Let x0 be the smaller root of fn(x) = 0, that is,

x0 :=
(1 + 4n) −√

(1 + 4n)2 − 12[(n − 2)bn + 2(n + 1) + un]
6

=
2[(n − 2)bn + 2(n + 1) + un]

1 + 4n +
√

(1 + 4n)2 − 12[(n − 2)bn + 2(n + 1) + un]
. (4.13)

Since bn/n → d2 = 1/
√

e and

n∑
i=bn

1
i − 2

→
∫ 1

1/
√

e

dx

x
=

1
2

as n → ∞,

un

n2
=

(bn − 2)(2n − 4)
n2

n∑
i=bn

1
i − 2

→ d2 as n → ∞. (4.14)

By (4.13), (4.14) and an = �x0	, we have

d1 = lim
n→∞

an

n
= lim

n→∞
x0

n
=

2d2

2 +
√

4 − 6d2

=
2

2
√

e +
√

4e − 6
√

e
,

proving (2.10). By Lemma 2.2(i),

p(3, n) = h1(1) =
(an − 1)[a2

n − (1 + 2n)an + (n − 2)bn + 2(n + 1) + un]
n(n − 1)(n − 2)

,

which together with (2.10) and (4.14) yields

p(3,∞) = lim
n→∞ p(3, n) = d1(d2

1 − 2d1 + 2d2) = 2d2
1(1 − d1) =

8
(
2
√

e − 2 +
√

4e − 6
√

e
)

(
2
√

e +
√

4e − 6
√

e
)3 ,

proving (2.11). �
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